- Ram, S., Ganesan, H., Saini, V., & Kumar, A. (2023). Performance assessment of a parabolic trough solar collector using nanofluid and water based on direct absorption. Renewable Energy, 214, 11-12. https://doi.org/10.1016/j.renene.2023.06.016
- Chinnappan, T., Raguraman, C.M., Dhairiyasamy, R., & Rajendran, S. (2024). Comparative Analysis of Polycarbonate and Glass Cover Configurations for Enhanced Thermal Efficiency in Flat Plate Solar Collectors for Water Heating. Journal of Solar Energy Research, 9(1), 1794-1810. https://doi.org/10.22059/jser.2024.374268.1394
- Kumar, G., & Gupta, H. (2022). Optical design of integrated line and point focus solar collector for process heat generation. J. Environmental Technology and Management, 25, 218-232. https://doi .org/10.1504/IJETM.2022.122631
- Sarwara, J., Georgakis, G., Kouloulias, K., & Kakosimos, K.E. (2015). Experimental and numerical investigation of the aperture size effect on the efficient solar energy harvesting for solar thermochemical applications. Energy Convers Manag, 92, 331–41. https://doi.org/ 10.1016/j.enconman.2014.12.065
- Francesco, G., & Peter, Z. (2013). Exploring the uncertainty around potential shale gas development – a global energy system analysis based on TIAM (TIMES Integrated Assessment Model). Energy, 57, 443–57.https://doi.org/10.1016/j.energy.2013.06.006
- Wang, F.Q., Cheng, Z.M., Tan, J.Y., Zhang, J.Q., Leng, Y., & Liu, L.H. (2017). Energy storage efficiency analyses of CO2 reforming of methane in metal foam solar thermochemical reactor. Appl Therm Eng, 111, 1091–100. https://doi.org/10.1016/j.applthermaleng.2016.10.025
- Neven, D., Zvonimir, G., Vyatcheslav, K., Jiří, J. K., Brian, M., & Yan, J.Y. (2013). Sustainable development of energy, water and environment systems. Appl Energy, 101, 3–5. https://doi.org/10.1016/j.apenergy.2012.08.002
- Mostafa, A.A., Yasser, E., Mohamed, B., Thokozani, M., Monica, T., Al-Qabandi, O.A., & Sameh, S.K. (2024). Performance enhancement of flat-plate and parabolic trough solar collector using nanofluid for water heating application. Results in Engineering, 21, 101673. https://doi.org/10.1016/j.rineng.2023.101673
- Josué, F.R.P., Andrés, V.J., Manuel, P.G., José, M. C., & Rodrigo, E. (2024). Techno-economic analysis of hybrid solar thermal systems with flat plate and parabolic trough collectors in industrial applications. Alexandria Engineering Journal, 86, 98-119. https://doi.org/10.1016/j.aej.2023.11.056
- Jebasingh, V.K., & Joselin, H.G.M. (2016). A review of solar parabolic trough collector. Renewable and Sustainable Energy Reviews, 54, 1085–1091. https://doi.org/10.1016/j.rser.2015.10.043
- Ghaedi, A., Sedaghati, R., & Mahmoudian, M. (2023). Reliability Evaluation of Solar Power Plants Equipped with parabolic Trough Reflectors. Journal of Solar Energy Research, 8(3), 1635-1650. https://doi.org/10.22059/jser.2023.359179.1305
- Eck, M., & Hennecke, K. (2007). Heat transfer fluids for future parabolic trough solar thermal power plants. In: Goswami DY, Zhao Y, editors. . Proceedings of ISES world congress, Vol. I–Vol. V. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-75997-3_369
- Cheng, Z.D., He, Y.L., Xiao, J., Tao, Y.B., & Xu, R.J. (2010). Three–dimensional numerical study of heat transfer characteristics in the receiver tube of parabolic trough solar collector. Int Commun Heat Mass, 37(7), 782–7. https://doi.org/10.1016/j.icheatmasstransfer.2010.05.002
- Qiu, Y., Li, M.J., He, Y.L., & Tao, W.Q. (2017). Thermal performance analysis of a parabolic trough solar collector using supercritical CO2 as heat transfer fluid under non–uniform solar flux. Applied Thermal Engineering, 115, 1255-1265. https://doi.org/10.1016/j.applthermaleng.2016.09.044
- Hachicha, A.A., Rodríguez, I., Capdevila, R., & Oliva, A. (2013). Heat transfer analysis and numerical simulation of a parabolic trough solar collector. Appl Energy, 111(11), 581–92. https://doi.org/10.1016/j.apenergy.2013.04.067
- Khanna, S., Kedare, S.B., & Singh, S. (2014). Deflection and stresses in absorber tube of solar parabolic trough due to circumferential and axial flux variations on absorber tube supported at multiple points. Sol Energy, 99(1), 134–51. https://doi.org/10.1016/j.solener.2013.11.005
- Khanna, S., Singh, S., & Kedare, S.B. (2015). Explicit expressions for temperature distribution and deflection in absorber tube of solar parabolic trough concentrator. Sol Energy, 114, 289–302. https://doi.org/10.1016/j.solener.2015.01.044
