
تعداد نشریات | 162 |
تعداد شمارهها | 6,692 |
تعداد مقالات | 72,232 |
تعداد مشاهده مقاله | 129,200,623 |
تعداد دریافت فایل اصل مقاله | 102,030,338 |
مقیاسپذیری فرسایش شیاری در یک خاک لومی شنی در شرایط شبیهسازی مزرعهای | ||
تحقیقات آب و خاک ایران | ||
دوره 56، شماره 1، فروردین 1404، صفحه 91-104 اصل مقاله (2.04 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.382458.669795 | ||
نویسندگان | ||
احد دودکانلو میلان؛ سمانه آقایی؛ حسین اسدی* | ||
علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
یکی از مهمترین مشکلات در زمینه تحقیقات فرسایش خاک وابستگی نتایج اندازهگیری و براوردها به مقیاس است. در سالهای اخیر مطالعات متعددی در زمینة مقیاسپذیری فرسایش خاک صورت گرفته است که حاصل آن ایجاد مدلهای مختلف است. در این تحقیق که با هدف بررسی مقیاسپذیری فرسایش شیاری در شرایط مزرعه صورت پذیرفت، شیارهایی با طول 1 تا 8 متر و عرض 5 سانتیمتر در قطعه زمینی با شیب 5 درصد در یک خاک زراعی با بافت لوم شنی و ساختمان ضعیف ایجاد شد. آزمایشها با دو دبی جریان هدف 11/0 و 24/0 لیتر در ثانیه انجام شد. غلظت رسوب در طی فرایند آزمایش به مدت 30 دقیقه اندازهگیری و تغییرات زمانی آن در طول شیارهای مختلف بررسی شد. برای مطالعه مقیاسپذیری، تغییرات میانگین غلظت رسوب و شدت جداشدن ذرات در سه حالت ناپایدار اولیه، پایدار نهایی و کل رخداد با طول شیار بررسی و مدلسازی شد. نتایج نشان داد که تغییرات زمانی غلظت رسوب بهصورت نمایی کاهشی است. میانگین غلظت رسوب با طول شیار (تغییرات مکانی) در هر سه حالت در دبی جریان کمتر بهصورت خطی و با دبی بیشتر به صورت نمایی (رسیدن به یک حد مشخص) افزایش یافت. همچنین، تغییرات شدت جداشدن با طول شیار در هر سه حالت ناپایدار، پایدار و میانگین رخداد تحت هر دو دبی جریان، به صورت نمایی کاهش یافت. نتایج به طور کلی تایید کننده مدلها و نظریههای کاهش تصاعدی شدت جداشدن ذرات با افزایش طول بود. | ||
کلیدواژهها | ||
شدت جداشدن ذرات؛ طول شیار؛ غلظت رسوب؛ رابطه نمایی | ||
مراجع | ||
Asadi, H., Aligoli, M., & Gorji, M., (2017). Dynamic changes of sediment concentration in rill erosion at field experiments. Journal of Water and Soil Science. 20(78), 125-139. (in Persian) Asadi, H., Ghadiri, H., Rose, C. W., Yu, B., & Hussein, J., (2007). An investigation of flow-driven soil erosion processes at low streampowers. Journal Hydrology 342, 134-142. Asadi, H., Moussavi, A., Ghadiri, H., & Rose, C.W., (2011). Flow-driven soil erosion processes and the size selectivity of sediment. Journal of Hydrology 406, 73-81. Ban, Y. Y., & Lei, T. W. (2022). Mathematical method for physics-based rill erosion process using detachment and transport capacities. Scientific Reports, 12(1), 4812. Chao, Q., Hongyan, W., & Fenli, Z., (2016). Temporal and spatial variation characteristics of rill erosion and hydrodynamic parameters on loessial hillslope. Trans. Chinese Soc. Agric. Mach. 47 (8), 146–154. Chen, X., Huang, Y., Zhao, Y., Mo, B., Mi, H., & Huang, C., (2017). Analytical method for determining rill detachment rate of purple soil as compared with that of loess soil. Journal of Hydrology, 549, 236-243. Chen, X.Y., Zhao, Y., Mo, B., & Mi, H.X., (2016). Estimating rill erosion process from eroded morphology in flume experiments by volume replacement method. Catena 136, 135–140. Chen, X.