- Nelder, JA and Wedderburn, RWM. Generalized Linear Models: Journal of the Royal Statistical Association, Series A. 1972;135: 370-384.
- McCullagh, CE and Nelder, JA. Generalized Linear Models: Chapman and Hall, London 1989.
- McCulloch, C. Maximum Likelihood Algorithms for Generalized Linear Mixed Models: Journal of the American Statistical Association. 1997; 92: 162-170.
- Mohammadzadeh, N. and Hosseini, F. Maximum-Likelihood Estimation for Spatial GLMMs: Procedia Environmental Sciences. 2011; 3: 63-68.
- Baghishani, H and Mohammadzadeh, M. A Data Cloning Algorithm for Computing Maximum Likelihood Estimates in Spatial Generalized Linear Mixed Models: Computational Statistics and Data Analysis. 2011; 55: 1748-1759.
- Torabi, M. Likelihood Inference for Spatial Generalized Linear Mixed Models: Communications in Statistics-Simulation and Computation. 2015; 44: 1692-1701.
- Rue, H and Martino, S. Approximate Bayesian Inference for Hierarchical Gaussian Markov Random Field Models: Journal of Statistical Planning and Inference. 2007; 137: 3177-3192.
- Eidsvik, J, Finley, AO, Banerjee, S and Rue, H. Approximate Bayesian Inference for Large Spatial Datasets Using Predictive Process Models: Computational Statistics and Data Analysis. 2012; 56: 1362-1380.
- McCullagh, P. Quasi-Likelihood Functions: Annals of Statistics. 1983; 11: 59-67.
- Wedderburn, R. Quasi-Likelihood Functions, Generalized Linear Models and the Gauss-Newton Method: Biometrica. 1974; 61: 973-981.
- Heagerty, P. and Lele, S. A Composite Likelihood Approach to Binary Spatial Data: Journal of American Statistical Association. 1998; 93: 1099-1111.
- Bevilacqua, M and Gaetan, C. Comparing composite likelihood methods based on pairs for spatial Gaussian random fields: Statistics and Computing. 2015; 25: 877-892.
- Mazo, G, Karlis, D and Rau, A. A randomized pairwise likelihood method for complex statistical inferences: Journal of the American Statistical Association. 2024; 119(547): 2317-2327.
- Cox, D and Reid, NA. Note on Pseudo Likelihood Constructed from Marginal Densities: Biometrika. 2004; 91: 729-737.
- Varin, C, Host, G. and Skare, O. Pairwise Likelihood Inference in Spatial Generalized Linear Mixed Models: Computational Statistics and Data Analysis. 2005; 49: 1173-1191.
- Bevilacqua, M, Mateu, J, Porcu, E, Zhang, H and Zini, A. Weighted Composite Likelihood-Based Tests for Space-Time Separability of Covariance Functions: Statistics and Computing. 2010; 20: 283-293.
- Joe, H and Lee, Y. On Weighting of Bivariate Margins in Pairwise Likelihood: Journal of Multivariate Analysis. 2009; 100: 670-685.
- Li, Q, Sun, X, Wang, N and Gao, X. Penalized composite likelihood for colored graphical Gaussian models: Statistical Analysis and Data Mining: The ASA Data Science Journal. 2021;14(4): 366-378.
- Bonat, WH and Ribeiro, PJ. Practical Likelihood Analysis for Spatial Generalized Linear Mixed Models: Environmetrics. 2016; 27: 83-89.
- Lindsay, B. Composite Likelihood Methods: Contemporary Mathematics. 1988; 80: 220-239.
- Azzalini, A and Arellano-Valle, RB. Maximum Penalized Likelihood Estimation for Skew-Normal and Skew-t Distributions: Journal of Statistical Planning and Inference. 2013; 143:419-433.
- Smith, B, Wang, S, Wong, A and Zhou, X. A penalized likelihood approach to parameter estimation with integral reliability constraints: Entropy. 2015; 17(6): 4040-4063.
- Firth, D. Bias Reduction of Maximum Likelihood Estimates: Biometrika. 1993; 80: 27-38.
- Tibshirani, R. Regression Shrinkage and Selection via the Lasso: Journal of the Royal Statistical Society, Series B(Methodological). 1996; 267-288.
-
- Green, PJ. On Use of the EM for Penalized Likelihood Estimation: Journal of the Royal Statistical Society, Series B (Methodological). 1990; 443-452.
- Booth, JG and Hobert, JP. Maximizing Generalized Linear Mixed Model Likelihoods with an Automated Monte Carlo EM Algorithm: Royal Statistical Society, Series B. 1999; 61: 265-285.
- Zhang, H. On Estimation and Prediction for Spatial Generalized Linear Mixed Models, Biometrics. 2002; 58: 129-136.
- Guillot, G, Loren, N, Rudemo, M. Spatial Prediction of Weed Intensities from Exact Count Data and Image-Based Estimates, Journal of the Royal Statistical Society. 2009; 58: 525-542.
|