- Wang, F., Cheng, Z., Tan, J., Yuan, Y. Shuai, Y., & Liu, L., (2017). Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review. Renewable and Sustainable Energy Reviews, 79, 1314–1328. https://doi.org/ 10.1016/j.rser.2017.05.174
- Kumar, G., & Gupta, H. (2021). A Study of Linear Fresnel Solar Collector Reflector Field for Performance Improvement. In: Recent Advances in Mechanical Infrastructure. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Singapore. https://doi.org/10.1007/978-981-33-4176-0_31
- Goswami, Y.D. (1998). Solar thermal power technology: Present status and ideas for the future. Energy Sources. 20 (2), 137–45. https://doi.org/ 10.1080/00908319808970052
- Kalogirou, S.A. (2004). Solar thermal collectors and applications. Progress in energy and combustion science. https://doi.org/10.1016/j.pecs.2004.02.001
- Vaghasia, J.G., Ratnadhariya, J.K., Panchal, H., & Kumar, K. (2019). Experimental performance investigations on various orientations of evacuated double absorber tube for solar parabolic trough concentrator. International Journal of Ambient Energy, 1–17. https://doi.org/10.1080/01430750.2019.1653980
- Bhavsar, N., Prajapati, D., Patel. S., Vaghela, S., & Upadhyay, B. (2019). New technique for water desalination using novel solar still and parabolic trough collector. Journal of Emerging Technologies and Innovative Research, 6, 342–46. Available at: http://www.jetir.org/papers/JETIRCQ06064.pdf
- Upadhyay, B.H., Patel, A.J., & Ramana, P.V. (2017). Parabolic trough collector, a novel design for domestic water heating application. International Journal for Research in Applied Science and Engineering Technology, 5, 497–503. https://doi.org/10.22214/ijraset.2017.10073
- [Abbas, M., Boumeddane, B., Said, N., & Chikouche, A. (2011). Dish Stirling technology: a 100 MW solar power plant using hydrogen for Algeria. Int J Hydrogen Energy, 36(7), 4305–14. https://doi.org/10.1016/j.ijhydene.2010.12.114
- Baharoon, D.A., Rahman, H.A., Wan, W.Z., & Fadhl, S.O. (2015). Historical development of concentrating solar power technologies to generate clean electricity efficiently – A review. Renewable and Sustainable Energy Reviews, 41, 996-1027 https://doi.org/10.1016/j.rser.2014.09.008
- Mills, R.D., & Morrison, L.G. (1999). Compact linear Fresnel reflector solar thermal power plants. Solar Energy, 68, 263–283. https://doi.org/10.1016/S0038-092X (99)00068-7
- Guangdong, Z., Tim, W., Michael, W.J., & Chuck, K. (2014). History, current state, and future of linear Fresnel concentrating solar collectors. Solar Energy, 103, 639–652. https://doi.org/10.1016/j.solener.2013.05.021
- Jaber, A., Mariah, N., Zainal, M., Kadir, A., & Aziz, A. (2018). Review of Solar Parabolic-Trough Collector Geometrical and Thermal Analyses, Performance, and Applications. Renewable & Sustainable Energy Reviews, 91, 822–831. https://doi.org/ 10.1016/j.rser.2018.04.085
- Taylor, P., Haddock, C., & Mckee, J.S.C. (2007). Solar Energy Collection, Concentration, and Thermal Conversion — A Review. Energy sources, 13, 461–482. https://doi.org/10.1063/1.2718755
- Jebasingh, V.K., & Herbert, G.M.J. (2016). A Review of Solar Parabolic Trough Collector. Renewable and Sustainable Energy Reviews, 54, 1085–1091. https://doi.org/ 10.1016/j.rser.2015.10.043
- Kaygusuz, K. (2009). Environmental Impacts of the Solar Energy Systems. Energy Sources, Part A: Recovery, Utilization, and Environmental Effect, 31 (15), 1376–1386. https://doi.org/ 10.1080/15567030802089664
- Yogi, Goswami, D. (1998). Solar Thermal Power Technology: Present Status and Ideas for the Future. Energy Sources, 20 (2), 137–145. https://doi.org/10.1080/00908319808970052
- Ummadisingu, A., & Soni, M.S. (2011). Concentrating Solar Power - Technology, Potential and Policy in India. Renewable and Sustainable Energy Reviews, 15 (9), 5169–5175. https://doi.org/10.1016/j.rser.2011.07.040
- Reddy, K.S., & Kumar, K.R. (2012). Solar Collector Field Design and Viability Analysis of Stand-Alone Parabolic Trough Power Plants for Indian Conditions. Energy for Sustainable Development, 16 (4), 456–470. https://doi.org/10.1016/j.esd.2012.09.003
- Olusola, B., Dongsheng, C., Humphrey, A., Michael, A., Mustafa, D., Ferdinard, D., & Huang, Q. (2022). A brief review and comparative evaluation of nanofluid application in solar parabolic trough and flat plate collectors. Energy Reports, 8, 156-166. doi.org/10.1016/j.egyr.2022.08.078.