-Y., Zhao, Y., Mo, B., &Mi, H.X., (2014). An improved experimental method for simulating erosion processes by concentrated channel flow. PloS One 9(6), e99660. Feng, R., Chen, J., Xie, Z., Li, D., & Yuan, Z., (2023). Experimental determination of sediment transport capacity of rill flow over sandified loess slope. International Soil and Water Conservation Research. 11, 301-310. Foster, G.R., & Meyer, L.D., (1972). Transport of soil particles by shallow flow. Transactions of the ASAE 15, 99–102. García-Ruiz, J. M., Beguería, S., Nadal-Romero, E., González-Hidalgo, J. C., Lana-Renault, N., & Sanjuán, Y. (2015). A meta-analysis of soil erosion rates across the world. Geomorphology, 239, 160-173 Golkarian, A., Ahmadi, H., Salageghe, A., Jafari, M., & Shahbazi, A., (2015). Effect of slope length on spatially variation of concentration. Journal of Range and Watershed Managment, 67(4), 587-601. (in Persian) Govers, G., Gimenez, R., & Van Oost, K., (2007). Rill erosion: Exploring the relationship between experiments, modelling and field observations. Earth-Science Reviews, 84(3-4), 87–102. Hairsine, P.B., & Rose, C.W., (1992). Modeling water erosion due to overland flow using physical principles: 2. rill flow. Water Resource Research 28(1), 245 –250. He, J. jun, Sun, L. ying, Duan, G. yao, & Cai, Q. guo. (2023). Slope gradient impacts on rill morphological characteristics: Using indoor simulation experiment on loamy clay under certain rainfall intensity. Catena, 222. https://doi.org/10.1016/j.catena.2022.106895 He, T., Yang, Y., Shi, Y., Liang, X., Fu, S., Xie, G., Liu, B., & Liu, Y., (2022).Quantifying spatial distribution of interrill and rill erosion in a loess at different slopes using structure from motion (SfM) photogrammetry. International Soil and Water Conservation Research. 10(3), 393-406. Huang, Y., Chen, X., Luo, B., Ding, L., & Gong, C. (2015). An experimental study of rill sediment delivery in purple soil, using the volume-replacement method. PeerJ, 3, e1220. Hussein, M., Asadi, H., Kouchakzadeh, S., & Mohammadi, M., (2023). Flow-driven soil erosion processes in a calcareous semiarid soil: Rill length and flow rate impacts. Catena, 221, 106765.ISSN 0341-8162. Klute, A. (1986). Water retention: Laboratory methods. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods. 5. 635-662. Lei, T. W., Zhang, Q. W., Zhao, J., Xia, W. S., & Pan, Y. H. (2002). Soil detachment rates for sediment loaded flow in rills. Transactions of the ASAE. 45(6), 1897. Li, D., Chen, X., Tan, W., Tao, T., Ma, L., Kong, L., & Zhu, P. (2024). Response of erosion rate to hydrodynamic parameters in sheet and rill erosion process on saturated soil slopes. Soil and Tillage Research, 237. https://doi.org/10.1016/j.still.2023.105996 Li, Z.B., Zhu, B.B., & Li, P. (2008). Advancement in study on soil erosion and water conservation. Acta Pedologica Sinica 45(5), 802-809. Liu, B.Y., Yang, Y., & Lu, S.J., (2018). Discriminations on common soil erosion terms and their implications for soil and water conservation. Sci. Soil Water Conserv. 16, 9–16. http://doi.org/10.16843/j.sswc.2018.01.002. (In Chinese). Nelson D.W., & Sommers L.E., (1996). Total carbon, organic carbon, and organic matter. Methods of Soil Analysis, Part 3- Chemical Methods, 961–1010. Ou, X., Hu, Y., Li, X., Guo, S., & Liu, B., (2021). Advancements and challenges in rill formation, morphology, measurement and modeling. Catena, 196, 104932. Parsons, A.J., Wainwright, J., Mark Powell, D., Kaduk, J., & Brazier, R.E., (2004). A conceptual model for determining soil erosion by water. Earth Surf. Process. Landf. 