
تعداد نشریات | 163 |
تعداد شمارهها | 6,823 |
تعداد مقالات | 73,545 |
تعداد مشاهده مقاله | 134,636,389 |
تعداد دریافت فایل اصل مقاله | 105,194,650 |
In-vitro Characterization and Evaluation of Beta Vulgaris L. Extract Loaded on Chitosan Nanoparticles as Anticandidal and Antibiofilm Activity | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 4، دوره 18، Special Issue، دی 2024، صفحه 649-660 اصل مقاله (2.98 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.18.specialissue.11 | ||
نویسندگان | ||
Zahraa A. Al-Ameri* 1؛ Muna T. Al-Musawi2؛ Lbeeb Ahmed Alzubaidi3 | ||
1Department of Medical Laboratory Techniques, Al-Farahidi University, Baghdad, Iraq. | ||
2Department of Biology, College of Science for Women, University of Baghdad, Baghdad, Iraq. | ||
3Environmental and Water Directorate, Ministry of Science and Technology, Baghdad, Iraq. | ||
چکیده | ||
Background: The most common Candida species, Candida albicans, is one of more than 20 species that may cause candidiasis, an infection that can manifest as a systemic, deep, or superficial, infection. Due to their ability to produce several mechanisms to survive, Candida spp. needed a novel approach to fight them. In this context, nanotechnology is presented as an effective technique used to treat such pathogens. Objectives: This study investigates the preparation of the green synthesis of nanoparticles (NPs), using red beetroot (Beta vulgaris L. extract [BVE]) loaded on chitosan and the estimation of their anticandidal and antibiofilm activity against drug-resistant Candida species. This novel strategy possibly addresses the problems caused by Candida species, such as antibiotic resistance and biofilm development, using the synergistic antibacterial qualities of plant extract and the biocompatible nature nanoparticles Methods: Extremely drug-resistant Candida spp. (C. parapsilosis, C. glabrata, C. lusitaniae, and C. auris) were isolated from clinical specimens and identified using the CHROMagar Candida culture medium, Vitek-2 system, and molecular diagnosis, then prepared BVE and biosynthesis of chitosan NPs (chitosan NPs loaded BVE) and we studied their characterization (morphological and structural aspects) by ultraviolet-visible absorption spectroscopy, atomic force microscopy, scanning electron microscopy, x-ray diffraction (XRD), energy dispersive x-ray, and high-performance liquid chromatography followed by the estimation of its minimum inhibitory concentration and sub-minimum inhibitory concentration and anti-biofilm activity. Results: The extreme drug resistance patterns showed the chitosan NPs loaded BVE peak of 2θ value at 22.86 °C and an intensity level at 736.55 counts. Atomic force microscopy images found that the particle size ranged from 26.74 to 53.96 nm. Meanwhile, the morphology of chitosan NPs loaded BVE was investigated using scanning electron microscopy which had a spherical appearance with a diameter range of 37.99-56.28 nm. The energy-dispersive x-ray examination revealed a significant signal at 1.5 keV and 2.3 keV. The high-performance liquid chromatography analysis showed the existence of flavonoids but no lysine and vitamin B12 which were higher in the chitosan NPs loaded with BVE than BVE alone. Furthermore, C. auris recorded the highest value in minimum inhibitory concentration and sub-minimum inhibitory concentration of chitosan NPs loaded BVE 52.3 and 39.23, respectively. Conclusion: The prepared NPs compound was exceeded on BVE alone and highly sensitive antibiotic as anticandidal and antibiofilm activity against extremely drug-resistant Candida spp., including C. auris. | ||
کلیدواژهها | ||
Chitosan nanoparticles (CSNPs)؛ Beta vulgaris L؛ Extensively drug-resistant (XDR)؛ Candida؛ Candida auris؛ Antifungal؛ Antibiofilm | ||
اصل مقاله | ||
Introduction
Characterization of chitosan NPs loaded BVE
In the CSNPs loaded BVE, the highest absorbance value was 0.087, while the lowest absorbance value was 0.006 at wavelengths 279 nm and 542 nm, respectively. On the other hand, for BVE the highest absorbance value was 3.135 and the lowest absorbance value was 1.063 at wavelengths 212 nm, and 282 nm, respectively. However, for chitosan the absorbance value was 2.85 at wavelengths 212 nm, The decrease in the absorbance value at wavelength 282 nm in the BVE to 212 nm in CSNPs loaded BVE, as well as the highest absorbance value at the wavelength 254 nm with a value of 0.006 in CSNPs loaded BVE material after it was the highest value in BVE at a wavelength of 282 nm with a value of 1.063, in addition to the disappearance of the wavelength 282 nm in the BVE and the appearance of a new wavelength with high absorbance at 542.00 in CSNPs loaded BVE all, indicate the formation of the nanomaterial and the successful loading of the BVE on chitosan NPs.
