
تعداد نشریات | 162 |
تعداد شمارهها | 6,693 |
تعداد مقالات | 72,239 |
تعداد مشاهده مقاله | 129,234,152 |
تعداد دریافت فایل اصل مقاله | 102,068,855 |
ارزیابی مبتنی بر شبیهسازی یک دودکش خورشیدی نصبشده روی دیوار برای پشتیبانی فصلی سامانههای تهویه مطبوع و بهرهوری انرژی در گلخانهها: مطالعه موردی در اهواز، ایران | ||
مهندسی بیوسیستم ایران | ||
دوره 55، شماره 3، مهر 1403، صفحه 87-108 اصل مقاله (2.71 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijbse.2025.388520.665581 | ||
نویسندگان | ||
سید مجید سجادیه* ؛ عیاد صابریان | ||
گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران | ||
چکیده | ||
این پژوهش عملکرد فصلی دودکش خورشیدی دیواری یکپارچه با سامانه تهویه مطبوع برای کنترل اقلیم گلخانه در اهواز را ارزیابی میکند. با استفاده از مدلهای معتبر دینامیک سیالات محاسباتی، عملکرد سرمایشی، تهویهای و گرمایشی سامانه در یک دوره 9 ماهه و با در نظر گرفتن تغییرات دما، تابش خورشیدی و تجهیزات حرارتی یک گلخانه سقف شیروانی دوتایی با ابعاد ۱۲×۲۰ مترمربع و ارتفاع تاج ۶ متر، تحلیل شد. نتایج نشان داد که در ماههای گرم سال، این سامانه دماهای داخلی را 13 تا 17 درجه سلسیوس کاهش داد، اما بازده سرمایشی (56/0در برابر 62/0)، نرخ تعویض ساعتی هوا (82/3 در برابر 01/9) و شاخص یکنواختی دما (73/0 در برابر 82/0) آن در مقایسه با سامانه متعارف فن-پد کمتر بود. با این حال، حذف توان محوری فن منجر به صرفهجویی قابلتوجه انرژی شد. همچنین در ماههای سرد سال، دما را به میزان 24/6 درجه سلسیوس افزایش داد و شاخص یکنواختی دما را از 74/0 به 89/0 ارتقا داد، هرچند بازده گرمایشی آن 43/0 و کمتر از انتظار بود. این نتایج نشان میدهد که این سامانه، به ویژه در دورههای گرمایشی میتواند با صرفهجویی در انرژی و ارائه کنترل اقلیم مؤثر، جایگزینی پایدار برای سامانههای متداول باشد. بهینهسازی طراحی، مانند استفاده از پردههای حرارتی و سقفهای موقت در ماههای سرد، میتواند عملکرد آن را بیشتر بهبود دهد. | ||
کلیدواژهها | ||
دودکش خورشیدی برای سیستم تهویه مطبوع؛ دینامیک سیالات محاسباتی؛ سیستمهای گلخانهای کممصرف انرژی؛ عملیات پایدار گلخانهای؛ کنترل اقلیم گلخانه | ||
مراجع | ||
Abdallah, A. S. H. (2017). Occupant comfort and indoor temperature reduction by using passive air conditioning system with solar chimney concept in hot arid climate. Procedia Eng, 205, 1100–1107. Abdallah, A. S. H., Hiroshi, Y., Goto, T., Enteria, N., Radwan, M. M., & Eid, M. A. (2014). Parametric investigation of solar chimney with new cooling tower integrated in a single room for New Assiut city, Egypt climate. Int J Energy Environ Eng, 5(92). Abdallah, A. S. H., Yoshino, H., Goto, T., Enteria, N., Radwan, M. M., & Eid, M. A. (2013). Integration of evaporative cooling technique with solar chimney to improve indoor thermal environment in the New Assiut City, Egypt. International Journal of Energy and Environmental Engineering, 4(1), 1–15. Abdeen, A., Serageldin, A. A., Ibrahim, M. G. E., El-Zafarany, A., Ookawara, S., & Murata, R. (2019). Solar chimney optimization for enhancing thermal comfort in Egypt: An experimental and numerical study. Sol Energy, 180, 524–536. Ahmadikia, H., Moradi, A., & Hojjati, M. (2012). Performance analysis of a wind-catcher with water spray. Int J Green Energy, 9(2), 160–173. Ali, H. B., Bournet, P.-E., Danjou, V., Morille, B., & Migeon, C. (2014). CFD simulations of the night-time condensation inside a closed glasshouse: Sensitivity analysis to outside external conditions, heating and glass properties. Biosyst. Eng, 127, 159–175. https://doi.org/10.1016/j.biosystemseng.2014.08.017. American Society of Heating, R., & Engineers, A.