
تعداد نشریات | 163 |
تعداد شمارهها | 6,762 |
تعداد مقالات | 72,835 |
تعداد مشاهده مقاله | 131,825,906 |
تعداد دریافت فایل اصل مقاله | 103,519,850 |
بررسی هیدرولیک سرریزهای جانبی لولایی با آستانه | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 1، فروردین 1404، صفحه 229-246 اصل مقاله (2 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.382426.669790 | ||
نویسندگان | ||
هومن خیبر؛ سید محسن سجادی* ؛ جواد احدیان؛ مهدی قمشی | ||
گروه سازه های آبی، دانشکده مهندسی آب و محیط زیست، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
چکیده | ||
سرریز جانبی یک سازه پرکاربرد است که از آن برای روگذری جریان در مسیلها و کانالها استفاده میگردد. در این تحقیق با معرفی نوع جدیدی از سرریزهای جانبی تحت عنوان سرریز جانبی لولایی (گونهای از سرریزهای لبه تیز مایل) با آستانه، به بررسی ضریب دبی و راندمان آن پرداخته شد. آزمایشها در آزمایشگاه هیدرولیک دانشکده مهندسی علوم آب دانشگاه شهید چمران اهواز صورت گرفت. عملکرد مدلهای PSW (سرریز جانبی لولایی با آستانه جریان و کنارههای سرریز باز)، PSW-C (مدل سرریز جانبی لولایی با آستانه و کنارههای سرریز بسته) و PSW-HC (مدل سرریز جانبی لولایی با کناره ابتدایی باز و انتهای بسته) نسبت به مدل شاهد R (سرریز جانبی لبه تیز قائم مستطیلی) در مقابل عدد فرود انتهای بالادست جریان در محدوه 3/0 تا 54/0 به ازای یک نسبت عمق بالادست به ارتفاع سرریز ثابت و تحت زوایای بازشدگی 30، 45 و 60 درجه رو به کانال اصلی بررسی گردید. نتایج نشان داد که مدلهای معرفی شده در این تحقیق نسبت به مدل شاهد بهینهتر بوده و ضریب دبی و راندمان بیشتری خواهند داشت. محاسبات نشان داد که در مدلهای اصلی، ضریب دبی تا 80 و راندمان تا 70 درصد نسبت به مدل شاهد افزایش خواهد یافت. همچنین در مقایسه مدلهای اصلی با یکدیگر مشاهده گردید که مقدار ضریب دبی و راندمان مدل PSW-HC به طور میانگین در حدود 7 و 5 درصد نسبت به مدل PSW و 22 و 8 درصد نسبت به مدل PSW-C افزایش یافته است. | ||
کلیدواژهها | ||
آستانه سرریز؛ راندمان؛ سرریزهای جانبی؛ سرریزهای لولایی؛ ضریب دبی | ||
مراجع | ||
Abbaspour, A., Abdolahpour, M., & Salmasi, F. (2014). "Numerical Simulation of Flow over Rectangular Broad-crested Weir with Upstream and Downstream Side Slopes Using Fluent Model", Water and Soil Science, 23(4), pp. 265-276. Arvanaghi, H., Naderi, V., Azimi, V., & Salmasi, F. (2014). "Determination of discharge coefficient in inclined rectangular sharp-crested weirs using experimental and numerical simulation." J. Curr. Res. Sci., 2(3), 401–406. Azimfar, S. M., Hosseini, S. A., & Khosrojerrdi, A. (2017). "Derivation of Discharge Coefficient of a Pivot Weir under Free and Submergence Flow Conditions"., Flow Measurement and Instrumentation, https://doi.org/10.1016/j.flowmeasinst.2017.11.010 Bijankhan, M., & Ferro, V. (2018). “Experimental Study and Numerical Simulation of Inclined Rectangular Weirs.” Journal of Irrigation and Drainage Engineering. 144. 10.1061/(asce)ir.1943-4774.0001325. Brater, E.F., & King, H.W. (1976). "Handbook of Hydraulics." 6th ed. McGraw-Hill, New York. 584 pp. Chow. V.T. (1959) Open Channel Hydraulics. McGraw-Hill, New York. Daneshfaraz, R., Norouzi, R., Abbaszadeh, H.R. & Azamathulla. H.M. (2022a). "Theoretical and experimental analysis of applicability of sill with different widths on the gate discharge coefficients". Water Supply; 22 (10): 7767–7781. doi: https://doi.org/10.2166/ws.2022.354 Daneshfaraz, R., Norouzi, R., Abbaszadeh, H., Kuriqi, A. & Di Francesco, S. (2022b). "Influence of Sill on the Hydraulic Regime in Sluice Gates". An Experimental and Numerical Analysis. Fluids, 7, 244. https://doi.org/10.3390/fluids7070244. Daneshfaraz, R., Norouzi, R., Patrick Abraham, J., Ebadzadeh, P., Akhondi, B., & Abar, M. (2023). Determination of flow characteristics over sharp-crested triangular plan form weirs using numerical simulation. Water Science, 37(1), 211-224. De Marchi, G. (1934). Essay on the performance of pivot weirs. L Energia Electrica Milano, Italy, 11: 11. 