
تعداد نشریات | 163 |
تعداد شمارهها | 6,826 |
تعداد مقالات | 73,627 |
تعداد مشاهده مقاله | 134,964,746 |
تعداد دریافت فایل اصل مقاله | 105,319,749 |
Role of Tumor Necrosis Factor-α in Experimental Streptococcus pneumoniae Infection in Lambs | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 2، دوره 19، شماره 1، فروردین 2025، صفحه 11-22 اصل مقاله (1.62 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.19.1.1005527 | ||
نویسندگان | ||
Abbas Abedulyemah Hamza* 1؛ Zainab Ismail Ibrahim2 | ||
1Department of Pathology and Poultry diseases, College of Veterinary Medicine, University of Baghdad, Baghdad , Iraq. | ||
2Department of Pathology and Poultry diseases, College of Veterinary Medicine, University of Baghdad, Baghdad , Iraq. | ||
چکیده | ||
Background: Streptococcus pneumoniae is a common bacterial pathogen causing various diseases in humans and animals. Objectives: We aimed to evaluate the role of tumor necrosis factor (TNF)-α against infection with Streptococcus pneumoniae by intratracheal route in lambs as an experimental animal model. Methods: Six male un-weaned lambs, aged 1 to 2 months and weighing 5 to 7 kg, were exposed to S. pneumoniae strain ATCC 6303 serotype 3 at 2×106 CFU/mL via intratracheal route to induce pneumonia. Pneumonic clinical signs were monitored daily, and blood samples were collected before exposure (day 0) and on days 3, 6, and 14 post-exposure for total and differential white blood cells (WBC) counts and TNF-α assessments. Additionally, on days 6 and 14 post-exposure, trachea and lung tissue samples were collected for macroscopic and microscopic pathological evaluation. Results: The findings revealed a significant increase (P<0.001) in total WBC counts from day 3 post-exposure, maintaining elevated levels on days 6 and 14 compared to day 0. Differential WBC counts indicated an early, significant rise in neutrophils, with sustained elevation in lymphocytes and monocytes. TNF-α levels peaked on day 3 and gradually declined by day 14 post-exposure, reflecting an acute inflammatory response to the infection. Gross pathology at 6-14 days post-exposure showed pulmonary congestion and edema of affected lungs, emphysema, swelling, and congestion of the trachea. Histopathologically marked epithelial degeneration and necrosis with inflammatory processes in tracheitis and focal interstitial pneumoniae. Conclusion: The present study concluded the pivotal role of TNF-α in the immune response against S. pneumoniae infection in lambs. | ||
کلیدواژهها | ||
Lambs؛ Streptococcus pneumoniae؛ TNF-α | ||
اصل مقاله | ||
Introduction
Histopathological examination
Microscopic examination
AL Kutbi, S. H., & Alwan, M. J. (2001). Pathological and histochemical changes in the lungs of rabbits experimentally infected with P. seudomonas aeruginosa. The Iraqi Journal of Veterinary Medicine, 25(1), 24-39. [DOI:10.30539/ijvm.v25i1.1144]
Ali, J. S., & Badri Abboud, H. (2005). Bacterial causes of upper & lower respiratory tract infection in Sheep. The Iraqi Journal of Veterinary Medicine, 29(1), 1- 10. [DOI:10.30539/iraqijvm.v29i858]
Al-Joboury, K. H., & Al-Darraji, A. M. (1989). A study on caprine pneumonia in IRAQI local goats etiological findings. The Iraqi Journal of Veterinary Medicine, 13(1), 170-179. [DOI:10.30539/ijvm.v13i1.1668]
Al-Khafagi, A. M., & Zghair, Z. R. (2016). Histopathological and diagnostic study of Toxoplasmosis in human and sheep by using ELISA in Kut city. The Iraqi Journal of Veterinary Medicine, 40(2), 94-9. [DOI:10.30539/iraqijvm.v40i2.119]
Alnajjar, S., Sitthicharoenchai, P., Gallup, J., Ackermann, , & Verhoeven, D. (2021). Streptococcus pneumoniae serotype 22F infection in respiratory syncytial virus infected neonatal lambs enhances morbidity. Plos One, 16(3), e0235026.[DOI:10.1371/journal.pone.0235026][PMID]
