
تعداد نشریات | 162 |
تعداد شمارهها | 6,693 |
تعداد مقالات | 72,239 |
تعداد مشاهده مقاله | 129,233,313 |
تعداد دریافت فایل اصل مقاله | 102,067,781 |
بررسی تنوع ژنتیکی اکوتیپهای مختلف زعفران ایرانی با استفاده از روشهای آماری چندمتغیره | ||
به زراعی کشاورزی | ||
مقاله 5، دوره 27، شماره 1، اسفند 1403، صفحه 69-89 اصل مقاله (2 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jci.2025.378342.2890 | ||
نویسندگان | ||
لیلا حسین زاده1؛ علی رضا سلامی2؛ محسن ابراهیمی* 3؛ علی ایزدی دربندی4 | ||
1دانشجوی مقطع دکتری تخصصی ژنتیک و بهنژادی گیاهی، گروه علوم زراعی و اصلاحنباتات، دانشکده فناوری کشاورزی، دانشگاه تهران، پاکدشت، ایران | ||
2استاد، گروه مهندسی علوم باغبانی و فضای سبز، دانشکدگان کشاورزی و منابع طبیعی ، دانشگاه تهران، کرج، ایران | ||
3دانشیار، گروه علوم زراعی و اصلاح نباتات، دانشکده فناوری کشاورزی، دانشگاه تهران، پاکدشت، ایران. | ||
4دانشیار،گروه علوم زراعی و اصلاح نباتات، دانشکده فناوری کشاورزی، دانشگاه تهران، پاکدشت، ایران. | ||
چکیده | ||
هدف: زعفران (Crocus sativus L.) گیاهی چندساله، نرعقیم و تریپلوئید است. کلالههای خشکشده زعفران کاربردهای فراوانی در صنعت غذا و دارو دارند. زعفران بهدلیل نرعقیمی و تکثیر غیرجنسی از طریق بنهها، تنوع ژنتیکی بسیار کمی دارد. بنابراین، در معرض خطر شدید فرسایش ژنتیکی قرار دارد که مانعی برای تولید گسترده و انبوه زعفران است. این پژوهش با هدف، بررسی تنوع موجود در بین اکوتیپها، ارزیابی همبستگی بین صفات و دستهبندی اکوتیپهای زعفران انجام شد. روش پژوهش: آزمایشی در قالب طرح بلوک کامل تصادفی با دو تکرار در سه برداشت جهت بررسی تنوع زیستی ۲۲ اکوتیپ زعفران در مزرعه تحقیقاتی دانشگاه تهران واقع در استان البرز اجرا شد. در این پژوهش صفات مهم زراعی و مقدار متابولیتهای ثانویه با استفاده از دستگاه کروماتوگرافی مایع با کارایی بالا بین اکوتیپها اندازهگیری شد. یافتهها: نتایج تجزیه واریانس نشاندهنده وجود تنوع بین اکوتیپها از لحاظ تمام صفات موردبررسی بود. اکوتیپ قائنات از نظر اکثر صفات زراعی دارای بیشترین میانگین بود. نتایج همبستگی نشان داد مقدار کروسین و پیکروکروسین با یکدیگر رابطه مثبت و معنیدار دارند، درحالیکه هیچ رابطه معنیداری بین مقدار سافرانال با کروسین و پیکروکروسین مشاهده نشد. مقدار سافرانال نیز با صفات زراعی از جمله طول برگ و کلاله، وزن تر گل و کلاله رابطه مثبت ومعنیداری را نشان داد. براساس نتایج تجزیه به مؤلفههای اصلی هفت مؤلفه ۹۷ درصد از واریانس تغییرات کل را توجیه کردند. صفات طول برگ، وزن تر کلاله، طول کلاله و مقدار سافرانال در مؤلفه اول و صفات مقدار پیکروکروسین، کروسین و طول گلبرگ در مؤلفه دوم بیشترین نقش مثبت را در توجیه ۷/۶۶ درصد از تغییرات کل را داشتند. در تحلیل خوشهای اکوتیپها در پنج دسته مجزا قرار گرفتند. بیشترین شباهت ژنتیکی بین اکوتیپهای قائنات و فردوس ۱۶ و بیشترین فاصله ژنتیکی بین اکوتیپهای قائنات و اراک مشاهده شد. همچنین، صفات نیز در سه دسته خوشهبندی شدند؛ بهطوریکه مقدار کروسین و پیکروکروسین و طول گلبرگ در دسته اول، مقدار سافرانال، طول برگ و کلاله و گل، وزن تر گل و کلاله در دسته دوم و درنهایت عملکرد با تعداد کل گل و وزن خشک کلاله در دسته سوم قرار گرفتند. نتیجهگیری: با توجه به اینکه این اکوتیپها برای مدت طولانی در منطقه ثابت جغرافیایی کشت و نگهداری شدهاند، اما همچنان از نظر صفات زراعی و فیتوشیمیایی دارای تنوع بودند. بنابراین میتوان نتیجه گرفت منشأ تنوع مشاهدهشده در نتیجه وجود تنوع در سطوح ژنوم، ترنسکریپتوم و یا اپیژنوم است. | ||
کلیدواژهها | ||
پیکروکروسین؛ تجزیه خوشهایی؛ سافرانال؛ کروسین | ||
مراجع | ||
