
تعداد نشریات | 162 |
تعداد شمارهها | 6,693 |
تعداد مقالات | 72,239 |
تعداد مشاهده مقاله | 129,234,106 |
تعداد دریافت فایل اصل مقاله | 102,068,736 |
Metropolis-Hasting Idea for Approximating Matrix Inverse | ||
Journal of Algorithms and Computation | ||
دوره 56، شماره 2، اسفند 2024، صفحه 151-161 اصل مقاله (1.38 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jac.2025.370682.1207 | ||
نویسندگان | ||
Negin Bagherpour* ؛ Nezam Mahdavi Amiri | ||
Department of Mathematical Sciences, Sharif University of Technology, | ||
چکیده | ||
Solving a linear system of equations is needed in many different applications and there exist many different techniques to solve such a system with no need to compute inverse matrix, as a costly and not stable computation. But the challenge is that in some other applications such as 3D prints, the goal is exactly computing the inverse of a matrix. In this paper, an optimization model equivalent to inverse matrix is introduced and an effective algorithm based on steepest-descent and Barzilai-Borwein step length is suggested. We also used conjugate gradient instead, to provide better numerical results. Finally, we used the Metropolis-Hastings algorithm to accelerate the convergence rate. A key point is that even a random step length is working for global convergence. Numerical results look promising based on stability and accuracy. | ||
کلیدواژهها | ||
Metropolis-Hastings؛ steepest-descent algorithm؛ conjugate gradient algorithm؛ Barzilai-Borwein step length؛ inverse approximation | ||
آمار تعداد مشاهده مقاله: 43 تعداد دریافت فایل اصل مقاله: 44 |