Alwash, B., Saed, N., & ALqusay, S. (2017). The effect of alcoholic extract eriobotrya japonica leaves on some bacterial genes and some chemical and microbiological properties of beef. Iraqi Journal Of Agricultural Science, 48(5), 1231-1238. [DOI:10.36103/ijas.v48i5.332]
Amit, K., Verma, A., Gangwar, N., & Anu, R. (2012). Isolation, characterization and antibiogram of Mycoplasma bovis in sheep pneumonia. Asian Journal of Animal and Veterinary Advances, 7(2), 149-157. [DOI:10.3923/ajava.2012.149.157]
Anandachar, M. S., Roy, S., Sinha, S., Boadi, A., Katkar, G. D., & Ghosh, P. (2023). Diverse gut pathogens exploit the host engulfment pathway via a conserved mechanism. Journal of Biological Chemistry, 299(12). [Link]
Arends, D. W., Alkema, W., Hapsari Putri, I., van der Gaast-de Jongh, C. E., Eleveld, M., & Langereis, J. D., et al. (2022). Differential pneumococcal growth features in severe invasive disease manifestations. Microbiology Spectrum, 10(3), e0005022. [DOI:10.1128/spectrum.00050-22][PMID]
Ashrafi, F., Azari, A. A., & Fozouni, L. (2022). Prevalence and antibiotic resistance pattern of mannheima haemolytica and pasteurella multocida isolated from cattle lung samples from an industrial abattoir: A study from Northeastern Iran. Iranian Journal of Veterinary Medicine, 16(4), 414-422. [Link]
Baghezza, S., Azizi, A., Derrar, F., Adnane Smadi, M., Djeghim, H., & Ghougal, K., et al. (2024). Epidemiological study of bovine parainfluenza 3 virus in sheep: Seroprevalence, risk factors, and distribution in two regions of algeria. Iranian Journal of Veterinary Medicine, 18(2), 159-168. [DOI:10.32598/IJVM.18.2.1005387]
Borriello, S. (1998). Pathogenesis of clostridium difficile infection. The Journal of Antimicrobial Chemotherapy, 41(suppl_C), 13-19. [DOI:10.1093/jac/41.suppl_3.13] [PMID]
Borsa, N., Pasquale, M. D., & Restrepo, M. I. (2019). Animal models of Pneumococcal International Journal of Molecular Sciences, 20(17), 4220. [DOI:10.3390/ijms20174220][PMID]
Brogden, K. A., Lehmkuhl, H. D., & Cutlip, R. C. (1998). Pasteurella haemolytica complicated respiratory infections in sheep and goats. Veterinary Research, 29(3-4), 233-254. [Link]
Chaguza, C., Ebruke, C., Senghore, M., Lo, S. W., Tientcheu, P. E., & Gladstone, R. A., et al. (2022). Comparative genomics of disease and carriage serotype 1 pneumococci. Genome Biology and Evolution, 14(4), evac052. [DOI:10.1093/gbe/evac052][PMID]
Donia, G. R., El Ebissy, I. A., & Wassif, I. M. (2018). Biochemical and immunological studies on the respiratory diseases in sheep in North Western coast. European Journal of Biomedical, 5(12), 34-41. [Link]
El-Naser, E., & Khamis, G. (2009). Some hematological and blood serum biochemical indices associated with respiratory affections by camels. Assiut Veterinary Medical Journal, 55(123), 1-10. [DOI:10.21608/avmj.2009.174979]
Glimåker, M., Kragsbjerg, P., Forsgren, M., & Olcén, P. (1993). Tumor necrosis factor-α (TNFα) in cerebrospinal fluid from patients with meningitis of different etiologies: High levels of TNFα indicate bacterial meningitis. The Journal of Infectious Diseases, 167(4), 882–889. [DOI:10.1093/infdis/167.4.882] [PMID]
Goodwin, K. A., Jackson, R., Brown, C., Davies, P. R., Morris, R. S., & Perkins, N. R. (2004). Pneumonic lesions in lambs in New Zealand: Patterns of prevalence and effects on production. New Zealand Veterinary Journal, 52(4), 175-179. [DOI:10.1080/00480169.2004.36425] [PMID]
Hashim, M. (2021). Histopathomicrobial examination of echinococcosis in lung and liver infected with klebsiela pneumonia in sheep of IRAQ. IRAQI Journal of Agricultural Sciences, 52(1), 129-135. [DOI:10.36103/ijas.v52i1.1244]
He, S. W. J., van de Garde, M. D. B., Pieren, D. K. J., Poelen, M. C. M., Voß, F., & Abdullah, M. R., et al. (2021). Diminished pneumococcal-specific CD4+ t-cell response is associated with increased regulatory t cells at older age. Frontiers in Aging, 2,[DOI:10.3389/fragi.2021.746295][PMID]