- Bhargav, H., Ramani, B., & Reddy, V. S. (2018). Experimental study on adsorption capacity of an activated carbon-based adsorption water chiller. International Journal of Ambient Energy, 40(6), 657–660.https://doi.org/10.1080/01430750.2017.1421580
- Thakkar, H., Sankhala, A., Ramana, P. V., & Panchal, H. (2018). A detailed review on solar desalination techniques. International Journal of Ambient Energy, 41(9), 1066–1087. https://doi.org/10.1080/01430750.2018.1490351
- Panchal, H., & Bhargav, H. (2019). Mini-review of different co-generation systems: solar thermal perspective. International Journal of Ambient Energy, 43(1), 1–3. https://doi.org/10.1080/01430750.2019.1568912
- Eleazar, I., Montes, P., Mejia, A., & Mercado, O. (2014). Design and construction of a parabolic trough solar collector for process heat production. Energy Procedia, 57, 2149–58. https://doi.org/10.1016/j.egypro.2014.10.181
- Sagade, A., & Shinde, N. (2012). Performance evaluation of parabolic dish type solar collector for industrial heating application. International Journal of Energy Technology and Policy, 8 (1), 80. https://doi.org/10.1504/IJETP.2012.046015
- Sagade, A.A., Shinde, N.N., & Patil, P.S. (2014). Effect of receiver temperature on performance evaluation of silver coated selective surface compound parabolic reflector with top glass cover. Energy Procedia, 48, 212–22. https://doi.org/10.1016/j.egypro.2014.02.026
- Donga, R.K., & Kumar, S. (2018). Parabolic trough collector with rhombus tube absorber for higher concentration ratio. Energy sources, Part A recover. Util. Environmental Effects, 40, 2620–31. https://doi.org/10.1080/15567036.2018.1505981
- Peng, Y., Ren, T., Xia, B., Wang, Y., & Zhu, Y. (2019). Numerical investigation of a novel single-pass all-glass receiver for parabolic trough collector. Energy sources, Part A recover. Util. Environmental Effects, 1–15. https://doi.org/10.1080/15567036.2019.1668084
- Jafar, K.S., Arulprakasajothi, M., Beemkumar, N., & Elangovan, K. (2019). Effect of conical strip inserts in a parabolic trough solar collector under turbulent flow. Energy sources, Part A recover. Util. Environmental Effects, 1–13. https://doi.org/10.1080/15567036.2019.1650850
- Upadhyay, B. H., Patel, A. J., & Ramana, P. V. (2019). A detailed review on solar parabolic trough collector. International Journal of Ambient Energy, 43(1), 176–196. https://doi.org/10.1080/01430750.2019.1636869
- IS 16648 (Part 5) (2017). Concentrated Solar Thermal — Specification, Test Methods.
- Upadhyay, B. H., Patel, A. J., & Ramana, P. V. (2020). Comparative study of parabolic trough collector for low-temperature water heating. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 9821–9837. https://doi.org/10.1080/15567036.2020.1779874
- Kumar, G., & Gupta, H. (2021) Experimental investigation of a line focus solar collector using flat and parabolic reflector. In: Lecture Notes in Mechanical Engineering, Springer, Singapore. https://doi.org/10.1007/978-981-16-4222-7_84.
- Didi, F., Saleh, E.A.M., Kumar, A., Alawadi, A., Alsaalamy, A., Alawsi, T., Alayi, R., Hosseinzadeh, H., & Morovati, R. (2024) Modeling and optimizing the thermodynamics of a flat plate solar collector in transient mode for economic purposes. AIP Advances 14 (1), 015302, https://doi.org/10.1063/5.0185818.
- Incropera FP, DeWitt DP (Eds.). (1999) Fundamentals of Heat Transfer. Wiley.
|