امیریان، فاطمه؛ مصطفایی، علی و کارگر، سیدمحمدعلی (۱۳۹۹). بررسی تنوع ژنتیکی صفات رویشی اکوتیپهای زعفران خوراکی (Crocus sativus L.) تحت تنش سرما. نشریه پژوهشهای زعفران، ۸(۲)، ۱۹۱-۲۰۶.
بیات، مهدی؛ امیرنیا، رضا؛ تاجبخش، مهدی , تانیولاچ، بهاتین (۱۳۹۵). ارزیابی تنوع ژنتیکی زعفران (Crocus sativus L.) با استفاده از نشانگرهای مولکولی iPBS و SSR. نشریه پژوهشهای زعفران، ۴(۱)، ۱۰۳-۱۱۹.
Agayev, Y. M. O., Fernandez, J. A., & Zarifi, E. (2009). Clonal selection of saffron (Crocus sativus L.): the first optimistic experimental results. Euphytica, 169, 81-99. Amiriyan, F., Mostafaie, A., & Seyyed Mohammad Ali, K. (2020). The Investigation of Genetic Diversity of Saffron (Crocus sativus L.) Ecotypes Traits under Chilling Stress. Journal of Saffron Research, 8 (2), 191-206. (In Persian). Baghalian, K., Sheshtamand, M. S., & Jamshidi, A. H. (2010). Genetic variation and heritability of agro-morphological and phytochemical traits in Iranian saffron (Crocus sativus L.) populations. Industrial Crops and Products, 31(2), 401-406. Bayat, M., Amir Niya, R., Taj Bakhsh, M., & Tanyvlach, B. (2016). Genetic Diversity of Saffron (Crocus sativus L.) using iPBS and SSR Molecular Markers. Journal of Saffron Research, 4(1), 103-119. (in Persian). Bolhasani, A., Bathaie, S. Z., Yavari, I., Moosavi-Movahedi, A. A., & Ghaffari, M. (2005). Separation and purification of some components. Asian Journal of Chemistry, 17(2), 725-729. Bukhari, S. I., Din, I., Grewal, S., & Dhar, M. K. (2018). Antiproliferative effect of saffron and its constituents on different cancerous cell lines. Pharmacognosy Research, 10(3). Busconi, M., Colli, L., Sánchez, R. A., Santaella, M., De-Los-Mozos Pascual, M., Santana, O., ... & Fernandez, J. A. (2015). AFLP and MS-AFLP analysis of the variation within saffron crocus (Crocus sativus L.) germplasm. PloS one, 10(4), e0123434. Cardone, L., Candido, V., Castronuovo, D., Perniola, M., & Cicco, N. (2021). Comparing annual and biennial crop cycle on the growth, yield and quality of saffron using three corm dimensions. Scientia Horticulturae, 288, 110393. Cardone, L., Castronuovo, D., Perniola, M., Cicco, N., Molina, R. V., Renau-Morata, B., ... & Candido, V. (2021). Crocus sativus L. Ecotypes from Mediterranean countries: Phenological, morpho-productive, qualitative and genetic traits. Agronomy, 11(3), 551. Casas-Catalán, M. J., & Doménech-Carbó, M. T. (2005). Identification of natural dyes used in works of art by pyrolysis–gas chromatography/mass spectrometry combined with in situ trimethylsilylation. Analytical and Bioanalytical Chemistry, 382, 259-268. Fernández, J. A., Santana, O., Guardiola, J. L., Molina, R. V., Heslop-Harrison, P., Borbely, G., ... & De-Los-Mozos-Pascual, M. (2011). The world saffron and Crocus collection: strategies for establishment, management, characterisation and utilisation. Genetic Resources and Crop Evolution, 58, 125-137. Fiore, A., Pizzichini, D., Diretto, G., Scossa, F., & Spanò, L. (2010). Genomics and transcriptomics of saffron: new tools to unravel the secrets of an attractive spice. The Editor, 25, 1-14. Gresta, F., Avola, G., Lombardo, G. M., Siracusa, L., & Ruberto, G. (2009). Analysis of flowering, stigmas yield and qualitative traits of saffron (Crocus sativus L.) as affected by environmental conditions. Scientia