Heumann, D., Barras, C., Severin, A., Glauser, M. P., & Tomasz, A. (1994). Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes. Infection and Immunity, 62(7), 2715-2721. [DOI:10.1128/iai.62.7.2715-2721.1994][PMID]
Houldsworth, S., Andrew, P. W., & Mitchell, T. J. (1994). Pneumolysin stimulates production of tumor necrosis factor alpha and interleukin-1 beta by human mononuclear phagocytes. Infection and Immunity, 62(4), 1501-1503. [DOI:10.1128/iai.62.4.1501-1503.1994][PMID]
Jacques, L. C., Green, A. E., Barton, T. E., Baltazar, M., Aleksandrowicz, J., & Xu, R., et al. (2023). Influence of Streptococcus pneumoniae within-strain population diversity on virulence and pathogenesis. Microbiology Spectrum, 11(1), e0310322. [DOI:10.1128/spectrum.03103-22][PMID]
Jones, G. E., Field, A. C., Gilmour, J. S., Rae, A. G., Nettleton, P. F., & McLauchlan, M. (1982). Effects of experimental chronic pneumonia on bodyweight, feed intake and carcase composition of lambs. The Veterinary Record, 110(8), 168-173. [DOI:10.1136/vr.110.8.168] [PMID]
Karaşahi̇n, T., Dursun, S., Aksoy, N. H., İpek, H., & Şentürk, G. (2023). Hematological parameters in hair goats during and out of breeding season hair goats seasonal hematological parameters. Iranian Journal of Veterinary Medicine, 17(2), 113-118. [DOI:10.32598/IJVM.17.2.1005334]
Korkmaz, F. T., & Traber, K. E. (2023). Innate immune responses in pneumonia. Pneumonia, 15(1), 4. [DOI:10.1186/s41479-023-00106-8][PMID]
Kumar, A., Verma, A. K., Sharma, A. K., & Rahal, A. (2013). Isolation and antibiotic sensitivity of Streptococcus pneumoniae infections with involvement of multiple organs in lambs. Pakistan Journal of Biological Sciences: PJBS, 16(24), 2021-2025. [DOI:10.3923/pjbs.2013.2021.2025] [PMID]
Kumar, A., Verma, A., & Rahal, A. (2011). Mycoplasma bovis, A multi disease producing pathogen: An overview. Asian Journal of Animal and Veterinary Advances, 6(6), 537-546. [DOI:10.3923/ajava.2011.537.546]
Lee, M., Lee, S. , & Bae, Y. S. (2022). Emerging roles of neutrophils in immune homeostasis. BMB Reports, 55(10), 473-480. [DOI:10.5483/BMBRep.2022.55.10.115][PMID]
Legesse Garedew, G. A., Yilma, R., Zeleke, A., & Gelaye, E. (2010). Isolation of diverse bacterial species associated with maedi-visna infection of sheep in Ethiopia. African Journal of Microbiology Research, 4(1), 014-021. [Link]
Lucas, R., Hadizamani, Y., Gonzales, J., Gorshkov, B., Bodmer, T., & Berthiaume, Y., et al. (2020). Impact of bacterial toxins in the lungs. Toxins, 12(4), 223. [DOI:10.3390/toxins12040223][PMID]
Luna, L. G. 1968. Manual of histologic staining methods of the armed forces institute of pathology. In: L.G Luna (Eds), Manual of histologic staining methods of the armed forces institute of pathology. New York: McGraw-Hill. [Link]
Madhi, S. A., Klugman, K. P., & Vaccine Trialist Group (2004). A role for Streptococcus pneumoniae in virus-associated pneumonia. Nature Medicine, 10(8), 811-813. [DOI:10.1038/nm1077][PMID]
Mohammed, Y., Mustafa, J., & Abdullah, A. (2020). Isolation and molecular study of some bacterial urinary tract infections of sheep in Basrah province. IRAQI Journal of Agricultural Sciences, 51(3), 885-893. [DOI:10.36103/ijas.v51i3.1043]
Morimura, A., Hamaguchi, S., Akeda, , & Tomono, K. (2021). Mechanisms underlying pneumococcal transmission and factors influencing host-pneumococcus interaction: A review. Frontiers in Cellular and Infection Microbiology, 11, 639450.[DOI:10.3389/fcimb.2021.639450][PMID]
Narayan, K. G., Sinha, D. K., & Singh, D. K. (2023). Agent, host, and environmental factors. In K. G. Narayan, D. K. Sinha& D. K. Singh (Eds.), Veterinary public health & epidemiology (pp. 55-61). Singapore: Springer. [DOI:10.1007/978-981-19-7800-5_6]