XRD
Energy dispersive x-ray
Determination of the minimum inhibition concentration (MIC)
Estimation of antibiofilm activity of chitosan NPs loaded BVE
References Abd El-Ghaffar, M. A., & Hashem, M. S. (2010). Chitosan and its amino acids condensation adducts as reactive natural polymer supports for cellulase immobilization. Carbohydrate Polymers, 81(3), 507-516. [DOI:10.1016/j.carbpol.2010.02.025] Agarwal, M., Agarwal, M. K., Shrivastav, N., Pandey, S., Das, R., & Gaur, P. (2018). Preparation of chitosan nanoparticles and their in-vitro characterization. International Journal of Life-Sciences Scientific Research, 4(2), 1713-1720. [Link] Al Sahib, S. A., & Awad, S. H. (2022). Synthesis, characterization of chitosan para- hydroxyl benzaldehyde schiff base linked maleic anhydride and the evaluation of its antimicrobial activities. Baghdad Science Journal, 19(6), 1265-1275. [DOI:10.21123/bsj.2022.5655] Albasher, G., Albrahim, T., Alsultan, N., Alfaraj, S., Alharthi, M. S., & Kassab, R. B., et al. (2020). Red beetroot extract mitigates chlorpyrifos-induced nephrotoxicity associated with oxidative stress, inflammation, and apoptosis in rats. Environmental Science and Pollution Research International, 27(4), 3979–3991.[DOI:1007/s11356-019-07009-6] [PMID] Anand, M., Sathyapriya, P., Maruthupandy, M., & Beevi, A. H. (2018). Synthesis of chitosan nanoparticles by TPP and their potential mosquito larvicidal application. Frontiers in Laboratory Medicine, 2(2), 72-78. [DOI:10.1016/j.flm.2018.07.003] Atangana, E., Chiweshe, T. T., & Roberts, H. (2019). Modification of novel chitosan-starch cross-linked derivatives polymers: Synthesis and characterization. Journal of Polymers and the Environment, 27, 979-995. [DOI:10.1007/s10924-019-01407-0] Dahl-Lassen, R., van Hecke, J., Jørgensen, H., Bukh, C., Andersen, B., & Schjoerring, J. K. (2018). High-throughput analysis of amino acids in plant materials by single quadrupole mass spectrometry. Plant Methods, 14, [DOI:10.1186/s13007-018-0277-8] [PMID] Divya, K., Smitha, V., & Jisha, M. S. (2018). Antifungal, antioxidant and cytotoxic activities of chitosan nanoparticles and its use as an edible coating on vegetables. International Journal of Biological Macromolecules, 114, 572-577. [DOI:10.1016/j.ij2018.03.130] [PMID] Du, W. L., Xu, Z. R., Han, X. Y., Xu, Y. L., & Miao, Z. G. (2008).Preparation, characterization and adsorption properties of chitosan nanoparticles for eosin Y as a model anionic dye. Journal of Hazardous Materials, 153(1-2), 152-156. [DOI:10.1016/j.jhazmat.2007.08.040] [PMID] Fetouh, M., Elbarbary, H., Ibrahim, E., & Maarouf, A. A. (2023). Effect of adding lactoferrin on some foodborne pathogens in yogurt. Iranian Journal of Veterinary Medicine, 17(3), 189-198 [DOI:10.32598/IJVM.3.1005313] Fu, Y., Shi, J., Xie, S. Y., Zhang, T. Y., Soladoye, O. P., & Aluko, R. E. (2020). Red beetroot betalains: Perspectives on extraction, processing, and potential health benefits. Journal of Agricultural and Food Chemistry, 68(42), 11595-11611. [DOI:10.1021/acs.jafc.0c04241] [PMID] Habib, K., Latif, H. A., & Jassim, A. N. (2007). Study a bout the Epidemiology of Vulvo Vaginal Candidiasis (Candida spp.) in Baghdad City. Baghdad Science Journal, 4(1), 