-C. (1978). Methods of Testing to Determine the Thermal Performance of Solar Collectors. ASHRAE. https://books.google.com/books?id=ybIPAAAAMAAJ Arce, J., Jiménez, M. J., Guzmán, J. D., Heras, M. R., Alvarez, G., & Xamán, J. (2009). Experimental study for natural ventilation on a solar chimney. Renewable Energy, 34(12), 2928–2934. https://doi.org/10.1016/j.renene.2009.04.026 Asadi, S., Fakhari, M., Fayaz, R., & Mahdaviparsa, A. (2016). The effect of solar chimney layout on ventilation rate in buildings. Energy Build, 123, 71–78. ASAE. (2003). EP406.4: Heating, Ventilating, and Cooling Greenhouses. ASAE, St. Joseph, MI, p. 10. Bartzanas, T., Boulard, T., & Kittas, C. (2004). Effect of vent arrangement on windward ventilation of a tunnel greenhouse. Biosyst. Eng, 88, 479–490. https://doi.org/10.1016/j.biosystemseng.2003.10.006. Bouchahm, Y., Bourbia, F., & Belhamri, A. (2011). Performance analysis and improvement of the use of wind tower in hot dry climate. Renew Energy, 36(3), 898–906. Bournet, P. E., Khaoua, S. A. O., Boulard, T., Migeon, C., & Chassériaux, G. (2007). Effect of roof and side opening combinations on the ventilation of a greenhouse using computer simulation. Trans. ASABE, 50, 201–212. Chen, J., Cai, Y., Xu, F., Hu, H., & Ai, Q. (2014). Analysis and optimization of the fan-pad evaporative cooling system for greenhouse based on CFD. Advances in Mechanical Engineering, 2014. https://doi.org/10.1155/2014/712740 Cheng, F., Li, Y., Wu, Y., Cheng, Y., & Lin, Z. (2023). Experimental study of air distribution and heating performances of deflection ventilation. Energy Build, 282, 112800. https://doi.org/10.1016/j.enbuild.2023.112800. Cheng, X., Li, D., Shao, L., & Ren, Z. (2021). A virtual sensor simulation system of a flower greenhouse coupled with a new temperature microclimate model using three-dimensional CFD. Computers and Electronics in Agriculture, 181(July 2020), 105934. https://doi.org/10.1016/j.compag.2020.105934 Chung, T. (2002). Computational fluid dynamics. Cambridge university press. Das, P., & Velayudhan Parvathy, C. (2022). A critical review on solar chimney power plant technology: Influence of environment and geometrical parameters, barriers for commercialization, opportunities, and carbon emission mitigation. Environmental Science and Pollution Research, 29(46), 69367–69387. https://doi.org/10.1007/s11356-022-22623-7 El-Dessouky, H. T. A., Al-Haddad, A. A., & Al-Juwayhel, F. I. (1996). Thermal and hydraulic performance of a modified two-stage evaporative cooler. Renewable Energy, 7(2), 165–176. https://doi.org/10.1016/0960-1481(95)00124-7 Etheridge, D. (2011). Natural ventilation of buildings: Theory, measurement and design. John Wiley & Sons. Ferroukhi, R., Nagpal, D., Lopez-Peña, A., Hodges, T., Mohtar, R. H., Daher, B., Mohtar, S., & Keulertz, M. (2015). Renewable energy in the water, energy & food nexus. IRENA, Abu Dhabi, 1–125. Fotiou, S., Akenji, L., Bengtsson, M., Schandl, H., Salem, J., Briggs, E., Chiu, A., Mohanty, B., Tabucanon, M., Fadeeva, Z., Daconto, G., Mathews, C., Metternicht, G., Sang-Arun, J., & Srisakulchairak, T. (2015). Sustainable Consumption and Production: A Handbook for Policy Makers. Franco, A., Valera, D. L., & Peña, A. (2014). Energy efficiency in greenhouse evaporative cooling techniques: Cooling boxes versus cellulose pads. Energies, 7(3), 1427–1447. https://doi.org/10.3390/en7031427 Ghosal, M. K., Tiwari, G. N., & Srivastava, N. S. L. (2004). Thermal modeling of a greenhouse with an integrated earth to air heat exchanger: An experimental validation. Energy and Buildings, 36(3), 219–227. https://doi.org/10.1016/j.enbuild.2003.10.006 Haghighi, A. P., & Maerefat, M. (2014). Solar ventilation and heating of buildings in sunny winter days using solar chimney. Sustainable Cities and Society, 10, 72–79. Hosien, M. A., & Selim, S. M. (2017). Effects of the geometrical and operational parameters and alternative outer cover materials on the performance of solar chimney used for natural ventilation. Energy Build, 138, 355–367. Jiménez-Xamán, C., Xamán, J., Gijón-Rivera, M., Zavala-Guillén, I., Noh-Pat, F., & Simá, E. (2020). Assessing the thermal performance