Nohynek, H., Teppo, M., Laine, E., Leinonen, M., & Eskola, J. (1991). Serum tumor necrosis factor-α concentrations in children hospitalized for acute lower respiratory tract infection. The Journal of Infectious Diseases, 163(5), 1029–1032.[DOI:10.1093/infdis/163.5.1029] [PMID]
Norman, E. M. (2015). Characterization of virulence in clinicalisolates of streptococcus pneumoniae [MSc thesis]. Solna: Karolinska Institutet. [Link]
Omar, F., & Ibrahim, A. (2023). The prevalence of integron class I and II among multi-drug resistance producing klebsiella pneumonia. Iraqi Journal of Agricultural Sciences, 54(3), 619-629. [DOI:10.36103/ijas.v54i3.1775]
Paton, J. C., Andrew, P. W., Boulnois, G. J., & Mitchell, T. J. (1993). Molecular analysis of the pathogenicity of Streptococcus pneumoniae: The role of pneumococcal proteins. Annual Review of Microbiology, 47, 89-115. [DOI:10.1146/annurev.mi.47.100193.000513] [PMID]
Periselneris, J., José, R. J., & Brown, J. S. (2014). Pulmonary immune response to Streptococcus pneumoniae. Shortness of Breath, 3(4), 147-158. [DOI:10.11138/sob/2014.3.4.147]
Proctor, M., & Manning, P. J. (1990). Production of immunoglobulin A protease by Streptococcus pneumoniae from animals. Infection and Immunity, 58(9), 2733-2737. [DOI:10.1128/iai.58.9.2733-2737.1990][PMID]
Rabana, L. J., Bukola, Y. Z., Mustapha, M., & Adamu, L. (2022). Indigestible Foreign Materials Impaction of Small Ruminants in Gombe State, Nigeria. Iranian Journal of Veterinary Medicine, 16(1), 1-14. [Link]
Saleh, N. S., & Allam, T. S. (2014). Pneumonia in sheep: Bacteriological and clinicopathological studies. American Journal of Research Communication, 2(11), 73-88. [Link]
Sayad, A., Ali, A., Mottelib, A., & Abd EI-Rahman, A. (2002). Bronchopneumonia in buffalo calves in Assiut governorate studies on bacterial causes, clinical haematological and biochemical changes associated with the disease. Assiut Veterinary Medical Journal, 46(92), 138-155. [DOI:10.21608/avmj.2002.180165]
Scott, P. R. (2011). Treatment and control of respiratory disease in s The Veterinary Clinics of North America. Food Animal Practice, 27(1), 175–186. [DOI:10.1016/j.cvfa.2010.10.016] [PMID]
Sharma, L., Feng, J., Britto, C. J., & Dela Cruz, C. S. (2020). Mechanisms of epithelial immunity evasion by respiratory bacterial Frontiers in Immunology, 11, 91. [DOI:10.3389/fimmu.2020.00091][PMID]
Shihab, O. H., Abdullah, D. S., & Abdulrahman, E. G. (2022). Estimation of Some Genetic Parameters of Some Productive Traits of local and Turkish Awassi Sheep. Tikrit Journal for Agricultural Sciences, 22(3), 60-69. [DOI: 10.25130/tjas.22.3.7]
Silva, L. B., Neto, A., Maia, S. M., dos Santos Guimarães, C., Quidute, I. L., & Carvalho, A. d. A., et al. (2019). The role of TNF-α as a proinflammatory cytokine in pathological processes. The Open Dentistry Journal, 13, 332-338. [Link]
Small, P. M., Täuber, M. G., Hackbarth, C. J., & Sande, M. A. (1986). Influence of body temperature on bacterial growth rates in experimental pneumococcal meningitis in rabbits. Infection and Immunity, 52(2), 484-487. [DOI:10.1128/iai.52.2.484-487.1986][PMID]
Smith, A. M., Adler, F. R., Ribeiro, R. M., Gutenkunst, R. N., McAuley, J. L., & McCullers, J. A., et al. (2013). Kinetics of coinfection with influenza A virus and Streptococcus pneumoniae. Plos Pathogens, 9(3), e1003238. [DOI:10.1371/journal.ppat.1003238][PMID]
Spitalnik, P. F. (2016). Histology laboratory manual (2016-2017). New York: Columbia College of Physicians and Surgeons Scholarly. [Link]
Takashima, K., Tateda, K., Matsumoto, T., Ito, T., Iizawa, Y., & Nakao, M., et al. (1996). Establishment of a model of penicillin-resistant Streptococcus pneumoniae pneumonia in healthy CBA/J mice. Journal of Medical Microbiology, 45(5), 319-322. [DOI:10.1099/00222615-45-5-319] [PMID]