1-6. [DOI:10.21123/bsj.4.1.1-6] Hejazy, M., & Koohi, M. K. (2017). Effect of subacute exposure of nano Zinc particles on oxidative stress parameters in rats. Iranian Journal of Veterinary Medicine, 11(2), 155-164. [DOI:10.22059/ijvm.2017.61936] Hodoroaba, V. D. (2020). Energy-dispersive X-ray spectroscopy (EDS). In V. D. Hodoroaba, W. Unger, & A. G. Shard (Eds.), Characterization of nanoparticles (pp. 397-417). Amsterdam: Elsevier. [DOI:10.1016/B978-0-12-814182-3.00021-3] Ing, L. Y., Zin, N. M., Sarwar, A., & Katas, H. (2012). Antifungal activity of chitosan nanoparticles and correlation with their physical properties. International Journal of Biomaterials, 2012(1), 632698. [DOI:10.1155/2012/632698] Kaboutari, , Ghorbani, M., Karimibabaahmadi, B., Javdani, M., & Khosraviyan, P. (2023). Anti-inflammatory evaluation of the novel slow-release curcumin-loaded selenium nanoparticles in the experimental peritonitis. Iranian Journal of Veterinary Medicine. Kahdestani, S. A., Shahriari, M. H., & Abdouss, M. (2021). Synthesis and characterization of chitosan nanoparticles containing teicoplanin using sol-gel. Polymer Bulletin, 78(2), 1133-1148. [DOI:10.1007/s00289-020-03134-2] Kumar, V. V., & Anthony, S. P. (2016). Antimicrobial studies of metal and metal oxide nanoparticles. In A. M. Grumezescu (Ed.), Surface chemistry of nanobiomaterials (pp. 265-300). Amsterdam: Elsevier. [DOI:10.1016/B978-0-323-42861-3.00009-1] Li, X., Chen, D., & Xie, S. (2021). Current progress and prospects of organic nanoparticles against bacterial biofilm. Advances in Colloid and Interface Science, 294, [DOI:10.1016/j.cis.2021.102475] [PMID] Lin, Q., Li, Y., Sheng, M., Xu, J., Xu, X., & Lee, J., et al. (2023). Antibiofilm effects of berberine-loaded chitosan nanoparticles against Candida albicans biofilm. LWT, 173, [DOI:10.1016/j.lwt.2022.114237] Marak, M. B., & Dhanashree, B. (2018). Antifungal susceptibility and biofilm production of Candida spp. Isolated from clinical samples. International Journal of Microbiology, 2018, [DOI:10.1155/2018/7495218] [PMID] Omidi, S., & Kakanejadifard, A. (2019). Modification of chitosan and chitosan nanoparticle by long chain pyridinium compounds: Synthesis, characterization, antibacterial, and antioxidant activities. Carbohydrate Polymers, 208, 477-485. [DOI:10.1016/j.carbpol.2018.12.097] [PMID] Othman, M. S., Hafez, M. M., & Abdel Moneim, A. E. (2020). The potential role of zinc oxide nanoparticles in MicroRNAs dysregulation in STZ-induced type 2 diabetes in rats. Biological Trace Element Research, 197(2), 606-618. [DOI:10.1007/s12011-019-02012-x] [PMID] Raza, Z. A., & Anwar, F. (2017). Fabrication of chitosan nanoparticles and multi-response optimization in their application on cotton fabric by using a Taguchi approach. Nano-Structures & Nano-Objects, 10, 80-90. [DOI:10.1016/j.nanoso.2017.03.007] Sadowska-Bartosz, I., & Bartosz, G. (2021). Biological properties and applications of betalains. Molecules, 26(9), 2520. [DOI:10.3390/molecules26092520] [PMID] Shinde, S., Lee, L. H., & Chu, T. (2021). Inhibition of biofilm formation by the synergistic action of EGCG-S and antibiotics. Antibiotics, 10(2), 102. [DOI:10.3390%2Fantibiotics10020102] [PMID] Shokri, H., Sharifzadeh, A., & Khosravi, A. (2016). Antifungal