- احمدی فر، رقیه؛ موسوی، سید مرتضی و رحیم زادگان، مجید. (1396). پهنهبندی ریسک آلودگی آبهای زیرزمینی با استفاده از GIS (مطالعه موردی: دشت سراب). مجله حفاظت از خاک و آب، 24-3، 1-20.
- https://doi.org/10.22069/jwfst.2017.11929.2645
- اصغری مقدم، اصغر؛ ندیری، عطاالله و پاکنیا، وحید. (1394). ارزیابی آسیبپذیری آبخوان دشت بستانآباد با استفاده از روش DRASTIC و SINTACS. هیدروژئومورفولوژی، 3(8)، 21-52. https://dor.isc.ac/dor/20.1001.1.23833254.1395.3.8.2.0
- افروزی، محسن و محمدزاده، حسین. (1390). ارزیابی و پهنهبندی آسیبپذیری آبخوان دشت فارسان - جونقان نسبت به آلودگی با استفاده از شاخص DRASTIC در محیط GIS. پانزدهمین همایش انجمن زمینشناسی ایران.
- بختیاری، عنایت؛ سلاجقه، علی و ملکیان، آرش. (1395)، ارزیابی آسیبپذیری آب زیرزمینی با استفاده از روشهای ترکیبی دراستیک اصلاحشده، رگرسیون لجستیک و تحلیل سلسله مراتبی دراستیک (دشت هشتگرد). تحقیقات خاک و آب ایران، 47(2)، 269-279. https://doi.org/10.22059/ijswr.2016.58333
- حمزه، سعید، میجانی، نعیم و فیروزجائی کریمی، محمد. (2018). مدلسازی ارتباط دمای سطح زمین، شرایط توپوگرافی و پوشش گیاهی با استفاده از تصاویر ماهوارهای لندست 8. پژوهشهای جغرافیای طبیعی، 50(1)، 35-55.
- https://doi.org/10.22059/jphgr.2018.215259.1006930
- رحیم زاده کیوی، مهسا؛ حمزه، سعید و کاردان مقدم، حمید. (1393). تعیین قابلیت آسیبپذیری کیفی آب زیرزمینی دشت بیرجند با استفاده از الگوی دراستیک و واسنجی آن به روش تحلیل سلسلهمراتبی. پژوهشهای جغرافیای طبیعی، 47(3)، 481-498.
- https://doi.org/10.22059/jphgr.2015.55343
- بیوکی شرافتی، عسکر و کاردان مقدم، احمد. (1402). ارزیابی آسیبپذیری تلفیقی منابع آب سطحی و زیرزمینی با ترکیب دو شاخص DRASTIC و WRASTIC. تحقیقات خاک و آب ایران، 54(11)، 1715-1732.
- Afrozi, M., & Mohammadzadeh, H. (2011). Assessment and zoning of the vulnerability of the Farsan-Junghan plain aquifer to pollution using the DRASTIC index in a GIS environment .Paper presented at the The 15th Conference of the Geological Society of Iran. [In Persian]
- Askarbuyuki, Ahmad, S., & Moghadam, K. (2024). Integrated vulnerability assessment of surface and groundwater resources by combining two indices: DRASTIC and WRASTIC. Iranian soil and water research, 54(11), 1715-1732. https://doi.org/10.22059/ijswr.2023.356270.669463[In Persian]
- Bera, A., Mukhopadhyay, B., P & Das, S. (2022). Groundwater vulnerability and contamination risk mapping of semi-arid Totko river basin, India using GIS-based DRASTIC model and AHP techniques. Chemosphere, 307, 135831. https://doi.org/10.1016/j.chemosphere.2022.135831
- Enayat, B., Ali, S., & Arash, M. (2016). Groundwater vulnerability assessment using modified DRASTIC combined methods. logistic regression and DRASTIC hierarchical analysis (Hashtgerd Plain. Iranian soil and water research), 47(2), 269-279. https://doi.org/10.22059/ijswr.2016.58333 [In Persian]
- Falowo, O. O., & Bamoyegun, O. A. (2023). AHP GIS-supported overlay/index models in Okeigbo, southwestern Nigeria, for groundwater susceptibility zonation. HydroResearch, 6, 184-202. https://doi.org/10.1016/j.hydres.2023.05.003
- Ganwer, S., Sinha, M. K., Multaniya, A. P., & Ghodichore, N. (2024). Introducing reverse Multi Influencing Factor technique in DRASTIC model for groundwater vulnerability assessment. Groundwater for Sustainable Development, 25, 101106. https://doi.org/10.1016/j.gsd.2024.101106
- Karimi, H. S. M. N. F. M. (2018). Modeling the relationship between land surface temperature, topographic conditions, and vegetation using Landsat 8 satellite images. Physical geography research, 50(1), 35-55. https://doi.org/10.22059/jphgr.2018.215259.1006930[In Persion].