Ukwueze, C. S., & Kalu, E. (2015). Prevalence of haemoparasites in red Sokoto goats slaughtered at Ahiaeke market, Umuahia, Abia State, Nigeria. Scientific Journal of Microbiology, 4(1), 1-5. [Link]
Wong, Η. E., Tourlomousis, P., Paterson, G. K., Webster, S., & Bryant, C. E. (2023). Naturally-occurring serotype 3 Streptococcus pneumoniae strains that lack functional pneumolysin and autolysin have attenuated virulence but induce localized protective immune responses. Plos One, 18(3), e0282843. [DOI:10.1371/journal.pone.0282843][PMID]
Xu, D., Lian, D., Wu, J., Liu, Y., Zhu, M., & Sun, J., et al. (2017). Brain-derived neurotrophic factor reduces inflammation and hippocampal apoptosis in experimental Streptococcus pneumoniae meningitis. Journal of Neuroinflammation, 14(1), 156. [DOI:10.1186/s12974-017-0930-6][PMID]
Zaghawa, A., Hassan, H., & El-Sify, A. (2010). Clinical and etiological study on respiratory affections of sheep. Minufiya Veterinary Journal, 7(1), 93-103. [Link]
Zivich, P. N., Grabenstein, J. D., Becker-Dreps, S. I., & Weber, D. J. (2018). Streptococcus pneumoniae outbreaks and implications for transmission and control: A systematic review. Pneumonia (Nathan Qld.), 10, [DOI:10.1186/s41479-018-0055-4] [PMID] | ||
مراجع | ||
AL Kutbi, S. H., & Alwan, M. J. (2001). Pathological and histochemical changes in the lungs of rabbits experimentally infected with P. seudomonas aeruginosa. The Iraqi Journal of Veterinary Medicine, 25(1), 24-39. [DOI:10.30539/ijvm.v25i1.1144]
Ali, J. S., & Badri Abboud, H. (2005). Bacterial causes of upper & lower respiratory tract infection in Sheep. The Iraqi Journal of Veterinary Medicine, 29(1), 1- 10. [DOI:10.30539/iraqijvm.v29i858]
Al-Joboury, K. H., & Al-Darraji, A. M. (1989). A study on caprine pneumonia in IRAQI local goats etiological findings. The Iraqi Journal of Veterinary Medicine, 13(1), 170-179. [DOI:10.30539/ijvm.v13i1.1668]
Al-Khafagi, A. M., & Zghair, Z. R. (2016). Histopathological and diagnostic study of Toxoplasmosis in human and sheep by using ELISA in Kut city. The Iraqi Journal of Veterinary Medicine, 40(2), 94-9. [DOI:10.30539/iraqijvm.v40i2.119]
Alnajjar, S., Sitthicharoenchai, P., Gallup, J., Ackermann, , & Verhoeven, D. (2021). Streptococcus pneumoniae serotype 22F infection in respiratory syncytial virus infected neonatal lambs enhances morbidity. Plos One, 16(3), e0235026.[DOI:10.1371/journal.pone.0235026][PMID]
Alwash, B., Saed, N., & ALqusay, S. (2017). The effect of alcoholic extract eriobotrya japonica leaves on some bacterial genes and some chemical and microbiological properties of beef. Iraqi Journal Of Agricultural Science, 48(5), 1231-1238. [DOI:10.36103/ijas.v48i5.332]
Amit, K., Verma, A., Gangwar, N., & Anu, R. (2012). Isolation, characterization and antibiogram of Mycoplasma bovis in sheep pneumonia. Asian Journal of Animal and Veterinary Advances, 7(2), 149-157. [DOI:10.3923/ajava.2012.149.157]
Anandachar, M. S., Roy, S., Sinha, S., Boadi, A., Katkar, G. D., & Ghosh, P. (2023). Diverse gut pathogens exploit the host engulfment pathway via a conserved mechanism. Journal of Biological Chemistry, 299(12). [Link]
Arends, D. W., Alkema, W., Hapsari Putri, I., van der Gaast-de Jongh, C. E., Eleveld, M., & Langereis, J. D., et al. (2022). Differential pneumococcal growth features in severe invasive disease manifestations. Microbiology Spectrum, 10(3), e0005022. [DOI:10.1128/spectrum.00050-22][PMID]
Ashrafi, F., Azari, A. A., & Fozouni, L. (2022). Prevalence and antibiotic resistance pattern of mannheima haemolytica and pasteurella multocida isolated from cattle lung samples from an industrial abattoir: A study from Northeastern Iran. Iranian Journal of Veterinary Medicine, 16(4), 414-422. [Link]