Horticulturae, 119(3), 320-324. Gresta, F., Lombardo, G. M., & Avola, G. (2009, May). Saffron stigmas production as affected by soil texture. In III International Symposium on Saffron: Forthcoming Challenges in Cultivation, Research and Economics 850 (pp. 149-152). Hailu, F., Merker, A., Belay, G., & Johansson, E. (2006). Multivariate analysis of diversity of tetraploid wheat germplasm from Ethiopia. Genetic Resources and Crop Evolution, 53, 1089-1098. Izadpanah, F. A., Kalantari, S. A., Hassani, M. E. B., Naghavi, M. R. C., & Shokrpoura, M. (2015). Molecular and morphological variation in some Iranian saffron (Crocus sativus L.) accessions. Genetika, 47(2), 711-722. Jin, R. L., Qiao, Z. P., Zhou, S. D., Ye, Y. L., & Zhou, J. X. (1986). Investigation of saffron preparations by thin layer chromatography. Journal of Nanjing College of Pharmacy, 17, 247. Kanakis, C. D., Daferera, D. J., Tarantilis, P. A., & Polissiou, M. G. (2004). Qualitative determination of volatile compounds and quantitative evaluation of safranal and 4-hydroxy-2, 6, 6-trimethyl-1-cyclohexene-1-carboxaldehyde (HTCC) in Greek saffron. Journal of Agricultural and Food Chemistry, 52(14), 4515-4521. Kothari, D., Thakur, R., & Kumar, R. (2021). Saffron (Crocus sativus L.): Gold of the spices A comprehensive review. Horticulture, Environment, and Biotechnology, 62(5), 661-677. Lage, M., & Cantrell, C. L. (2009). Quantification of saffron (Crocus sativus L.) metabolites crocins, picrocrocin and safranal for quality determination of the spice grown under different environmental Moroccan conditions. Scientia Horticulturae, 121(3), 366-373. Li, C. Y., & Wu, T. S. (2002). Constituents of the stigmas of crocus s ativus and their tyrosinase inhibitory activity. Journal of Natural Products, 65(10), 1452-1456. Lozano, P., Castellar, M. R., Simancas, M. J., & Iborra, J. L. (1999). A quantitative high-performance liquid chromatographic method to analyse commercial saffron (Crocus sativus L.) products. Journal of Chromatography, 830(2), 477-483. Lozano, P., Delgado, D., Gomez, D., Rubio, M., & Iborra, J. L. (2000). A non-destructive method to determine the safranal content of saffron (Crocus sativus L.) by supercritical carbon dioxide extraction combined with high-performance liquid chromatography and gas chromatography. Journal of Biochemical and Biophysical Methods, 43(1-3), 367-378. Majidi, M. M., Mirlohi, A., & Amini, F. (2009). Genetic variation, heritability and correlations of agro-morphological traits in tall fescue (Festuca arundinacea Schreb.). Euphytica, 167(3), 323-331. Mir, M. A., Mansoor, S., Sugapriya, M., Alyemeni, M. N., Wijaya, L., & Ahmad, P. (2021). Deciphering genetic diversity analysis of saffron (Crocus sativus L.) using RAPD and ISSR markers. Saudi Journal of Biological Sciences, 28(2), 1308-1317. Nemati, Z., Mardi, M., Majidan, P., Zeinalabedini, M., Pirseyedi, S. M., & Baharodi, M. (2014). Saffron (Crocus sativus L.), a monomorphic or polymorphic species? Spanish Journal of Agricultural Research, 12(3), 753-762. Nemati, Z., Zeinalabedini, M., Mardi, M., Pirseyediand, S. M., Marashi, S. H., & Khayam Nekoui, S. M. (2012). Isolation and characterization of a first set of polymorphic microsatellite markers in