
تعداد نشریات | 163 |
تعداد شمارهها | 6,762 |
تعداد مقالات | 72,831 |
تعداد مشاهده مقاله | 131,700,997 |
تعداد دریافت فایل اصل مقاله | 103,455,998 |
پیشبینی مکانی-زمانی بخار آب قابل بارش با استفاده از شبکهعصبی حافظه کوتاهمدت طولانی (مطالعه موردی: استان تهران) | ||
فیزیک زمین و فضا | ||
مقاله 7، دوره 51، شماره 1، خرداد 1404، صفحه 117-132 اصل مقاله (1.24 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2025.375870.1007604 | ||
نویسندگان | ||
فاطمه فراتی1؛ بهزاد وثوقی1؛ سید رضا غفاری رزین* 2 | ||
1گروه مهندسی ژئودزی، دانشکده مهندسی نقشهبرداری، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران. | ||
2گروه مهندسی نقشهبرداری، دانشکده مهندسی علوم زمین، دانشگاه صنعتی اراک، اراک، ایران. | ||
چکیده | ||
در این مقاله ایده استفاده از روش شبکهعصبی حافظه کوتاهمدت طولانی (LSTM) جهت مدلسازی و پیشبینی مکانی-زمانی مقدار بخار آب قابل بارش (PWV) بهعنوان یک روش جدید ارائه شده است. مدل LSTM بهدلیل ساختار خاص خود، قادر است اطلاعات مهم را در طول زمان حفظ و مشکلاتی مانند محو شدگی یا انفجار گرادیان را حل کند. این ویژگیها باعث میشود که LSTM در پردازش دادههای سری زمانی و مسائلی که نیاز به حفظ ترتیب زمانی دارند، بسیار کارآمد باشد. جهت ارزیابی مدل جدید، مشاهدات 5 ایستگاه GPS شبکه تهران در سال ۲۰۲۱ برای بازه زمانی روزهای 312 الی 347 و در سال 2022 برای بازه زمانی روزهای 33 الی 78 مورد استفاده قرار گرفته است. از بین این 5 ایستگاه GPS، ایستگاه هشتگرد که در فاصله بیشتری از سایر ایستگاهها قرار دارد، بهعنوان ایستگاه آزمون انتخاب شده است. در مرحله آزمون، نتایج حاصل از مدل LSTM با نتایج مدل شبکهعصبی رگرسیون عمومی (GRNN) و مدلهای تجربی GPT3 و ساستاموینن مقایسه شده است. شاخصهای آماری جذر خطای مربعی میانگین (RMSE) و ضریب همبستگی برای بررسی دقت و صحت مدلها استفاده میشوند. مقدار RMSE مدلهای LSTM، GRNN، GPT3 و ساستاموینن در سال 2021، بهترتیب 5/0 و 34/1 و 12/7 و 65/7 میلیمتر است. در سال 2022 مقدار RMSE بهترتیب برابر با 9/0 و 19/1 و 32/3 و28/3 میلیمتر به دست آمده است. نتایج بهدست آمده از این مقاله نشان میدهد که مدل LSTM در مقایسه با مدل GRNN و مدلهای تجربی، از دقت و صحت بالایی در برآورد مقدار بخار آب قابل بارش برخوردار است. در نتیجه مدل جدید ارائهشده در این مقاله میتواند بهعنوان جایگزین سایر مدلها در پیشبینی بخار آب قابل بارش باشد. | ||
کلیدواژهها | ||
بخار آب قابل بارش؛ GPS؛ LSTM؛ GRNN | ||
مراجع | ||
موسوی، ز.، خرمی، ف.، نانکلی، ح.، جمور، ی. (1386). تعیین مقدار بخارآب موجود در اتمسفر با استفاده از تخمین تأخیر تروپوسفری سیگنالهای GPS در شبکه ژئودینامیک سراسری ایران، همایش ژئوماتیک 1386.
Adavi, Z., & Mashhadi-Hossainali, M. (2014). 4D tomographic reconstruction of the tropospheric wet refractivity using the concept of virtual reference station, case study: northwest of Iran. Meteorology and Atmospheric Physics, 126, 193-205. Askne, J., & Nordius, H. (1987). Estimation of tropospheric delay for microwaves from surface weather data. Radio Science, 22(3), 379-386. Benevides, P., Catalao, J., Nico, G., & Miranda, P. (2018), 4D wet refractivity estimation in the atmosphere using GNSS tomography initialized by radiosonde and AIRS measurements: results from a 1-week intensive campaign. GPS Solutions, 91(2018), 22:91. Chen, S., Cowan, C. F. N., & Grant, P. M. (1991). Orthogonal least squares learning algorithm for radial. IEEE Trans. Neural Netw, 2(2), 302-309. Chen, B., & Liu, Z. (2014). Voxel-optimized regional water vapor tomography and comparison with radiosonde and numerical weather model. Journal of Geodesy, 88(7), 691–703. Cigizoglu, H. K., & Alp, M. (2006). Generalized regression neural network in modelling river sediment yield. Advances in Engineering Software, 37(2), 63-68. Daneghian, P., & Rastbood, A. (2024). GNSS-IR soil moisture estimation using deep learning with Bayesian optimization for hyperparameter tuning. Journal of Geodetic Science, 14(1), 20220172. Davis, J.L., Herring, T.A., Shapiro, II., Rogers, E.E., & Elgered, G. (1985). Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci, 20(6), 1593–1607. Forootan, E., Dehvari, M., Farzaneh, S., & Sam Khaniani, A. (2021). A functional modelling approach for reconstructing 3 and 4 dimensional wet refractivity fields in the lower atmosphere using GNSS measurements. Advances in Space Research, 68(10), 4024- 4038. Ghaffari Razin, M.R., & Voosoghi, B. (2020). Estimation of tropospheric wet refractivity using tomography method and artificial neural networks in Iranian case study. GPS Solutions, 24(3), 1-14. Ghaffari Razin, M.R., & Inyurt, S. (2022). Spatiotemporal analysis of precipitable water vapor using ANFIS and comparison against voxel‑based tomography and radiosonde. GPS Solutions. 