
تعداد نشریات | 162 |
تعداد شمارهها | 6,693 |
تعداد مقالات | 72,239 |
تعداد مشاهده مقاله | 129,222,746 |
تعداد دریافت فایل اصل مقاله | 102,052,906 |
بررسی اثر تغییر اقلیم بر نوسانات الگوی بارندگی استان ایلام با استفاده از مدل های CMIP6 و تحلیل فرکانس بارندگی | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 12، اسفند 1403، صفحه 2421-2441 اصل مقاله (1.96 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.378779.669746 | ||
نویسندگان | ||
فرهاد بهزادی1؛ سامان جوادی* 2؛ علی محمدی2 | ||
1گروه مهندسی آب، دانشکده فناوری کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران. | ||
2گروه مهندسی آب، دانشکده فناوری کشاورزی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، تهران، ایران | ||
چکیده | ||
روند جهانی گرمایش زمین سبب افزایش نگرانیها پیرامون وضعیت منابع آب شده است. در این پژوهش، به منظور بررسی اثر تغییر اقلیم بر تغییر الگوی بارش استان ایلام، از برونداد 12 مدل CMIP6 بهره گرفته شد و با لحاظ سناریوهای تغییر اقلیم SSP1-2.6 و SSP5-8.5، وضعیت تغییرات بارندگی استان ایلام تا سال 2050 مورد بررسی قرار گرفت. بعد از خوشهبندی ایستگاههای بارانسنجی (خوشه یک، جنوب و شرق استان و خوشه دو، شمال و غرب استان) و ارزیابی عملکرد مدلهای CMIP6، برای خوشه یک مدل IPSL-CM6A-LR و ACCESS-CM2 و برای خوشه دو، مدل IITM-ESM و BCC-CSM2-MR به عنوان برترین مدلها برگزیده شدند. خروجی مدلها نشان میدهد که در دوره آینده (1427-1397) برای خوشه یک، طبق سناریو SSP1-2.6، میانگین بارندگی سالانه 1/4 درصد کاهش یافته و به 52/303 میلیمتر در سال خواهد رسید و طبق سناریو SSP5-8.5 این کاهش 7/4 درصد بوده و میزان بارندگی سالانه طی این دوره 56/301 میلیمتر در سال خواهد بود. برای خوشه دو، طبق دو سناریو SSP1-2.6 و SSP5-8.5، میانگین بارندگی سالانه به ترتیب 3 و 8/2 درصد افزایش خواهد یافت و از میزان 10/431 میلیمتر در سال به 04/444 میلیمتر در سال (در سناریو SSP1-2.6) و 31/443 میلیمتر در سال (در سناریو SSP5-8.5) خواهد رسید. با انتخاب بهترین توزیع احتمالاتی برای هر یک از ایستگاههای بارانسجی مشخص شد در هر دو سناریوی تغییر اقلیمی و دوره بازگشتهای مختلف، مقدار حداکثر بارش 24 ساعته در اغلب موارد در دوره آتی با کاهش مواجه میشود. لذا این موضوع اهمیت تدوین سناریوهای تأمین پایدار آب استان را برجسته میکند. | ||
کلیدواژهها | ||
بارش؛ خوشه بندی؛ سناریوی اقلیمی؛ مدیریت منابع آب | ||
مراجع | ||
Adnan, S., & Ullah, K. (2022). Long-term trends in climate parameters and multiple indices for drought monitoring over Pakistan. Meteorology and Atmospheric Physics, 134(4), 75. Afsari, R., Nazari-Sharabian, M., Hosseini, A., & Karakouzian, M. (2024). Projected Climate Change Impacts on the Number of Dry and Very Heavy Precipitation Days by Century’s End: A Case Study of Iran’s Metropolises. Water, 16(16), 2226. Alam, M. S., & Paul, S. (2020). A comparative analysis of clustering algorithms to identify the homogeneous rainfall gauge stations of Bangladesh. Journal of Applied Statistics, 47(8), 1460–1481. Alexander, L. V. (2016). Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Weather and Climate Extremes, 11, 4-16. Asgari, Shamsollah., Raziei, Tayeb., Jafari, Mohamad Reza., Noroozi., Ali Akbar. (2025). The effects of meteorological drought on oak forest dieback in Ilam province. Applied Researches in Geographical Sciences, 76(25), 308-325. (In Persian) Bapirzadeh, K., SeyedKaboli, H., & Najafi, L. (2022). A comparative study of quantitative mapping methods for bias correction of ERA5 reanalysis precipitation data. Journal of Spatial Analysis Environmental Hazards, 9(2): 21-34. (In Persian) Behzadi, F., Javadi, S., Yousefi, H., Hashemy Shahdany, S. M., Moridi, A., Neshat, A., ... & Maghsoudi, R. (2024). Projections of meteorological drought severity-duration variations based on CMIP6. Scientific Reports, 14(1), 5027. Behzadi, F., Javadi, S., Yousefi, H., Moridi, A., & Hashemy Shahdany, S. M. (2022). Determining the Impact of Climate Change on Groundwater Drought Using CMIP6 Models (Case Study: Shahrekord Plain). Iranian journal of Ecohydrology, 9(2), 419-436. (In Persian) Behzadi, F., Yousefi, H., Javadi, S., Moridi, A., Shahedany, S. M. H., & Neshat, A. (2022). Meteorological drought duration–severity and climate change impact in Iran. Theoretical and Applied Climatology, 149(3), 1297-1315. Cabana, D., Rölfer, L., Evadzi, P., & Celliers, L. (2023). Enabling