- Karimzadeh Motlagh, Z., Derakhshani, R., & Sayadi, M. H. (2023). Groundwater vulnerability assessment in central Iran: Integration of GIS-based DRASTIC model and a machine learning approach. Groundwater for Sustainable Development, 23, 1-13. https://doi.org/10.1016/j.gsd.2023.101037
- Kivi, M. R., Hamzeh, S., & Moghadam, H. K. (2015). Determining the vulnerability of groundwater quality in Birjand Plain using the DRASTIC model and its calibration using the Analytic Hierarchy Process. Physical geography research, 47(3), 481-498. https://doi.org/10.22059/jphgr.2015.55343 [In Persian]
- Lad, S., Ayachit, R., Kadam, A., & Umrikar, B. (2019). Groundwater vulnerability assessment using DRASTIC model: a comparative analysis of conventional, AHP, Fuzzy logic and Frequency ratio method. Modeling Earth Systems and Environment, 5, 543-553. https://doi.org/10.1007/s40808-018-0545-7
- Li, M., Gao, Q., & Yu, T. (2023). Using appropriate Kappa statistic in evaluating inter-rater reliability. Short communication on “Groundwater vulnerability and contamination risk mapping of semi-arid Totko river basin, India using GIS-based DRASTIC model and AHP techniques”. Chemosphere, 328, 138565. https://doi.org/10.1016/j.chemosphere.2023.138565
- Mahmodzadeh, E., Rezaian, S., & Ahmadi, A. (2013). Assessment of aquifer vulnerability by DRASTIC, GODS and AVI comparative methods of the Meymeh plain of Isfahan. J. Environ. Stud, 39(2), 45-60. https://doi.org/10.22059/jes.2013.35413
- Moghadam, A. A., Nadiri, A., & Paknia, V. (2016). Vulnerability assessment of the Bostan Abad Plain aquifer using the DRASTIC and SINTACS methods. Hydrogeomorphology, 3(8), 21-52. https://dor.isc.ac/dor/20.1001.1.23833254.1395.3.8.2.0[In Persian]
- Nguedia, K. D., Njila, R. N., Ndongo, B., Dongmo, A. K., Jiague, R. R. C., & Tedontsah, V. P. L. (2024). Vulnerability of ground water to polution in the highlands by a combined approach of AHP method and remote sensing. Groundwater for Sustainable Development, 26, 101184. https://doi.org/10.1016/j.gsd.2024.101184
- Ozegin, K. O., Ilugbo, S. O., & Adebo, B. (2024). Spatial evaluation of groundwater vulnerability using the DRASTIC-L model with the analytic hierarchy process (AHP) and GIS approaches in Edo State, Nigeria. Physics and Chemistry of the Earth, Parts A/B/C, 134, 103562. https://doi.org/10.1016/j.pce.2024.103562
- Pacheco, F., Pires, L., Santos, R., & Fernandes, L. S. (2015). Factor weighting in DRASTIC modeling. Science of the Total Environment, 505, 474-486. https://doi.org/10.1016/j.scitotenv.2014.09.092
- Rahman, A. (2008). A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Applied geography, 28(1), 32-53. https://doi.org/10.1016/j.apgeog.2007.07.008
- Roqiyeh, A. F., Mortezi, M. S., & Majid, R. (2017). Groundwater Pollution Risk Zoning Using GIS (Case Study: Sarab Plain). Soil and water conservation research, 24-3, 1-20. https://doi.org/10.22069/jwfst.2017.11929.2645 [In Persian]