29 (10), 1293–1302. Qian, X., Zhao, L., Fang, Q., Fan, C., Zi, R., & Fang, F. (2024). Rill formation and evolution caused by upslope inflow and sediment deposition on freshly tilled loose surfaces. Soil and Tillage Research, 235. https://doi.org/10.1016/j.still.2023.105868 Shen, H., Zheng, F., Wen, L., L., & Jiang, Y. (2015). An experimental study of rill erosion and morphology. Geomorphology, 231, 193–201. Shen, N., Wang, Z., Zhang, F., & Zhou, C. (2023). Response of soil detachment rate to sediment load and model examination: A key process simulation of rill erosion on steep loessial hillslopes. Int. J. Environ. Res. Public Health, 20, 2839. Shen, N., Wang, Z., Zhang, Q., Wu, B., Wang, D., Zhang, Q., & Liu, J. (2017). Quantifying the contribution of sediment load to soil detachment rate by sediment-laden rill flow. Soil Sci. Soc. Am. J. 81 (6), 1526–1536. Stefano, C. D., Nicosia, A., Palmeri, V., Pampalone, V., & Ferro, V. (2020). Dye-tracer technique for rill flows by velocity profile measurements. Catena, 185, 104313. https://doi.org/10.1016/j.catena.2019.104313. Tian, P., Gong, Y., Hao, F., Chen, L., Yang, Y., Guo, W., Wu, H., & Zhang, W. (2022). Comparing erosion and rill development processes by simulated upslope inflow in two red soils from subtropical China. Catena , 213, 106139. Vaezi, A. R, & Foroumadi, M. (2018). Flow characteristics and rill erodibility in relation to the rainfall intensity in a marl soil. Iranian Journal of Watershed Management Science and Engineering, 12(40), 11-22. (in Persian) Vaezi, A. R., & Varghaei, L. (2023). Investigating the effect of cultivated furrow length on rill erosion and eroded grain size in a rainfed field. Applied Soil Research, 11(2), 59-70. (in Persian) Wang, D., Wang, Z., Shen, N., & Chen, H., (2016). Modeling soil detachment capacity by rill flow using hydraulic parameters. J. Hydrol. 535, 473–479. Wirtz, S., Seeger, M., Remke, A., Wengel, R., Wagner, J.-F., & Ries, J.B., (2013). Do deterministic sediment detachment and transport equations adequately represent the process-interactions in eroding rills? An experimental field study. Catena, 101, 61-78, 10.1016/j.catena.2012.10.003 Zhang, G.H., Liu, B.Y., Nearing, M., Huang, C.H., & Zhang, K.L., (2002). Soil detachment by shallow flow. Trans. ASABE. 45(2), 351-357. Zhang, Q., Wang, J., Zhao, L., Wu, F., Zhang, Z., & Torbert, A.H., (2015). Spatial heterogeneity of surface roughness during different erosive stages of tilled loess slopes under a rainfall intensity of 1.5 mm min-1. Soil Tillage Res. 153, 95–103. Zhou, C., Shen, N., Zhang, F., & Delang, C. O., (2022). Soil detachment by sediment-laden rill flow interpreted using three experimental design methods. Catena, 215, 106332. Zhu, Q., Liu, J., Qi, X., Cheng, X., & Zhou, Z. (2024). Estimating sediment transport capacity on sloping farmland on the Loess Plateau considering soil particle size characteristics. Geoderma, 446. https://doi.org/10.1016/j.geoderma.2024.116906. | ||
آمار تعداد مشاهده مقاله: 49 تعداد دریافت فایل اصل مقاله: 44 |