activity of the Trachyspermum ammi essential oil on some of the most common fungal pathogens in animals. Iranian Journal of Veterinary Medicine, 10(3), 173-180. [DOI:10.22059/ijvm.2016.58679] Shrestha, S., Wang, B., & Dutta, P. (2020). Nanoparticle processing: Understanding and controlling aggregation. Advances in Colloid and Interface Science, 279, [DOI:10.1016/j.cis.2020.102162] [PMID] Sultana, B., Anwar, F., & Ashraf, M. (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 14(6), 2167-2180. [DOI:10.3390/molecules14062167] [PMID] Tan, Y., Ma, S., Ding, T., Ludwig, R., Lee, J., & Xu, J. (2022). Enhancing the antibiofilm activity of β-1, 3-glucanase-functionalized nanoparticles loaded with amphotericin B against Candida albicans Frontiers in Microbiology, 13, 815091. [DOI:10.3389/fmicb.2022.815091] [PMID] Wise, K. (2006). Preparing spread plates protocols. American Society for Microbiology, 1-8. [Link] Yousefi, B., Eslami, M., Ghasemian, A., Kokhaei, P., & Sadeghnejhad, A. (2019). Probiotics can really cure an autoimmune disease? Gene Reports, 15, [DOI:10.1016/j.genrep.2019.100364] Zahin, N., Anwar, , Tewari, D., Kabir, M. T., Sajid, A., & Mathew, B., et al. (2020). Nanoparticles and its biomedical applications in health and diseases: Special focus on drug delivery. Environmental Science and Pollution Research, 27(16), 19151-19168. [DOI:10.1007/s11356-019-05211-0] [PMID] Zheng, S., Bawazir, M., Dhall, A., Kim, H. E., He, L., & Heo, J., et al. (2021). Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Frontiers in Bioengineering and Biotechnology, 9, [DOI:10.3389/fbioe.2021.643722] [PMID] | ||
مراجع | ||
Abd El-Ghaffar, M. A., & Hashem, M. S. (2010). Chitosan and its amino acids condensation adducts as reactive natural polymer supports for cellulase immobilization. Carbohydrate Polymers, 81(3), 507-516. [DOI:10.1016/j.carbpol.2010.02.025] Agarwal, M., Agarwal, M. K., Shrivastav, N., Pandey, S., Das, R., & Gaur, P. (2018). Preparation of chitosan nanoparticles and their in-vitro characterization. International Journal of Life-Sciences Scientific Research, 4(2), 1713-1720. [Link] Al Sahib, S. A., & Awad, S. H. (2022). Synthesis, characterization of chitosan para- hydroxyl benzaldehyde schiff base linked maleic anhydride and the evaluation of its antimicrobial activities. Baghdad Science Journal, 19(6), 1265-1275. [DOI:10.21123/bsj.2022.5655] Albasher, G., Albrahim, T., Alsultan, N., Alfaraj, S., Alharthi, M. S., & Kassab, R. B., et al. (2020). Red beetroot extract mitigates chlorpyrifos-induced nephrotoxicity associated with oxidative stress, inflammation, and apoptosis in rats. Environmental Science and Pollution Research International, 27(4), 3979–3991.[DOI:1007/s11356-019-07009-6] [PMID] Anand, M., Sathyapriya, P., Maruthupandy, M., & Beevi, A. H. (2018). Synthesis of chitosan nanoparticles by TPP and their potential mosquito larvicidal application. Frontiers in Laboratory Medicine, 2(2), 72-78. [DOI:10.1016/j.flm.2018.07.003] Atangana, E., Chiweshe, T. T., & Roberts, H. (2019). Modification of novel chitosan-starch cross-linked derivatives polymers: Synthesis and characterization. Journal of Polymers and the Environment, 27, 