
تعداد نشریات | 162 |
تعداد شمارهها | 6,623 |
تعداد مقالات | 71,544 |
تعداد مشاهده مقاله | 126,896,601 |
تعداد دریافت فایل اصل مقاله | 99,944,503 |
بررسی کیفیت طبقهبندی پوشش اراضی تالابها با تلفیق تصاویر سنتینل-1 و سنتینل-2 (مطالعه ی موردی: تالاب هورالعظیم) | ||
مجله اکوهیدرولوژی | ||
دوره 11، شماره 4، دی 1403، صفحه 543-562 اصل مقاله (2.77 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2025.384845.1849 | ||
نویسندگان | ||
امیرشاهرخ امینی* 1؛ آیدا پروندی2؛ زهرا آذرگشایش3 | ||
1گروه مهندسی نقشهبرداری، دانشگاه آزاد، واحد تهران جنوب، تهران، ایران | ||
2گروه مهندسی نقشهبرداری، دانشگاه آزاد اسلامی، واحد تهران جنوب، تهران، ایران | ||
3گروه مهندسی نقشهبرداری، دانشگاه آزاد، اسلامی واحد تهران جنوب، تهران، ایران | ||
چکیده | ||
موضوع: رشد جمعیت، گرمایش جهانی و مدیریت نادرست باعث کاهش منابع آبی جهان شده است. برای حفظ این منابع، مدیریت و پایش مستمر ، تهیۀ نقشههای کاربری و پوشش اراضی، ضروری است. هدف: بررسی کیفیت طبقهبندی پوشش اراضی و کاربری تالابها در تالاب هورالعظیم با استفاده از تلفیق تصاویر نوری و راداری بهمنظور نیل به نتایج دقیقتر است. روش تحقیق: در این راستا، برای تهیۀ نقشههای پوشش اراضی تالاب هورالعظیم، از تصاویر ماهوارهای سنتینل-1 و سنتینل-2 همراه با روشهای تلفیق مکانی و فرکانسی مانند IHS، PCA، Brovey، Ehlers و Wavelet-IHS استفاده شده است. تلفیق تصاویر به کاهش اثرات ابر و گردوغبار کمک کرده و با افزودن بافت به تصاویر نوری سنتینل-2، دقت طبقهبندی را افزایش داد. طبقهبندی تصاویر بعد از تلفیق با استفاده از روشهای ماشین بردار پشتیبان (SVM) و نزدیکترین همسایگی (KNN) انجام شد. یافتهها: ارزیابی نتایج با شاخصهای دقت کلی (OA) و ضریب کاپا نشان از افزایش پارامتر OA به میزان 1-6 درصد و پارامتر Kappa به میزان 2-5% در طبقهبندی KNN، و افزایش پارامترهای OA و Kappa بهترتیب 1-5 درصد و ۱-۴ درصد در طبقهبندی SVM نسبت به طبقهبندی با تصویر نوری شد. نتیجهگیری: روشهای فرکانسی و ترکیبی بهعنوان بهترین روشهای تلفیق انتخاب شدند و SVM بهعنوان دقیقترین روش طبقهبندی انتخاب شد. از دو قطبش VV و VH، قطبش VV عملکرد بهتری نشان داد. | ||
کلیدواژهها | ||
رادار؛ تلفیق تصویر؛ طبقهبندی شی گرا؛ تالاب هورالعظیم؛ سنتینل1و2 | ||
مراجع | ||
Abdikan, S., Sanli, F.B., Ustuner, M., & Calò, F. (2016). Land Cover Mapping Using Sentinel-1 SAR Data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B7: 757-761. https://doi.org/10.5194/isprs-archives-XLI-B7-757-2016 Afarakhte Nejad, M. (2015). Vegetation dynamic investigation in Horulazim wetland using remote sensing. Master's thesis, Department of Environment, Faculty of Marine Natural Resources, Khorramshahr University of Marine Sciences and Technologies. [Persian] Amarsaikhan, D., Battsengel, V., Bolor, G., Enkhjargal, D., & Jargaldalai, E. (2015). Fusion Of Optical and SAR Images For Enhancment of forest Classes. The Asian Conference on RS. Manila, Philippines. 1-5. Arooba, Z., & Sheikh Saeed Ahmad. (2017). Land Cover Classification of Ucchali Wetlands Complex and Assessment of its Correlation with Temporal Climatic Changes. Science, Technology and Development (PCST) 17-29. https://doi.org/ 10.3923/std.2017.17.29 Bakhshi, A., Marzieh Alikhah Asl, Z., & Rizwani, M. (2014). Preparation of land use map of Miqan wetland using supervised and fuzzy classification method. Human and Environment Quarterly, (32). [in persian] Basaeed, E., Bhaskar, H., & Al-Mualla, M. (2012). Beyond pan-sharpening: Pixel-level fusion in remote sensing applications. International Conference on Innovations in Information Technology (IIT). 139-144. https://doi.org/10.1109/INNOVATIONS.2012.6207718 Bao, C., Huang, G., & Yanga, S. (2012). Application of fusion with SAR and optical images in land use classification based on SVM. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (isprs) XXXIX-B1: 11-14. https://doi.org/10.5194/isprsarchives-XXXIX-B1-11-2012, 2012 Bretschneider, T., & Odej K. (2001). image Fusion in Remote Sensing. 