climate change adaptation in coastal systems: A systematic literature review. Earth's Future, 11(8), e2023EF003713. Cetin, M. (2020). The changing of important factors in the landscape planning occur due to global climate change in temperature, Rain and climate types: A case study of Mersin City. Turkish Journal of Agriculture-Food Science and Technology, 8(12), 2695-2701. De Jong, P., Tanajura, C. A. S., Sánchez, A. S., Dargaville, R., Kiperstok, A., & Torres, E. A. (2018). Hydroelectric production from Brazil's São Francisco River could cease due to climate change and inter-annual variability. Science of the Total Environment, 634, 1540-1553. Elnashar, W., & Elyamany, A. (2023). Managing risks of climate change on irrigation water in arid regions. Water Resources Management, 37(6), 2429-2446. El-Rawy, M., Batelaan, O., Al-Arifi, N., Alotaibi, A., Abdalla, F., & Gabr, M. E. (2023). Climate change impacts on water resources in arid and semi-arid regions: a case study in Saudi Arabia. Water, 15(3), 606. Enayati, M., Bozorg-Haddad, O., Bazrafshan, J., Hejabi, S., & Chu, X. (2021). Bias correction capabilities of quantile mapping methods for rainfall and temperature variables. Journal of Water and Climate Change, 12(2), 401-419. Faghani, M., Ghorbani, K., & Salarijazi, M. (2016). Spatial-temporal analysis of seasonal meteorological drought. Journal of Agricultural Meteorology, 4(1), 1-11. (In Persian) Fawzy, S., Osman, A. I., Doran, J., & Rooney, D. W. (2020). Strategies for mitigation of climate change: a review. Environmental Chemistry Letters, 18, 2069-2094. Ge, F., Zhu, S., Luo, H., Zhi, X., & Wang, H. (2021). Future changes in precipitation extremes over Southeast Asia: insights from CMIP6 multi-model ensemble. Environmental Research Letters, 16(2), 024013. Gudmundsson, L., Bremnes, J. B., Haugen, J. E., & Skaugen, T. E. (2012). Downscaling RCM precipitation to the station scale using quantile mapping–a comparison of methods. Hydrology & Earth System Sciences Discussions, 9(5), 6185-6201. Islam, M. R., Fereshtehpour, M., Najafi, M. R., Khaliq, M. N., Khan, A. A., Sushama, L., ... & Khan, M. S. (2024). Climate-resilience of dams and levees in Canada: a review. Discover Applied Sciences, 6(4), 174. Jahangir, M. H., & Mohammadi, A. (2018). Climatic zoning of East Azerbaijan by LARS-WG down scaling model for 2011-2065. Geography (Regional Planning), 8(30), 119-130. (In Persian) Karimi Ahmad Abad, M., & Nabizadeh, A. (2018). assessment of climate change impacts on climate parameters of Urmia Lake basin during 2011-2040 years by using LARS-WG model. Journal of Geography and Planning, 22(65), 265-285. (In Persian) Khademi, M., Moeini, H., Bonakdari, H., & Ebtehaj, I. (2017). The Effect of Differencing in Stationary and Accuracy of Time Series in Predicting of Lake Level. Journal of Water and Soil Conservation, 24(3), 59-76. (In Persian) Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in geosciences, 5, 89-97. Kuttippurath, J., Murasingh, S., Stott, P. A., Sarojini, B. B., Jha, M. K., Kumar, P., ... & Pandey, P. C. (2021). Observed rainfall changes in the past century (1901–2019) over the wettest place on Earth. Environmental Research Letters, 16(2), 024018. Lee, D., Lee, G., Kim, S., & Jung, S. (2020). Future runoff analysis in the Mekong river basin under a climate change scenario using deep learning. Water, 12(6), 1556. Li, Q., Ye, A., Wada, Y., Zhang, Y., & Zhou, J. (2024). Climate change leads to an expansion of global drought-sensitive area. Journal of Hydrology, 632, 130874. Mohammadi, A., Javadi, S., Yousefi, H., Pouraram, H., & Randhir, T. O. (2024). A Framework for Assessing Food Baskets Based on Water and Carbon Footprints. Water, 16(9), 1196. Mohammadi, P., Fakherifard, A., Dinpazhoh, Y., & Asadi, E. (2017). Regionalization of the East part of Lake Urmia Basin based on impact of seasonal precipitation on rainfed yield using the ward and K-means methods. Iranian journal of Ecohydrology, 4(2), 489-498. (In Persian) Mortezapoor, S., Asadi Oscouei, E., & Abasi, F. (2020). Evaluation of Some Homogeneity Tests on Mutation Detection in Climatic