
تعداد نشریات | 162 |
تعداد شمارهها | 6,693 |
تعداد مقالات | 72,239 |
تعداد مشاهده مقاله | 129,215,524 |
تعداد دریافت فایل اصل مقاله | 102,043,939 |
ارزیابی و پایش وضعیت خشکسالی با استفاده از دادههای ماهوارهای و هواشناسی با تکیه بر سریهای زمانی (مطالعه موردی: استان زنجان) | ||
مجله اکوهیدرولوژی | ||
دوره 12، شماره 1، فروردین 1404، صفحه 613-634 اصل مقاله (2.32 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2025.380086.1841 | ||
نویسندگان | ||
حسین شجاعی شیری1؛ حسین ارزانی1؛ حمیدرضا کشتکار* 1؛ ستاره باقری1؛ امید کاوسی2 | ||
1گروه احیای مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
2مرکز تحقیقات بین المللی بیابان، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
موضوع: پایش مکانی و زمانی خشکسالی با استفاده از شاخصهای هواشناسی و ماهوارهای در استان زنجان. هدف: این مطالعه با هدف مقایسۀ شاخصهای خشکسالی، شامل دو شاخص هواشناسی و پنج شاخص مبتنیبر دادههای ماهوارهای، بهمنظور بهبود پایش خشکسالی در استان زنجان انجام شده است. روش تحقیق: در این پژوهش، دو شاخص هواشناسی شامل شاخص بارندگی استاندارد (SPI) و شاخص بارش تبخیر و تعرق استاندارد (SPEI) برای سریهای زمانی 1، 3، 6، 9 و 12 ماهه در بازۀ 2004 تا 2022 محاسبه شدند. همچنین، پنج شاخص خشکسالی مبتنیبر دادههای ماهوارهای شامل NDVI، EVI، VCI، TCI و VHI در همین بازۀ زمانی استخراج گردید. در ادامه، نتایج این شاخصها با دادههای هواشناسی مقایسه شد. یافتهها: نتایج نشان داد که شاخصهای SPI و SPEI بیشتر سالهای مورد بررسی را در وضعیت نرمال گزارش کردهاند، درحالیکه تنها در سال 2019 ترسالی مشاهده شد.SPEI وقوع خشکسالی را برای سالهای 2008، 2011 و 2022 تأیید کرد، درحالیکه SPI خشکسالی را برای سالهای 2007 و 2022 ثبت نمود. در میان شاخصهای ماهوارهای، NDVI با ضریب تشخیص (R² = 0.82) بیشترین همبستگی را با شاخصهای هواشناسی نشان داد، درحالیکه VHI کمترین میزان(R² = 0.57) را داشت. نتیجهگیری: نتایج این پژوهش نشان داد که شاخص NDVI در مقایسه با سایر شاخصهای ماهوارهای عملکرد بهتری در پایش خشکسالی دارد. این یافتهها میتوانند بهعنوان مبنایی برای تصمیمگیری صحیح در ارزیابی سریع دادههای سنجش از دور و پایش خشکسالی مورد استفاده قرار گیرند | ||
کلیدواژهها | ||
شاخصهای خشکسالی؛ SPI؛ SPEI؛ NDVI؛ زنجان | ||
مراجع | ||
Aghajanlou, F., Ghorbani, A., Zare Chahoki, M. A., Mostafazadeh, R., & Hashemi Majd, K. (2018). Ecological survey of the presence and absence of Ferula ovina (Boiss.) Boiss and Ferula persica willd. in north-western rangelands of Iran (case dtudy: Zanjan province). J Rangel Sci, 8(4), 352-62. Avazpour, N., Faramarzi, M., Omidipour, R., & Mehdizadeh, H. (2021). Monitoring the drought effects on vegetation changes using satellite imagery (Case study: Ilam catchment). Geography and Environmental Sustainability, 11(4), 125-143. [In Persian] Bhuiyan, C., Singh, R. P., & Kogan, F. N. (2006). Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 8(4), 289-302. Dastorani, M., Vali, A., Sepehr, A., & Komaki, C. B. (2022). The effect of drought on vegetation using MODIS satellite Khorasan Razavi. Desert Ecosystem Engineering, 4(7), 1-8. [In Persian] Dayal, K. S., Deo, R. C., & Apan, A. A. (2018). Investigating drought duration-severity-intensity characteristics using the Standardized Precipitation-Evapotranspiration Index: case studies in drought-prone Southeast Queensland. Journal of Hydrologic Engineering, 23(1), 05017029. De Jong, R., Verbesselt, J., Schaepman, M. E., & De Bruin, S. (2012). Trend changes in global greening and browning: contribution of short‐term trends to longer‐term change. Global Change Biology, 18(2), 642-655. Dutta, D., Kundu, A., Patel, N. R., Saha, S. K., & Siddiqui, A. R. (2015). Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI). The Egyptian Journal of Remote Sensing and Space Science, 18(1), 53-63. Firouzi, F., Tavosi, T., & Mahmoudi, P. (2019). Investigating the sensitivity of NDVI and EVI vegetation indices to dry and wet years in arid and semi-arid regions (Case study: Sistan plain, Iran). Scientific-Research Quarterly of Geographical Data (SEPEHR), 28(110), 163-179. [In Persian] Gebrehiwot, T., Van der Veen, A., & Maathuis, B. (2011). Spatial and temporal assessment of drought in the Northern highlands of Ethiopia. International Journal of Applied Earth Observation and Geoinformation, 13(3), 309-321. He, C., Zhang, Q., Li, Y., Li, X., & Shi, P. (2005). Zoning grassland protection area using remote sensing and cellular automata modeling—a case study in Xilingol steppe grassland in northern China. Journal of Arid Environments, 63(4), 814-826. Homdee, T., Pongput, K., & Kanae, S. (2016). A comparative performance analysis of three standardized climatic drought indices in the Chi River basin, Thailand. Agriculture and Natural Resources, 50(3), 211-219. Huho, J. M., & Kosonei, R. C. (2014). Understanding extreme climatic events for economic development in Kenya. IOSR Journal of Environmental Science, Toxicology and Food Technology, 8(2), 14-24. Jain, S. K., Keshri, R., Goswami, A., & Sarkar, A. (2010). Application of meteorological and vegetation indices for evaluation of drought impact: a case study for Rajasthan, India. Natural hazards, 54, 643-656. Ji, L., & Peters, A. J. (2003). Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote sensing of Environment, 87(1), 85-98. Jiang, W., Wang, L., Feng, L., Zhang, M., & Yao, R. (2020). Drought characteristics and its impact on changes in surface vegetation from 1981 to 2015 in the Yangtze River Basin, China. International Journal of Climatology, 40(7), 3380-3397. Kogan, F. (2002). World droughts in the new millennium from AVHRR‐based vegetation health indices. Eos, Transactions American Geophysical Union, 83(48), 557-563. Kogan, F. N. (1990). Remote sensing of weather impacts on vegetation in non-homogeneous areas. International Journal of remote sensing, 11(8), 1405-1419. Kogan, F. N. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in space research, 15(11), 91-100. Kogan, F., Gitelson, A., Zakarin, E., Spivak, L., & Lebed, L. (2003). AVHRR-based spectral vegetation index for quantitative assessment of vegetation state and productivity. Photogrammetric Engineering & Remote Sensing, 69(8), 899-906. Kreibich, H., Di Baldassarre, G., Vorogushyn, S., Aerts, J. C., Apel, H., Aronica, G. T., & Merz, B. (2017). Adaptation to flood risk: Results of international paired flood event studies. Earth's Future, 5(10), 953-965. Masud, M. B., Qian, B., & Faramarzi, M. (2020). Performance of multivariate and multiscalar drought indices in identifying impacts on crop production. International Journal of Climatology, 40(1), 292-307. McKee, T. B., Doesken, N. J., & Kleist, J. (1993, January). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183). Mirmosavei, S., & Kareimei, H. (2013). Effect of drought on vegetation cover using MODIS sensing images case: Kurdistan Province. Geography and Development, 11(31), 57-76. [In Persian] Moazami, N., Keshtkar, A., Hamzeh, S., Mirzaei, S., Keshtkar, H., & Afzali, A. (2022). Remote sensing-based monitoring of the spatiotemporal characteristics of drought using hydro-meteorological indices. Desert, 27(2), 343-358. Mostafazadeh, R., & Zabihi, M. (2016). Comparison of SPI and SPEI indices to meteorological drought assessment using R programming (Case study: Kurdistan Province). Journal of the Earth and Space Physics, 42(3), 633-643. [In Persian] Myneni, R. B., Hall, F. G., Sellers, P. J., & Marshak, A. L. (1995). The interpretation of spectral vegetation indexes. IEEE Transactions on Geoscience and remote Sensing, 33(2), 481-486. Nasir, J., Assefa, E., Zeleke, T., & Gidey, E. (2021). Meteorological Drought in Northwestern Escarpment of Ethiopian Rift Valley: detection seasonal and spatial trends. Environmental Systems Research, 10, 1-20. Noorbakhsh, M., & Nazari Nejad A. (2022). Investigation of the relationship between NDVI and EVI vegetation indices and land surface temperature in Tehran. Geography and Human Relationships, 1(17), 225-236. [InPersian] Ozelkan, E., Chen, G., & Ustundag, B. B. (2016). Multiscale object-based drought monitoring and comparison in rainfed and irrigated agriculture from Landsat 8 OLI imagery. International Journal of Applied Earth Observation and Geoinformation, 44, 159-170. Paltsyn, M. Y., Gibbs, J. P., Iegorova, L. V., & Mountrakis, G. (2017). Estimation and prediction of grassland cover in western Mongolia using MODIS-derived vegetation indices. Rangeland ecology & management, 70(6), 723-729. Quiring, S. M., & Ganesh, S. (2010). Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas. Agricultural and forest meteorology, 150(3), 330-339. Rafiei Sardooi, E., Azareh, A., Eskandari Damaneh, H., & Skandari Damaneh, H. (2021). Drought monitoring using MODIS land surface temperature and normalized difference vegetation index products in semi-arid areas of Iran. Journal of Rangeland Science, 11(4), 402-418. [In Persian] Rimkus, E., Stonevicius, E., Kilpys, J., Maciulyte, V., & Valiukas, D. (2017). Drought identification in the eastern Baltic region using NDVI. Earth system dynamics, 8(3), 627-637. Saberi, A. , Soltani-Gerdefaramarzi, S. and Miryaghoubzadeh, M. (2018). Study of drought using meteorological and remote sensing data (Azarbaijan province). Journal of the Earth and Space Physics, 44(2), 439-461. [In Persian] Saberi, A., Gholami, L., Kavian, E.A. & Qheysoori, M. (2019) Evaluation of meteorological drought in Urmia Lake basin using meteorological indicators and remote sensing technique. 4th Conference on Watershed Science and Engineering. [In Persian] Scasta, J. D., Lalman, D. L., & Henderson, L. (2016). Drought mitigation for grazing operations: matching the animal to the environment. Rangelands, 38(4), 204-210. Singh, R. P., Roy, S., & Kogan, F. (2003). Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. International journal of remote sensing, 24(22), 4393-4402. Şorman, A. Ü., Mehr, A. D., & Hadi, S. J. (2018). Study on spatial-temporal variations of Meteorological-Agricultural droughts in Turkey. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 483-490. Su, Z., He, Y., Dong, X., & Wang, L. (2017). Drought monitoring and assessment using remote sensing. Remote sensing of hydrological extremes, 151-172. Tesfamariam, B. G., Melgani, F., & Gessesse, B. (2019). Rainfall retrieval and drought monitoring skill of satellite rainfall estimates in the Ethiopian Rift Valley Lakes Basin. Journal of Applied Remote Sensing, 13(1), 014522-014522. Tian, L., Yuan, S., & Quiring, S. M. (2018). Evaluation of six indices for monitoring agricultural drought in the south-central United States. Agricultural and forest meteorology, 249, 107-119. Ugwu, E. B. I., Ugbor, D. O., Agbo, J. U., & Alfa, A. (2023). Analyzing rainfall trend and drought occurences in Sudan Savanna of Nigeria. Scientific African, 20, e01670. Usman, U., Yelwa, S. A., Gulumbe, S. U., Danbaba, A., & Nir, R. (2013). Modelling relationship between NDVI and climatic variables using geographically weighted regression. Journal of Mathematical Sciences and Applications, 1(2), 24-28. Vali, A. A., Mousavi, S. H., & Zamani, E. (2019). Statistical analysis of occurrence frequency of dust storms in Yazd province and its modeling based on climatic elements and vegetation cover. Journal of Spatial Analysis Environmental hazarts, 6(3), 121-142. [In Persian] Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718. Wilhite, D. A. (2005). Drought and water crises: science, technology, and management issues. Crc Press. Zambrano, F., Wardlow, B., Tadesse, T., Lillo-Saavedra, M., & Lagos, O. (2017). Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile. Atmospheric Research, 186, 26-42. Zhao, C., Brissette, F., Chen, J., & Martel, J. L. (2020). Frequency change of future extreme summer meteorological and hydrological droughts over North America. Journal of Hydrology, 584, 124316. Zuo, D., Hou, W., Wu, H., Yan, P., & Zhang, Q. (2021). Feasibility of calculating standardized precipitation index with short-term precipitation data in China. Atmosphere, 12(5), 603. | ||
آمار تعداد مشاهده مقاله: 508 تعداد دریافت فایل اصل مقاله: 91 |