1st Online Symposium of Electronic Engineers. Dagne, S.S., Hirpha, H.H., & Tekoye, A.T. (2023). Fusion of sentinel-1 SAR and sentinel-2 MSI data for accurate Urban land use-land cover classification in Gondar City, Ethiopia. Environ Syst Res12, 40. https://doi.org/10.1186/s40068-023-00324-5 Ding, Y., & Wang, Y. (2011). Analysis and Evaluation on Fusion Methods of Medium and High Spatial Resolution Remote Sensing Image. IEEE, 19th International Conference on Geoinformatics 1-4. https://doi.org/10.1109/GEOINFORMATICS.2011.5981113 Ebadi, M. (2018). The use of satellite images in the assessment of land use changes in Horul Azim wetland and the impact of changes in the ecosystem of the region. Master's thesis, Faculty of Earth Sciences, Chamran University of Ahvaz. [in persian] Ehlers, Manfred, Sascha Klonus, Pär Johan Åstrand, & Pablo Rosso. (2010). Multi-sensor image fusion for pansharpening in remote sensing. https://doi.org/10.1080/19479830903561985 El-naggar, Aly M. (2018). Determination of optimum segmentation parameter values for extracting building from remote sensing images. Alexandria Engineering Journal (elsevier). https://doi.org/10.1016/j.aej.2018.10.001 Fekri, E., Latifi, H., Amani, M., & Zobeidinezhad, A. (2021). A training sample migration method for wetland mapping and monitoring using sentinel data in google earth engine. Remote Sens., 13, 4169. https://doi.org/10.3390/rs13204169 Ferrari, F., Ferreira, M., Almeida, C.A., & Feitosa, R.Q. (2023). Fusing Sentinel-1 and Sentinel-2 Images for Deforestation Detection in the Brazilian Amazon Under Diverse Cloud Conditions, in IEEE Geoscience and Remote Sensing Letters, Vol. 20, pp. 1-5, Art no. 2501005, https://doi.org/ 10.1109/LGRS.2023.3242430 Gong, P., & Howarth, P. J. (1990). The Use of Structural Information for Improving Land-Cover Classification Accuracies at the Rural-Urban Fringe, Photogrammetric Engineering and Remote Sensing, 56(1), 67-73. Goshtasby, A., & Nikolov, S. (2007). Image fusion: Advances in the state of the art. Inf.fusion 8: 114-118. https://doi.org/10.1016/j.inffus.2006.04.001 Hall, David L., & Sonya A. H. McMullen. (1992-2020). Mathematical Techniques in Multisensor Data Fusion (Artech House Information Warfare Library). Haqparast, M. (2018). Classification of land use and land cover in the catchment area and the feasibility of its improvement with a digital elevation model. Master thesis, Department of Photogrammetry and Remote Sensing Engineering, School of Mapping Engineering, Khwaja Nasiruddin Tousi University of Technology. [in persian]. Hay, G., & Castilla, G. (2006). Object-Based Image Analysis: Strengths, Weaknesses, Opportunities and Threats (SWOT). ISPRS Archives – Volume XXXVI-4/C42, 2006. 36. Heydari, M. (2014). Investigation of wetland vegetation using combined classification of remote sensing images. Master's thesis, Faculty of Mapping Engineering, Khwaja Nasiruddin Tosi University of Technology. [in persian] Jafarzadeh, H., Mahdianpari, M., Gill, E. W., & Mohammadimanesh, F. (2024). Enhancing Wetland Mapping: Integrating Sentinel-1/2, GEDI Data, and Google Earth Engine. Sensors, 24(5), 1651. https://doi.org/10.3390/s24051651 Jensen, J.R. (2005). Introductory Digital Image Processing: A Remote Sensing Perspective. 3rd Edition, Pearson Prentice Hall, Upper Saddle River, NJ. Jiao, D., WeishengLi, N., BinXiao, & QamarNawaz. (2016). Union Laplacian pyramid with multiple features for medical image fusion. Neurocomputing (elsevier) 326–339. https://doi.org/10.1016/j.neucom.2016.02.047 Joy, J., Santhi, N., Ramar, K., & Sathya Bama, B. (2019). Spatial frequency discrete wavelet transform image fusion technique for remote sensing applications. Engineering Science and Technology,an International Journal 715–726. https://doi.org/10.1016/j.jestch.2019.01.004 Judah A, Hu B. (2022). An Advanced Data Fusion Method to Improve Wetland Classification Using Multi-Source Remotely Sensed Data. Sensors (Basel). 