979-995. [DOI:10.1007/s10924-019-01407-0] Dahl-Lassen, R., van Hecke, J., Jørgensen, H., Bukh, C., Andersen, B., & Schjoerring, J. K. (2018). High-throughput analysis of amino acids in plant materials by single quadrupole mass spectrometry. Plant Methods, 14, [DOI:10.1186/s13007-018-0277-8] [PMID] Divya, K., Smitha, V., & Jisha, M. S. (2018). Antifungal, antioxidant and cytotoxic activities of chitosan nanoparticles and its use as an edible coating on vegetables. International Journal of Biological Macromolecules, 114, 572-577. [DOI:10.1016/j.ij2018.03.130] [PMID] Du, W. L., Xu, Z. R., Han, X. Y., Xu, Y. L., & Miao, Z. G. (2008).Preparation, characterization and adsorption properties of chitosan nanoparticles for eosin Y as a model anionic dye. Journal of Hazardous Materials, 153(1-2), 152-156. [DOI:10.1016/j.jhazmat.2007.08.040] [PMID] Fetouh, M., Elbarbary, H., Ibrahim, E., & Maarouf, A. A. (2023). Effect of adding lactoferrin on some foodborne pathogens in yogurt. Iranian Journal of Veterinary Medicine, 17(3), 189-198 [DOI:10.32598/IJVM.3.1005313] Fu, Y., Shi, J., Xie, S. Y., Zhang, T. Y., Soladoye, O. P., & Aluko, R. E. (2020). Red beetroot betalains: Perspectives on extraction, processing, and potential health benefits. Journal of Agricultural and Food Chemistry, 68(42), 11595-11611. [DOI:10.1021/acs.jafc.0c04241] [PMID] Habib, K., Latif, H. A., & Jassim, A. N. (2007). Study a bout the Epidemiology of Vulvo Vaginal Candidiasis (Candida spp.) in Baghdad City. Baghdad Science Journal, 4(1), 1-6. [DOI:10.21123/bsj.4.1.1-6] Hejazy, M., & Koohi, M. K. (2017). Effect of subacute exposure of nano Zinc particles on oxidative stress parameters in rats. Iranian Journal of Veterinary Medicine, 11(2), 155-164. [DOI:10.22059/ijvm.2017.61936] Hodoroaba, V. D. (2020). Energy-dispersive X-ray spectroscopy (EDS). In V. D. Hodoroaba, W. Unger, & A. G. Shard (Eds.), Characterization of nanoparticles (pp. 397-417). Amsterdam: Elsevier. [DOI:10.1016/B978-0-12-814182-3.00021-3] Ing, L. Y., Zin, N. M., Sarwar, A., & Katas, H. (2012). Antifungal activity of chitosan nanoparticles and correlation with their physical properties. International Journal of Biomaterials, 2012(1), 632698. [DOI:10.1155/2012/632698] Kaboutari, , Ghorbani, M., Karimibabaahmadi, B., Javdani, M., & Khosraviyan, P. (2023). Anti-inflammatory evaluation of the novel slow-release curcumin-loaded selenium nanoparticles in the experimental peritonitis. Iranian Journal of Veterinary Medicine. Kahdestani, S. A., Shahriari, M. H., & Abdouss, M. (2021). Synthesis and characterization of chitosan nanoparticles containing teicoplanin using sol-gel. Polymer Bulletin, 78(2), 1133-1148. [DOI:10.1007/s00289-020-03134-2] Kumar, V. V., & Anthony, S. P. (2016). Antimicrobial studies of metal and metal oxide nanoparticles. In A. M. Grumezescu (Ed.), Surface chemistry of nanobiomaterials (pp. 265-300). Amsterdam: Elsevier. [DOI:10.1016/B978-0-323-42861-3.00009-1] Li, X., Chen, D., & Xie, S. (2021). Current progress and prospects of organic nanoparticles against bacterial biofilm. Advances in Colloid and Interface Science, 294, [DOI:10.1016/j.cis.2021.102475] [PMID] Lin, Q., Li, Y., Sheng, M., Xu, J., Xu, X., & Lee, J., et al. (2023). Antibiofilm effects