849-860. E.M.I.N. Emiroglu, M. Kisi, & O. Bilhan. (2010). "Predicting discharge capacity of triangular labyrinth side weir located on a straight channel by using an adaptive neuro-fuzzy technique", Adv. Eng. Software 41-154–160. Hasanzadeh Vayghan. V., Mohammadi. M., Salmasi. F., Hosseinzadeh Dalir. A. & Manafpour. M. "Experimental Investigation of Hydraulic Parameters in Modern Horseshoe Spillway". MCEJ 2016; 16 (4) :83-93. (inPersian) Hosseinzadeh, Z., Manem, J. & Kochzadeh, p. (2010). "Laboratory determination of flow coefficient of automatic pivot side weir". The third national conference on management of irrigation and drainage networks. (inPersian) Hulsing H. (1967). "Measurement of peak discharge at dams by indirect methods". U.S. Geol. Survey Techniques Water-Resources Inv., book 3, chap. A5, pp. 29. Kaya. N., E.M.I.N. Emiroglu, & H. Agaccioglu, (2011). "Discharge coefficient of a semi-elliptical side weir in subcritical flow", Flow Measurement and Instrumentation,Volume 22, Issue 1,Pages 25-32. Kindsvater, C. E., & Carter, R. W. (1957). "Discharge characteristics of rectangular thin plate weirs". Journal Hydraulic. Division. 83(6), 1–36. Maranzoni, A., Pilotti, M., & Tomirotti, M. (2017). "Experimental and numerical analysis of side weir flows in a converging channel." Journal of Hydraulic Engineering, 143(7), 04017009 Michelazzo, G. (2015). "New analytical formulation of De Marchis model for a zero-height side weir." Journal of Hydraulic Engineering, 141(12), 04015030. Norouzi, R., Daneshfaraz, R., & Ghaderi, A. (2019). Investigation of discharge coefficient of trapezoidal labyrinth weirs using artificial neural networks and support vector machines. Applied Water Science, 9(7), 1–10. 10.1007/s13201-019-1026-5 Nourani, B., Norouzi, R., Rezaei, F., & Salmasi, F. (2021). "Investigation of the Stage-Discharge Relation and Discharge Coefficient in Sharp-Crested Weirs with Triangular Shape in Plan", Amirkabir Journal of Civil Engineering, 53(5), pp. 1689-1704. doi: 10.22060/ceej.2019.16931.6399. (inPersian) Parvaneh, A., Parvaneh, M., Rakhshandehroo, G., Jalili Ghazizadeh, M. R. & Sadeghian, H. (2022). Discharge Characteristics of a Novel Inclined-Bed Triangular Side Weir in Subcritical Flow. Journal of Irrigation and Drainage Engineering. 148. 10.1061/(ASCE)IR.1943-4774.0001651. Roushangar, K., Khoshkanar, R. & Shiri, J. (2016). "Predicting trapezoidal and rectangular side weirs discharge coefficient using machine learning methods". ISH Journal of Hydraulic Engineering, vol. 22, issue 3, pp. 254-261. 10.1080/09715010.2016.1177740. Roushangar, K. & Mehrizad, A. (2024). "Kernel-based framework for improved prediction of discharge coefficient in vertically supported cylindrical weirs". Journal of Hydroinformatics. 26 (8): 1883–1905. doi: https://doi.org/10.2166/hydro.2024.039. Schoder, E.W. & Turner, K.B. (1929). "Precise Weir Measurements." Trans. ASCE, 93, 999-1110. Sheikh Rezazadeh Niko, N., Manem, J. & Safavi, Kh. (2015). "Extracting the flow equation of submerged flow and determining the flow coefficient in a pivot side weir with different pivot compressions". Iranian Irrigation and Drainage Magazine, No. 5, Volume 9, December - December 2014, p. 691-700. (inPersian) Sheikh Rezazade Niko, N., Qobadi, S. & Manem, J. (2016). "Determining the Debye-Eschel equation for pivot weirs". National Irrigation and Drainage Congress of Iran. (inPersian) USBR. (1948). "Studies of Crests for Overfall Dams." Bulletin 3. Boulder Canyon Project, Final Report. United States Bureau of Reclamation, Denver. Wahlin B.T., & Replogle J.A. (1994). "Flow Measurement Using an Overshot Gate". United States Department of the Interior Bureau of Reclamation, under Cooperative Agreement NO.1425-2-FC-81-19060 entitled Water Conservation Innovative Technology Study for Agriculture and Urben Irrigation Water. White. F. M. (2011) “Fluid Mechanics,” 7th Edition, McGraw- Hill, New York. | ||
آمار تعداد مشاهده مقاله: 93 تعداد دریافت فایل اصل مقاله: 73 |