Baghezza, S., Azizi, A., Derrar, F., Adnane Smadi, M., Djeghim, H., & Ghougal, K., et al. (2024). Epidemiological study of bovine parainfluenza 3 virus in sheep: Seroprevalence, risk factors, and distribution in two regions of algeria. Iranian Journal of Veterinary Medicine, 18(2), 159-168. [DOI:10.32598/IJVM.18.2.1005387]
Borriello, S. (1998). Pathogenesis of clostridium difficile infection. The Journal of Antimicrobial Chemotherapy, 41(suppl_C), 13-19. [DOI:10.1093/jac/41.suppl_3.13] [PMID]
Borsa, N., Pasquale, M. D., & Restrepo, M. I. (2019). Animal models of Pneumococcal International Journal of Molecular Sciences, 20(17), 4220. [DOI:10.3390/ijms20174220][PMID]
Brogden, K. A., Lehmkuhl, H. D., & Cutlip, R. C. (1998). Pasteurella haemolytica complicated respiratory infections in sheep and goats. Veterinary Research, 29(3-4), 233-254. [Link]
Chaguza, C., Ebruke, C., Senghore, M., Lo, S. W., Tientcheu, P. E., & Gladstone, R. A., et al. (2022). Comparative genomics of disease and carriage serotype 1 pneumococci. Genome Biology and Evolution, 14(4), evac052. [DOI:10.1093/gbe/evac052][PMID]
Donia, G. R., El Ebissy, I. A., & Wassif, I. M. (2018). Biochemical and immunological studies on the respiratory diseases in sheep in North Western coast. European Journal of Biomedical, 5(12), 34-41. [Link]
El-Naser, E., & Khamis, G. (2009). Some hematological and blood serum biochemical indices associated with respiratory affections by camels. Assiut Veterinary Medical Journal, 55(123), 1-10. [DOI:10.21608/avmj.2009.174979]
Glimåker, M., Kragsbjerg, P., Forsgren, M., & Olcén, P. (1993). Tumor necrosis factor-α (TNFα) in cerebrospinal fluid from patients with meningitis of different etiologies: High levels of TNFα indicate bacterial meningitis. The Journal of Infectious Diseases, 167(4), 882–889. [DOI:10.1093/infdis/167.4.882] [PMID]
Goodwin, K. A., Jackson, R., Brown, C., Davies, P. R., Morris, R. S., & Perkins, N. R. (2004). Pneumonic lesions in lambs in New Zealand: Patterns of prevalence and effects on production. New Zealand Veterinary Journal, 52(4), 175-179. [DOI:10.1080/00480169.2004.36425] [PMID]
Hashim, M. (2021). Histopathomicrobial examination of echinococcosis in lung and liver infected with klebsiela pneumonia in sheep of IRAQ. IRAQI Journal of Agricultural Sciences, 52(1), 129-135. [DOI:10.36103/ijas.v52i1.1244]
He, S. W. J., van de Garde, M. D. B., Pieren, D. K. J., Poelen, M. C. M., Voß, F., & Abdullah, M. R., et al. (2021). Diminished pneumococcal-specific CD4+ t-cell response is associated with increased regulatory t cells at older age. Frontiers in Aging, 2,[DOI:10.3389/fragi.2021.746295][PMID]
Heumann, D., Barras, C., Severin, A., Glauser, M. P., & Tomasz, A. (1994). Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes. Infection and Immunity, 62(7), 2715-2721. [DOI:10.1128/iai.62.7.2715-2721.1994][PMID]
Houldsworth, S., Andrew, P. W., & Mitchell, T. J. (1994). Pneumolysin stimulates production of tumor necrosis factor alpha and interleukin-1 beta by human mononuclear phagocytes. Infection and Immunity, 62(4), 1501-1503. [DOI:10.1128/iai.62.4.1501-1503.1994][PMID]
Jacques, L. C., Green, A. E., Barton, T. E., Baltazar, M., Aleksandrowicz, J., & Xu, R., et al. (2023). Influence of Streptococcus pneumoniae within-strain population diversity on virulence and pathogenesis. Microbiology Spectrum, 11(1), e0310322. [DOI:10.1128/spectrum.03103-22][PMID]
Jones, G. E., Field, A. C., Gilmour, J. S., Rae, A. G., Nettleton, P. F., & McLauchlan, M. (1982). Effects of experimental chronic pneumonia on bodyweight, feed intake and carcase composition of lambs. The Veterinary Record, 110(8), 168-173. [DOI:10.1136/vr.110.8.168] [PMID]
Karaşahi̇n, T., Dursun, S., Aksoy, N. H., İpek, H., & Şentürk, G. (2023). Hematological parameters in hair goats during and out of breeding season hair goats seasonal hematological parameters. Iranian Journal of Veterinary Medicine, 17(2), 113-118. [DOI:10.32598/IJVM.17.2.1005334]
