
تعداد نشریات | 162 |
تعداد شمارهها | 6,693 |
تعداد مقالات | 72,239 |
تعداد مشاهده مقاله | 129,222,915 |
تعداد دریافت فایل اصل مقاله | 102,053,155 |
A New Algorithm for Computing the Frobenius Number | ||
Journal of Algorithms and Computation | ||
دوره 56، شماره 2، اسفند 2024، صفحه 68-74 اصل مقاله (477.95 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jac.2025.372565.1211 | ||
نویسندگان | ||
Abbas Taheri1؛ Saeid Alikhani* 2 | ||
1Department of Electrical Engineering, Yazd University, 89195-741, Yazd, Iran | ||
2Department of Mathematical Sciences, Yazd University, 89195-741, Yazd, Iran | ||
چکیده | ||
A number $\alpha$ has a representation with respect to the numbers $\alpha_1,...,\alpha_n$, if there exist the non-negative integers $\lambda_1,... ,\lambda_n$ such that $\alpha=\lambda_1\alpha_1+...+\lambda_n \alpha_n$. The largest natural number that does not have a representation with respect to the numbers $\alpha_1,...,\alpha_n$ is called the Frobenius number and is denoted by the symbol $g(\alpha_1,...,\alpha_n)$. In this paper, we present a new algorithm to calculate the Frobenius number. Also we present the sequential form of the new algorithm. A number $\alpha$ has a representation with respect to the numbers $\alpha_1,...,\alpha_n$, if there exist the non-negative integers $\lambda_1,... ,\lambda_n$ such that $\alpha=\lambda_1\alpha_1+...+\lambda_n \alpha_n$. The largest natural number that does not have a representation with respect to the numbers $\alpha_1,...,\alpha_n$ is called the Frobenius number and is denoted by the symbol $g(\alpha_1,...,\alpha_n)$. In this paper, we present a new algorithm to calculate the Frobenius number. Also we present the sequential form of the new algorithm. | ||
کلیدواژهها | ||
Algorithm؛ Frobenius؛ Number؛ Complexity؛ Sequence | ||
سایر فایل های مرتبط با مقاله
|
||
آمار تعداد مشاهده مقاله: 39 تعداد دریافت فایل اصل مقاله: 48 |