2022 Nov 18; 22(22): 8942. https://doi.org/ 10.3390/s22228942 Junfang,Y., Guangbo, R., Yi, M., & Yanguo, M. (2016). Coastal Wetland Classification Based on High Resolution SAR and Optical Image Fusion. IGARSS (IEEE) 886-889 https//doi.org/10.1109/IGARSS.2016.7729224 Kang, J., Honghai Y., Hongyan, Zh., & Liangpei, Zh. (2018). Support Vector Machine Classification of Crop Lands using Sentinel-2 Imagery. IEEE https//doi.org/10.1109/Agro-Geoinformatics.2018.8476101Kumar, L., Priyakant, S., & Subhashni, T. (2014). Improving image classification in a complex wetland ecosystem through image fusion techniques. Journal of Applied Remote Sensing. https://doi.org/10.1117/1.JRS.8.083616 Kaplan, G., & Avdan, U. (2018). Sentinel-1 and Sentinel-2 Data Fusion For Wetland Mapping: Balikdami, Turkey, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 729–734, https://isprs-archives.copernicus.org/articles/XLII-3/729/2018/ Kaplan, G., Yigit Avdan, Z., & Avdan, U. 2019. Mapping and Monitoring Wetland Dynamics Using Thermal, Optical, and SAR Remote Sensing Data. In Wetlands Management - Assessing Risk and Sustainable Solutions, 87-107. https://doi.org/10.5772/intechopen.80264 Lotfi, G., Ahmadi Nadushan, M., & Abolhasani, M. (2016). Preparation of the land cover map of Gandaman wetland area with maximum likelihood classification. The 7th National Conference of New Ideas in Agriculture. [in persian]Malek Mohammadi, B., Jahani Shakib, F., & Yavari, A. (2013). Hydrogeomorphic classification of wetlands in order to determine ecological functions (case study: Chaghakhor wetland). Scientific Research Journal of Geography and Planning 257-274. [in persian] Mahdavi, S., Salehi, B., Granger, J., Amani, M., Brisco, B., & Huang, W. 2017. Remote sensing for wetland classification: a comprehensive review. GIScience & Remote Sensing. https://doi.org/10.1080/15481603.2017.1419602 Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Brisco, B., Homayouni, S., Gill, E., DeLancey, E.R., Bourgeau- Chavez, L. (2020). Big data for a big country: The first generation of Canadian wetland inventory map at a spatial resolution of 10-m using Sentinel-1 and Sentinel-2 data on the Google Earth Engine cloud computing platform. Canadian. Journal. Remote Sens. 46, 15–33. https://doi.org/10.1080/07038992.2019.1711366 Otukei, J. R., Blaschkeb, T., & Collins, M. (2015). Fusion of TerraSAR-x and Landsat ETM+ data for protected areamapping in Uganda. International Journal of Applied Earth Observation and 99-104. https://doi.org/10.1016/j.jag.2014.12.012 Pohl, C., & Van Genderen J. L. (1998). Multisensor Image Fusion In Remote Sensing:Concepts, Methods And Applications (Review Article). International Journal Of Remote Sensing, 19(5): 823-854. https://doi.org/10.1080/014311698215748 Qezel, A. (2017). Land cover classification by combining radar and optical time series images. Master's thesis, Department of Mapping Engineering, Faculty of Civil Engineering and Mapping, University of Advanced Industrial and Technological Postgraduate Education. [in persian] Rujoiu-Mare, M-R., Bogdan Olariu, Bogdan-Andrei Mihai, Constantin Nistor, & Ionuț Săvulescu. (2017). Land cover classification in Romanian Carpathians and Subcarpathians using multi-date Sentinel-2 remote sensing imagery. European Journal of Remote Sensing 50: 496-508. https://doi.org/10.1080/22797254.2017.1365570 Sun, L., Chen, J., Guo, S., Deng, X. & Han, Y. 2020 Integration of time series Sentinel-1 and Sentinel-2 imagery for crop type mapping over oasis agricultural areas. Remote Sensing 12 (1), 158. https://doi.org/10.3390/rs12010158 Salehi, M. (2015). Evaluation and monitoring of land cover changes in Minab Tiab international wetland using remote sensing and GIS techniques. Master's thesis, Faculty of Humanities, Hormozgan University. [in persian] Wang, J., Fanshuai, M., & Huan, Y. (2010). Wetland Cover Information Extraction Research Based On the Multi-polar Radar Images and Multi spectrum. 3rd International Congress on Image and Signal Processing (IEEE) 2298-2301. https://doi.org/10.1109/CISP.2010.5647835
| ||
آمار تعداد مشاهده مقاله: 41 تعداد دریافت فایل اصل مقاله: 58 |