Korkmaz, F. T., & Traber, K. E. (2023). Innate immune responses in pneumonia. Pneumonia, 15(1), 4. [DOI:10.1186/s41479-023-00106-8][PMID]
Kumar, A., Verma, A. K., Sharma, A. K., & Rahal, A. (2013). Isolation and antibiotic sensitivity of Streptococcus pneumoniae infections with involvement of multiple organs in lambs. Pakistan Journal of Biological Sciences: PJBS, 16(24), 2021-2025. [DOI:10.3923/pjbs.2013.2021.2025] [PMID]
Kumar, A., Verma, A., & Rahal, A. (2011). Mycoplasma bovis, A multi disease producing pathogen: An overview. Asian Journal of Animal and Veterinary Advances, 6(6), 537-546. [DOI:10.3923/ajava.2011.537.546]
Lee, M., Lee, S. , & Bae, Y. S. (2022). Emerging roles of neutrophils in immune homeostasis. BMB Reports, 55(10), 473-480. [DOI:10.5483/BMBRep.2022.55.10.115][PMID]
Legesse Garedew, G. A., Yilma, R., Zeleke, A., & Gelaye, E. (2010). Isolation of diverse bacterial species associated with maedi-visna infection of sheep in Ethiopia. African Journal of Microbiology Research, 4(1), 014-021. [Link]
Lucas, R., Hadizamani, Y., Gonzales, J., Gorshkov, B., Bodmer, T., & Berthiaume, Y., et al. (2020). Impact of bacterial toxins in the lungs. Toxins, 12(4), 223. [DOI:10.3390/toxins12040223][PMID]
Luna, L. G. 1968. Manual of histologic staining methods of the armed forces institute of pathology. In: L.G Luna (Eds), Manual of histologic staining methods of the armed forces institute of pathology. New York: McGraw-Hill. [Link]
Madhi, S. A., Klugman, K. P., & Vaccine Trialist Group (2004). A role for Streptococcus pneumoniae in virus-associated pneumonia. Nature Medicine, 10(8), 811-813. [DOI:10.1038/nm1077][PMID]
Mohammed, Y., Mustafa, J., & Abdullah, A. (2020). Isolation and molecular study of some bacterial urinary tract infections of sheep in Basrah province. IRAQI Journal of Agricultural Sciences, 51(3), 885-893. [DOI:10.36103/ijas.v51i3.1043]
Morimura, A., Hamaguchi, S., Akeda, , & Tomono, K. (2021). Mechanisms underlying pneumococcal transmission and factors influencing host-pneumococcus interaction: A review. Frontiers in Cellular and Infection Microbiology, 11, 639450.[DOI:10.3389/fcimb.2021.639450][PMID]
Narayan, K. G., Sinha, D. K., & Singh, D. K. (2023). Agent, host, and environmental factors. In K. G. Narayan, D. K. Sinha& D. K. Singh (Eds.), Veterinary public health & epidemiology (pp. 55-61). Singapore: Springer. [DOI:10.1007/978-981-19-7800-5_6]
Nohynek, H., Teppo, M., Laine, E., Leinonen, M., & Eskola, J. (1991). Serum tumor necrosis factor-α concentrations in children hospitalized for acute lower respiratory tract infection. The Journal of Infectious Diseases, 163(5), 1029–1032.[DOI:10.1093/infdis/163.5.1029] [PMID]
Norman, E. M. (2015). Characterization of virulence in clinicalisolates of streptococcus pneumoniae [MSc thesis]. Solna: Karolinska Institutet. [Link]
Omar, F., & Ibrahim, A. (2023). The prevalence of integron class I and II among multi-drug resistance producing klebsiella pneumonia. Iraqi Journal of Agricultural Sciences, 54(3), 619-629. [DOI:10.36103/ijas.v54i3.1775]
Paton, J. C., Andrew, P. W., Boulnois, G. J., & Mitchell, T. J. (1993). Molecular analysis of the pathogenicity of Streptococcus pneumoniae: The role of pneumococcal proteins. Annual Review of Microbiology, 47, 89-115. [DOI:10.1146/annurev.mi.47.100193.000513] [PMID]
Periselneris, J., José, R. J., & Brown, J. S. (2014). Pulmonary immune response to Streptococcus pneumoniae. Shortness of Breath, 3(4), 147-158. [DOI:10.11138/sob/2014.3.4.147]
Proctor, M., & Manning, P. J. (1990). Production of immunoglobulin A protease by Streptococcus pneumoniae from animals. Infection and Immunity, 58(9), 2733-2737. [DOI:10.1128/iai.58.9.2733-2737.1990][PMID]