of a rooftop solar chimney attached to a single room. Journal of Building Engineering, 31, 101380. Jomehadeh, F., Hussen, H. M., Calautit, J. K., Nejat, P., & Ferwati, M. S. (2020). Natural ventilation by windcatcher (Badgir): A review on the impacts of geometry, microclimate and macroclimate. Energy Build, 226(110396). Kalantar, V. (2009). Numerical simulation of cooling performance of wind tower (BaudGeer) in hot and arid region. Renew Energy, 34(1), 246–254. Khanal, R., & Lei, C. (2011). Solar chimney—A passive strategy for natural ventilation. Energy and Buildings, 43(8), 1811–1819. Khani, S. M. R., Bahadori, M. N., & Dehghani-Sanij, A. R. (2017). Experimental investigation of a modular wind tower in hot and dry regions. Energy Sustain Dev, 39, 21–28. Khaoua, S. A. O., Bournet, P. E., Migeon, C., Boulard, T., & Chassériaux, G. (2006). Analysis of greenhouse ventilation efficiency based on computational fluid dynamics. Biosystems Engineering, 95(1), 83–98. Kim, K., Yoon, J.-Y., Kwon, H.-J., Han, J.-H., Son, J. E., Nam, S.-W., Giacomelli, G. A., & Lee, I.-B. (2008). 3-D CFD analysis of relative humidity distribution in greenhouse with a fog cooling system and refrigerative dehumidifiers, Biosyst. Eng, 100, 245–255. Kim, R., Kim, J., Lee, I., Yeo, U., Lee, S., & Decano-Valentin, C. (2021a). Development of three-dimensional visualisation technology of the aerodynamic environment in a greenhouse using CFD and VR technology, part 1: Development of VR a database using CFD. Biosystems Engineering, 207, 33–58. Kim, R., Kim, J., Lee, I., Yeo, U., Lee, S., & Decano-Valentin, C. (2021b). Development of three-dimensional visualisation technology of the aerodynamic environment in a greenhouse using CFD and VR technology, Part 2: Development of an educational VR simulator. Biosystems Engineering, 207, 12–32. Kong, J., Niu, J., & Lei, C. (2020). A CFD based approach for determining the optimum inclination angle of a roof-top solar chimney for building ventilation. Sol. Energy, 198, 555–569. Krüger, E., Suzuki, E., & Matoski, A. (2013). Evaluation of a Trombe wall system in a subtropical location. Energy Build, 66, 364–372. Lee, K. H., & Strand, R. K. (2009). Enhancement of natural ventilation in buildings using a thermal chimney. Energy Build, 41, 615–621. Lomas, K. J. (2007). Architectural design of an advanced naturally ventilated building form. Energy Build, 39, 166–181. Maerefat, M., & Haghighi, A. P. (2010). Natural cooling of stand-alone houses using solar chimney and evaporative cooling cavity. Renew Energy, 35(9), 2040–2052. Mathur, J., Mathur, S., & Anupma. (2006). Summer-performance of inclined roof solar chimney for natural ventilation. Energy Build, 38, 1156–1163. Miyazaki, T., Akisawa, A., & Kashiwagi, T. (2006). The effects of solar chimneys on thermal load mitigation of office buildings under the Japanese climate. Renewable Energy, 31(7), 987–1010. Mohammadi, B., & Pironneau, O. (1994). Analisys of the K-Epsilon turbulence model. John Wiley and Sons. Montero, J. I., Munoz, P., Anton, A., & Iglesias, N. (2005). Computational fluid dynamic modelling of night-time energy fluxes in unheated greenhouses. Acta Hortic, 691, 403. Moosavi, L., Zandi, M., Bidi, M., Behroozizade, E., & Kazemi, I. (2020). New design for solar chimney with integrated windcatcher for space cooling and ventilation. Build Environ, 181(106785). Nakayama, A., & Kuwahara, F. (2005). Algebraic model for thermal dispersion heat flux within porous media. AIChE Journal, 51(10), 2859–2864. Nguyen, Y. Q., & Wells, J. C. (2020). A numerical study on induced flowrate and thermal efficiency of a solar chimney with horizontal absorber surface for ventilation of buildings. J. Build. Eng, 28(101050). Nie, J., Xu, J., Su, H., Gao, H., Jia, J., & Guo, T. (2024). Optimization