saffron, Crocus sativus (Iridaceae). American Journal of Botany, 99(9), e340-e343. Pardo, J., Fernández, J. A., & Gomez, L. G. (2003, October). Development of molecular markers for origin determination in saffron. In I International Symposium on Saffron Biology and Biotechnology 650 (pp. 95-98). Romesburg, C. (2004). Cluster analysis for researchers. Lulu. com. Salami, S. A., & Husaini, A. M. (2022). Genetic Mapping and Molecular Markers in Saffron. In The Saffron Genome (pp. 83-94). Cham: Springer International Publishing. Salami, S. A., & Husaini, A. M. (2022). SaffronOMICS: Novel Approaches Toward Putting Saffron Data at Work. In The Saffron Genome (pp. 43-62). Cham: Springer International Publishing. Shahi, T., Assadpour, E., & Jafari, S. M. (2016). Main chemical compounds and pharmacological activities of stigmas and tepals of ‘red gold’; saffron. Trends in Food Science & Technology, 58, 69-78. Shokrpour, M., Abedi, Z., Kalantari, S., & Salami, S. A. (2017). Study of genetic variation in some Iranian saffron accessions using molecular markers of RAPD and ISSR. Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics, 23(4), 323-355. Soheilivand, S., Agayev, Y. M., Shakib, A. M., Fathi, M., & Rezvani, E. (2006, October). Comparison of diversity in flowering rate of two saffron (Crocus sativus) populations of Iran. In II International Symposium on Saffron Biology and Technology 739 (pp. 303-306). Straubinger, M., Bau, B., Eckstein, S., Fink, M., & Winterhalter, P. (1998). Identification of Novel Glycosidic Aroma Precursors in Saffron (Crocus s ativus L.). Journal of Agricultural and Food Chemistry, 46(8), 3238-3243. Tarantilis, P. A., & Polissiou, M. G. (1997). Isolation and identification of the aroma components from saffron (Crocus sativus). Journal of Agricultural and Food Chemistry, 45(2), 459-462. Tarantilis, P. A., Tsoupras, G., & Polissiou, M. (1995). Determination of saffron (Crocus sativus L.) components in crude plant extract using high-performance liquid chromatography-UV-visible photodiode-array detection-mass spectrometry. Journal of Chromatography A, 699(1-2), 107-118. Vahedi, M., Kabiri, M., Salami, S. A., Rezadoost, H., Mirzaie, M., & Kanani, M. R. (2018). Quantitative HPLC-based metabolomics of some Iranian saffron (Crocus sativus L.) accessions. Industrial Crops and Products, 118, 26-29. Yao, L., Guo, S., Wang, H., Feng, T., Sun, M., Song, S., & Hou, F. (2022). Volatile fingerprints of different parts of Chongming saffron (Crocus sativus) flowers by headspace‐gas chromatography‐ion mobility spectrometry and in vitro bioactive properties of the saffron tepals. Journal of Food Science, 87(10), 4491-4503. Yeo, I. K., & Johnson, R. A. (2000). A new family of power transformations to improve normality or symmetry. Biometrika, 87(4), 954-959. Zanier, R., & Caiola, M. G. (2000). Self-incompatibility mechanisms in the Crocus sativus aggregate (Iridaceae): a preliminary investigation. Annali di Botanica, 58. Zareena, A. V., Variyar, P. S., Gholap, A. S., & Bongirwar, D. R. (2001). Chemical investigation of gamma-irradiated saffron (Crocus sativus L.). Journal of Agricultural and Food Chemistry, 49(2), 687-691. | ||
آمار تعداد مشاهده مقاله: 84 تعداد دریافت فایل اصل مقاله: 49 |