26, 1, https://doi.org/10.1007/s10291-021-01184-1. Ghaffari Razin, M.R., & Voosoghi, B. (2022). Modeling of precipitable water vapor from GPS observations using machine learning and tomography methods. Advances in Space Research, 69(7), 2671-2681. https://doi.org/10.1016/j.asr.2022.01.003. Ghaffari-Razin, S. R., Majd, R. D., & Hooshangi, N. (2023). Regional modeling and forecasting of precipitable water vapor using least square support vector regression. Advances in Space Research, 71(11), 4725-4738. Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850. Haji Aghajany, S., & Amerian, Y. (2017). Three dimensional ray tracing technique for tropospheric water vapor tomography using GPS measurements. Journal of Atmospheric and Solar-Terrestrial Physics, 164 (2017), 81- 88. Haji Aghajany, S., Amerian, Y., & Verhagen, S. (2020). B-spline function-based approach for GPS tropospheric tomography. GPS Solutions, 24(3), 1-12. Haji‑Aghajany, S., Amerian, Y., Verhagen, S., Rohm, W., & Schuh, H. (2021). The effect of function‑based and voxel‑based tropospheric tomography techniques on the GNSS positioning accuracy. Journal of Geodesy, 95(78), 1-15. https://doi.org/10.1007/s00190- 021-01528-2. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. Izanlou, S., Amerian, Y., & Seyed Mousavi, S. M. (2023). GNSS-derived precipitable water vapor modeling using machine learning methods. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 10, 307-313. Landskron, D., & Böhm, J. (2017). VMF3/GPT3: refined discrete and empirical troposphere mapping functions. Journal of Geodesy, 92(4), 349–360. Li, H. Z., Guo, S., Li, C. J., & Sun, J. Q. (2013). A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm. Knowledge-Based Systems, 37, 378-387. Rohm, W., & Bosy, J. (2011). The verification of GNSS tropospheric tomography model in a mountainous area. Adv. Space Res., 47(10), 1721-1730. Saastamoinen, J. (1973). Contributions to the theory of atmospheric refraction. Part II: refraction corrections in satellite geodesy. Bull. Geod, (107), 13-34. Sadeghi, E., Hossainali, M., & Etemadfard, H. (2014). Determining precipitable water in the atmosphere of Iran based on GPS zenith tropospheric delays. Annals of geophysics, 57(4), 12-27. Sadeghi, E., Hossainali, M., & Safari, A. (2022). Development of a hybrid tomography model based on principal component analysis of the atmospheric dynamics and GPS tracking data. GPS Solutions, 26(77), 1-14. Sam Khaniani, A., Motieyan, H., & Mohammadi, A. (2021). Rainfall forecast based on GPS PWV together with meteorological parameters using neural network models. Journal of Atmospheric and Solar-Terrestrial Physics, 214(2021), 1-15. Seeber, G. (2003). Satellite Geodesy, Foundations, Methods and Application, Walter de Gruyter, Berlin and New York, 531. Selbesoglu, M. O. (2019). Prediction of tropospheric wet delay by an artificial neural network model based on meteorological and GNSS data. Engineering Science and Technology, an International Journal, 23(5), 967-972. DOI: 10.1016/j.jestch.2019.11.006. Smith, W. L. (1966). Note on the relationship between total precipitable water and surface dew point. Journal of Applied Meteorology and Climatology, 5(5), 726-727. Sorkhabi, O. M., & Djamour, Y. (2024). 4D modeling of precipitable water vapor to assess flood forecasting by using GPS signals. Natural Hazards, 120(1), 181-195. Specht, D. F. (1991). A general regression neural network. IEEE Transactions on Neural Networks, 2(6), 568-576. Wilgan, K., Hurter, F., Geiger, A., Rohm, W., & Bosy, J. (2017). Tropospheric refractivity and zenith path delays from least-squares collocation of meteorological and GNSS data. Journal of Geodesy, 91, 117-134. Xin, W., & Daren, L. (2005). Retrieval of Water Vapor Profiles with Radio Occultation Measurements Using an Artificial Neural Network. Advances in atmospheric science, 22(5), 759-764. Ye, S., Xia, P., & Cai, C. (2016). Optimization of GPS water vapor tomography technique with radiosonde and COSMIC historical data. Ann. Geophys., 34, 789–799. Yuan, Q., Xu, H., Li, T., Shen, H., & Zhang, L. (2020). Estimating surface soil moisture from satellite observations using a generalized regression neural network trained on sparse ground-based measurements in the continental US. J Hydrol, 580(2020), 1-14. Zhang, W., Zhang, S., Ding, N., Holden, L., Wang, X., & Zheng, N. (2021). GNSS-RS Tomography: Retrieval of Tropospheric Water Vapor Fields Using GNSS and RS Observations. IEEE Transactions on Geoscience and Remote Sensing, (60), 1-13. Zhao, Q., Yao, Y., Cao, X., & Yao, W. (2019). Accuracy and reliability of tropospheric wet refractivity tomography with GPS, BDS, and GLONASS observations. Advances in Space Research, 63(9), 2836-2847. | ||
آمار تعداد مشاهده مقاله: 248 تعداد دریافت فایل اصل مقاله: 214 |