Rabana, L. J., Bukola, Y. Z., Mustapha, M., & Adamu, L. (2022). Indigestible Foreign Materials Impaction of Small Ruminants in Gombe State, Nigeria. Iranian Journal of Veterinary Medicine, 16(1), 1-14. [Link]
Saleh, N. S., & Allam, T. S. (2014). Pneumonia in sheep: Bacteriological and clinicopathological studies. American Journal of Research Communication, 2(11), 73-88. [Link]
Sayad, A., Ali, A., Mottelib, A., & Abd EI-Rahman, A. (2002). Bronchopneumonia in buffalo calves in Assiut governorate studies on bacterial causes, clinical haematological and biochemical changes associated with the disease. Assiut Veterinary Medical Journal, 46(92), 138-155. [DOI:10.21608/avmj.2002.180165]
Scott, P. R. (2011). Treatment and control of respiratory disease in s The Veterinary Clinics of North America. Food Animal Practice, 27(1), 175–186. [DOI:10.1016/j.cvfa.2010.10.016] [PMID]
Sharma, L., Feng, J., Britto, C. J., & Dela Cruz, C. S. (2020). Mechanisms of epithelial immunity evasion by respiratory bacterial Frontiers in Immunology, 11, 91. [DOI:10.3389/fimmu.2020.00091][PMID]
Shihab, O. H., Abdullah, D. S., & Abdulrahman, E. G. (2022). Estimation of Some Genetic Parameters of Some Productive Traits of local and Turkish Awassi Sheep. Tikrit Journal for Agricultural Sciences, 22(3), 60-69. [DOI: 10.25130/tjas.22.3.7]
Silva, L. B., Neto, A., Maia, S. M., dos Santos Guimarães, C., Quidute, I. L., & Carvalho, A. d. A., et al. (2019). The role of TNF-α as a proinflammatory cytokine in pathological processes. The Open Dentistry Journal, 13, 332-338. [Link]
Small, P. M., Täuber, M. G., Hackbarth, C. J., & Sande, M. A. (1986). Influence of body temperature on bacterial growth rates in experimental pneumococcal meningitis in rabbits. Infection and Immunity, 52(2), 484-487. [DOI:10.1128/iai.52.2.484-487.1986][PMID]
Smith, A. M., Adler, F. R., Ribeiro, R. M., Gutenkunst, R. N., McAuley, J. L., & McCullers, J. A., et al. (2013). Kinetics of coinfection with influenza A virus and Streptococcus pneumoniae. Plos Pathogens, 9(3), e1003238. [DOI:10.1371/journal.ppat.1003238][PMID]
Spitalnik, P. F. (2016). Histology laboratory manual (2016-2017). New York: Columbia College of Physicians and Surgeons Scholarly. [Link]
Takashima, K., Tateda, K., Matsumoto, T., Ito, T., Iizawa, Y., & Nakao, M., et al. (1996). Establishment of a model of penicillin-resistant Streptococcus pneumoniae pneumonia in healthy CBA/J mice. Journal of Medical Microbiology, 45(5), 319-322. [DOI:10.1099/00222615-45-5-319] [PMID]
Ukwueze, C. S., & Kalu, E. (2015). Prevalence of haemoparasites in red Sokoto goats slaughtered at Ahiaeke market, Umuahia, Abia State, Nigeria. Scientific Journal of Microbiology, 4(1), 1-5. [Link]
Wong, Η. E., Tourlomousis, P., Paterson, G. K., Webster, S., & Bryant, C. E. (2023). Naturally-occurring serotype 3 Streptococcus pneumoniae strains that lack functional pneumolysin and autolysin have attenuated virulence but induce localized protective immune responses. Plos One, 18(3), e0282843. [DOI:10.1371/journal.pone.0282843][PMID]
Xu, D., Lian, D., Wu, J., Liu, Y., Zhu, M., & Sun, J., et al. (2017). Brain-derived neurotrophic factor reduces inflammation and hippocampal apoptosis in experimental Streptococcus pneumoniae meningitis. Journal of Neuroinflammation, 14(1), 156. [DOI:10.1186/s12974-017-0930-6][PMID]
Zaghawa, A., Hassan, H., & El-Sify, A. (2010). Clinical and etiological study on respiratory affections of sheep. Minufiya Veterinary Journal, 7(1), 93-103. [Link]
Zivich, P. N., Grabenstein, J. D., Becker-Dreps, S. I., & Weber, D. J. (2018). Streptococcus pneumoniae outbreaks and implications for transmission and control: A systematic review. Pneumonia (Nathan Qld.), 10, [DOI:10.1186/s41479-018-0055-4] [PMID] | ||
آمار تعداد مشاهده مقاله: 330 تعداد دریافت فایل اصل مقاله: 202 |