of characteristic parameters of rectangular solar chimney adapted to agricultural greenhouses. Case Studies in Thermal Engineering, 54, 103971. Rabani, R., Faghih, A. K., Rabani, M., & Rabani, M. (2014). Numerical simulation of an innovated building cooling system with combination of solar chimney and water spraying system. Heat and Mass Transfer, 50(11), 1609–1625. Rashid, F. L., Alyasari, H. I., Lafta, M. G., Mahdi, A. J., Al-Obaidi, M. A., Togun, H., Hammoodi, K. A., & Agyekum, E. B. (2025). Current developments, utilization, and effects of phase-change materials integrated with solar chimney: A comprehensive review. Journal of Energy Storage, 105, 114684. Roache, P. J. (1998). Verification and validation in computational science and engineering. Ruiz, Á., Salmerón, J., González, R., & Álvarez, S. (2005). A calculation model for Trombe walls and its use as a passive cooling. Proc. Int. Conf. Passiv. Low Energy Cool. Built Environ, 365–369. Saberian, A., & Sajadiye, S. M. (2019). The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation. Renewable Energy, 138, 722–737. https://doi.org/10.1016/J.RENENE.2019.01.108 Saberian, A., & Sajadiye, S. M. (2020). Assessing the variable performance of fan-and-pad cooling in a subtropical desert greenhouse. Applied Thermal Engineering, 179, 115672. https://doi.org/10.1016/j.applthermaleng.2020.115672 Sethi, V. P. (2009). On the selection of shape and orientation of a greenhouse: Thermal modeling and experimental validation. Solar Energy, 83(1), 21–38. https://doi.org/10.1016/j.solener.2008.05.018 Shklyar, A., & Arbel, A. (2004). Numerical model of the three-dimensional isothermal flow patterns and mass fluxes in a pitched-roof greenhouse. J. Wind Eng. Ind. Aerodyn, 92, 1039–1059. Sornek, K., Figaj, R., & Papis-Frączek, K. (2025). Development and tests of the novel configuration of the solar chimney with sensible heat storage. Applied Thermal Engineering, 258, 124515. Spentzou, E. (Efi), Cook, M., & Emmitt, S. (2017). Modelling natural ventilation for summer thermal comfort in Mediterranean dwellings. International Journal of Ventilation, 18, 28–45. https://doi.org/10.1080/14733315.2017.1302658 Swiegers, J. J. (2015). Inlet and outlet shape design of natural circulation building ventilation systems [dissertation. Faculty of Engineering, Stellenbosch University. Tong, X., Hong, S.-W., & Zhao, L. (2019). Using CFD simulations to develop an upward airflow displacement ventilation system for manure-belt layer houses to improve the indoor environment. Biosystems Engineering, 178, 294–308. https://doi.org/10.1016/j.biosystemseng.2018.08.006 Villar-Ramos, M. M., Macias-Melo, E. V., Aguilar-Castro, K. M., Hernandez-Perez, I., Arce, J., & Serrano-Arellano, J. (2020). Parametric analysis of the thermal behavior of a single-channel solar chimney. Sol Energy, 209, 602–617. Wang, H., & Lei, C. (2020). A numerical investigation of combined solar chimney and water wall for building ventilation and thermal comfort. Build Environ, 171, 106616. WANG, X., LUO, J., & LI, X. (2013). CFD Based Study of Heterogeneous Microclimate in a Typical Chinese Greenhouse in Central China. J. Integr. Agric, 12, 914–923. https://doi.org/10.1016/S2095-3119(13)60309-3. Weather and Climate. (2024). Ahvaz weather and climate. https://weatherandclimate.com/iran/khuzestan/ahvaz#google_vignette Weather Spark. (2023). Ahvaz Past Weather (Iran). https://weatherspark.com/h/y/104596/2023/Historical-Weather-during-2023-in-Ahvaz-Iran Yusoff, W. F. M., Salleh, E., Adam, N. M., Sapian, A. R., & Sulaiman, M. Y. (2010). Enhancement of stack ventilation in hot and humid climate using a combination of roof solar collector and vertical stack. Build Environ, 45(10), 2296–2308. | ||
آمار تعداد مشاهده مقاله: 85 تعداد دریافت فایل اصل مقاله: 45 |