- Ruhi, N., Moghadam, R., & Portu-Tohid, R. (2017). Groundwater vulnerability zoning using DRASTIC and SI models in GIS environment (Case study: Ajab Shir Plain). Ecohydrology, 4(2), 587-599. https://doi.org/10.22059/ije.2017.61496[In Persian]
- Saranya, T., & Saravanan, S. (2021). A comparative analysis on groundwater vulnerability models—fuzzy DRASTIC and fuzzy DRASTIC-L. Environmental Science and Pollution Research, 1-15. https://doi.org/10.1007/s11356-021-16195-1
- Saravanan, S., Pitchaikani, S., Thambiraja, M., Sathiyamurthi, S., Sivakumar, V., Velusamy, S., & Shanmugamoorthy, M. (2023). Comparative assessment of groundwater vulnerability using GIS-based DRASTIC and DRASTIC-AHP for Thoothukudi District, Tamil Nadu India. Environmental monitoring and assessment, 195(1), 57. https://doi.org/10.1007/s10661-022-10601-y
- Smida, H., Tarki, M., Gammoudi, N., & Dassi, L. (2023). GIS-based multicriteria and artificial neural network (ANN) investigation for the assessment of groundwater vulnerability and pollution hazard in the Braga shallow aquifer (Central Tunisia): A critical review of generic and modified DRASTIC models. Journal of Contaminant Hydrology, 104245. https://doi.org/10.1016/j.jconhyd.2023.104245
- Sresto, M. A., Siddika, S., Haque, M. N., & Saroar, M. (2022). Groundwater vulnerability assessment in Khulna district of Bangladesh by integrating fuzzy algorithm and DRASTIC (DRASTIC-L) model. Modeling Earth Systems and Environment, 8(3), 3143-3157. https://doi.org/10.1007/s40808-021-01270-w
- Subbarayan, S., Thiyagarajan, S., Gangolu, S., Devanantham, A., & Masthan, R. N. (2024). Assessment of groundwater vulnerable zones using conventional and Fuzzy-AHP DRASTIC for Visakhapatnam district, India. Groundwater for Sustainable Development, 24, 101054. https://doi.org/10.1016/j.gsd.2023.101054
- Umar, H. A., Khanan, M. F. A., Shiru, M. S., Ahmed, M. S., Abdullahi, J., Obute, M. A., & Ahmad, A. (2024). Application of modified drastic model for oil spills pollution affecting water quality system in part of Niger delta region of Nigeria. Journal of Hydrology, 131446. https://doi.org/10.1016/j.jhydrol.2024.131446
- Voutchkova, D. D., Schullehner, J., Rasmussen, P., & Hansen, B. (2021). A high-resolution nitrate vulnerability assessment of sandy aquifers (DRASTIC-N). Journal of Environmental Management, 277, 111330. https://doi.org/10.1016/j.jenvman.2020.111330
- Wang, W., Mwiathi, N. F., Li, C., Luo, W., Zhang, X., An, Y.,... Gao, X. (2022). Assessment of shallow aquifer vulnerability to fluoride contamination using modified AHP-DRASTICH model as a tool for effective groundwater management, a case study in Yuncheng Basin, China. Chemosphere, 286, 131601. https://doi.org/10.1016/j.chemosphere.2021.131601
-
|