of berberine-loaded chitosan nanoparticles against Candida albicans biofilm. LWT, 173, [DOI:10.1016/j.lwt.2022.114237] Marak, M. B., & Dhanashree, B. (2018). Antifungal susceptibility and biofilm production of Candida spp. Isolated from clinical samples. International Journal of Microbiology, 2018, [DOI:10.1155/2018/7495218] [PMID] Omidi, S., & Kakanejadifard, A. (2019). Modification of chitosan and chitosan nanoparticle by long chain pyridinium compounds: Synthesis, characterization, antibacterial, and antioxidant activities. Carbohydrate Polymers, 208, 477-485. [DOI:10.1016/j.carbpol.2018.12.097] [PMID] Othman, M. S., Hafez, M. M., & Abdel Moneim, A. E. (2020). The potential role of zinc oxide nanoparticles in MicroRNAs dysregulation in STZ-induced type 2 diabetes in rats. Biological Trace Element Research, 197(2), 606-618. [DOI:10.1007/s12011-019-02012-x] [PMID] Raza, Z. A., & Anwar, F. (2017). Fabrication of chitosan nanoparticles and multi-response optimization in their application on cotton fabric by using a Taguchi approach. Nano-Structures & Nano-Objects, 10, 80-90. [DOI:10.1016/j.nanoso.2017.03.007] Sadowska-Bartosz, I., & Bartosz, G. (2021). Biological properties and applications of betalains. Molecules, 26(9), 2520. [DOI:10.3390/molecules26092520] [PMID] Shinde, S., Lee, L. H., & Chu, T. (2021). Inhibition of biofilm formation by the synergistic action of EGCG-S and antibiotics. Antibiotics, 10(2), 102. [DOI:10.3390%2Fantibiotics10020102] [PMID] Shokri, H., Sharifzadeh, A., & Khosravi, A. (2016). Antifungal activity of the Trachyspermum ammi essential oil on some of the most common fungal pathogens in animals. Iranian Journal of Veterinary Medicine, 10(3), 173-180. [DOI:10.22059/ijvm.2016.58679] Shrestha, S., Wang, B., & Dutta, P. (2020). Nanoparticle processing: Understanding and controlling aggregation. Advances in Colloid and Interface Science, 279, [DOI:10.1016/j.cis.2020.102162] [PMID] Sultana, B., Anwar, F., & Ashraf, M. (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 14(6), 2167-2180. [DOI:10.3390/molecules14062167] [PMID] Tan, Y., Ma, S., Ding, T., Ludwig, R., Lee, J., & Xu, J. (2022). Enhancing the antibiofilm activity of β-1, 3-glucanase-functionalized nanoparticles loaded with amphotericin B against Candida albicans Frontiers in Microbiology, 13, 815091. [DOI:10.3389/fmicb.2022.815091] [PMID] Wise, K. (2006). Preparing spread plates protocols. American Society for Microbiology, 1-8. [Link] Yousefi, B., Eslami, M., Ghasemian, A., Kokhaei, P., & Sadeghnejhad, A. (2019). Probiotics can really cure an autoimmune disease? Gene Reports, 15, [DOI:10.1016/j.genrep.2019.100364] Zahin, N., Anwar, , Tewari, D., Kabir, M. T., Sajid, A., & Mathew, B., et al. (2020). Nanoparticles and its biomedical applications in health and diseases: Special focus on drug delivery. Environmental Science and Pollution Research, 27(16), 19151-19168. [DOI:10.1007/s11356-019-05211-0] [PMID] Zheng, S., Bawazir, M., Dhall, A., Kim, H. E., He, L., & Heo, J., et al. (2021). Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Frontiers in Bioengineering and Biotechnology, 9, [DOI:10.3389/fbioe.2021.643722] [PMID]
| ||
آمار تعداد مشاهده مقاله: 1,378 تعداد دریافت فایل اصل مقاله: 228 |