Data, Case Study: Rash Station. Nivar, 44(108-109), 12-32. (In Persian) Nazeri Tahrudi, M., & Ramezani, Y. (2018). Frequency analysis of river drought by common and advanced statistical distributions, case study: western rivers of Urmia Lake. Watershed Engineering and Management, 10(3), 304-317 (In Persian) Nazeri Tahrudi, M., Khalili, K., & Behmanesh, J. (2015). Evaluation of Common Statistical Distribution Functions and the Calculation Methods of Their Parameters in Order to Estimate Probability of Hydrological Drought Events (Case Study: West of Urmia Lake Basin. Water and Soil Science, 25(3), 155-168. (In Persian) Otto, F. E., Zachariah, M., Saeed, F., Siddiqi, A., Kamil, S., Mushtaq, H., ... & Clarke, B. (2023). Climate change increased extreme monsoon rainfall, flooding highly vulnerable communities in Pakistan. Environmental Research: Climate, 2(2), 025001. Parizan, V., & Esmaeili, A. (2009). The comparison of different methods for forecasting spices imports in Iran Case study: cinnamon, cardamoms and curcuma. Agricultural Economics and Development, 16(4), 19-40. (In Persian) Ramezani Etedali, H., Khodabakhshi, F., & Kanani, E. (2022). Outlook for the effects of climate change on drought according to the fifth IPCC report (case study: Ilam). Journal of Water and Soil Resources Conservation, 1(12), 87-107. (In Persian) Raziei, T. (2022). Climate of Iran according to Köppen-Geiger, Feddema, and UNEP climate classifications. Theoretical and Applied Climatology, 148(3), 1395-1416. Rostamnia, M., & Akhoondzadeh Hanzaei, M. (2016). Assessment of Hazardous Drought of Ilam Province Forests using Landsat Satellite Images. JGST, 6(2) :131-144. (In Persian) Roushangar, K., & Alizadeh, F. (2018). A multiscale spatio-temporal framework to regionalize annual precipitation using k-means and self-organizing map technique. Journal of Mountain Science, 15(7), 1481-1497. Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20, 53-65. Sadeghi, S. H., Ghasemieh, H., & Sadatinegad, S. J. (2015). Performance evaluation of the IHACRES hydrological model in wet areas (case study: Navrud basin, Gillan). Journal of Water and Soil Science, 19(73), 73-83. (In Persian) Sangelantoni, L., Russo, A., & Gennaretti, F. (2019). Impact of bias correction and downscaling through quantile mapping on simulated climate change signal: a case study over Central Italy. Theoretical and Applied Climatology, 135, 725-740. Santos, L., Thirel, G., & Perrin, C. (2018). Pitfalls in using log-transformed flows within the KGE criterion. Hydrology and Earth System Sciences, 22(8), 4583-4591. Swain, D. L., Wing, O. E., Bates, P. D., Done, J. M., Johnson, K. A., & Cameron, D. R. (2020). Increased flood exposure due to climate change and population growth in the United States. Earth's Future, 8(11), e2020EF001778. Tabari, H. (2020). Climate change impact on flood and extreme precipitation increases with water availability. Scientific reports, 10(1), 13768. Tamm, O., Saaremäe, E., Rahkema, K., Jaagus, J., & Tamm, T. (2023). The intensification of short-duration rainfall extremes due to climate change–Need for a frequent update of intensity–duration–frequency curves. Climate Services, 30, 100349. Tavakoli, M., Karimi, H., & Norollahi, H. (2018). Investigation the effects of climate change on water resources of Ilam Dam Watershed. Watershed Engineering and Management, 10(2), 157-170. (In Persian) Verma, R. K., Verma, S., Mishra, S. K., & Pandey, A. (2021). SCS-CN-based improved models for direct surface runoff estimation from large rainfall events. Water Resources Management, 35(7), 2149-2175. Xiong, J., Guo, S., Abhishek, Chen, J., & Yin, J. (2022). Global evaluation of the “dry gets drier, and wet gets wetter” paradigm from a terrestrial water storage change perspective. Hydrology and Earth System Sciences, 26(24), 6457-6476. Yang, X., Wood, E. F., Sheffield, J., Ren, L., Zhang, M., & Wang, Y. (2018). Bias correction of historical and future simulations of precipitation and temperature for China from CMIP5 models. Journal of Hydrometeorology, 19(3), 609-623. | ||
آمار تعداد مشاهده مقاله: 144 تعداد دریافت فایل اصل مقاله: 98 |