
تعداد نشریات | 163 |
تعداد شمارهها | 6,762 |
تعداد مقالات | 72,827 |
تعداد مشاهده مقاله | 131,651,630 |
تعداد دریافت فایل اصل مقاله | 103,425,068 |
کاهش هزینۀ کشف تقلب در تراکنشهای کارتهای اعتباری: با رویکرد همجوشی اطلاعات | ||
تحقیقات مالی | ||
دوره 27، شماره 2، 1404، صفحه 324-353 اصل مقاله (633.86 K) | ||
نوع مقاله: مقاله علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/frj.2024.338715.1007300 | ||
نویسندگان | ||
محمدرضا صادقی مقدم* 1؛ محمد رضا مهرگان2؛ نیلا بهرام بیگ3 | ||
1دانشیار، گروه مدیریت صنعتی، دانشکده مدیریت صنعتی و فناوری، دانشکدگان تهران، دانشگاه تهران، تهران، ایران. | ||
2استاد، گروه مدیریت صنعتی، دانشکده مدیریت صنعتی و فناوری، دانشکدگان تهران، دانشگاه تهران، تهران، ایران. | ||
3کارشناس ارشد، گروه مدیریت صنعتی، دانشکده مدیریت صنعتی و فناوری، دانشکدگان تهران، دانشگاه تهران، تهران، ایران. | ||
چکیده | ||
هدف: امروزه اکثر شرکتها و سازمانها، تجارت الکترونیک را برای بهدستآوردن بهرهوری در خدمات و محصولات خود، در زمینههایی مانند کارت اعتباری، مخابرات، بیمۀ درمانی، بیمۀ خودرو و غیره بهکار گرفتهاند. از طرفی، با توجه به حجم رو به رشد تراکنشهای کارتهای اعتباری و انواع روشهای کلاهبرداری و تقلب در این کارتها، تقاضا برای کشف تقلب در این حوزه نیز افزایش یافته است. با توجه به انواع راهکارها و الگوریتمهای ارائهشده برای کاهش هزینۀ تقلب در تراکنشهای کارتهای اعتباری، هدف از این پژوهش، ارائه روشی ترکیبی و بهینه، برای کاهش هزینۀ تشخیص تقلب در تراکنشهای کارتهای اعتباری، با استفاده از همجوشی الگوریتمهای ناهمگن طبقهبندی و خوشهبندی در سطح تصمیمگیری است. روش: این پژوهش روی دادههای یک مجموعه تراکنشهای بانک برزیلی در بازۀ زمانی دو ماهه، از ۱۴ جولای ۲۰۰۴ تا ۱۲ سپتامبر همان سال انجام شده است. در این مقاله با استفاده از شبکۀ عصبی مصنوعی، بهعنوان یک رویکرد با سرپرستی و الگوریتم خوشهبندی K نزدیکترین همسایه، بهعنوان یک رویکرد بدون سرپرستی، تابع هزینه را بهدست آوردیم. همچنین با توجه به شاخصهای مختلف کشف تقلب که تاکنون در ادبیات معرفی شده، شاخص هزینۀ کشف تقلب انتخاب و بر اساس این تابع هزینه که نخستینبار توسط گادی و همکارانش (۲۰۰۸) معرفی شد، به سنجش این شاخصها پرداختیم. از آنجا که استفاده از تنها یک الگوریتم هزینۀ زیادی دارد، بهمنظور کاهش آن، همجوشی الگوریتمها به دو روش نظریۀ گواه دمستر – شفر و همجوشی احتمالی پیشنهاد شده است. هر دو روش همجوشی در سطح تصمیم استفاده شده و ورودیهای ناهمگن، از دو رویکرد با سرپرستی و بدون سرپرستی با هم ترکیب شدهاند. یافتهها: با توجه به الگوریتمهای اجرا شده، استفاده از تنها یک الگوریتم برای بهدستآوردن تابع هزینۀ قابل قبول، میتواند بسیار پُرهزینه باشد. در حالیکه استفاده از رویکرد همجوشی، میتواند در کاهش هزینه تأثیر بسزایی داشته باشد. همجوشی احتمالی، در مقایسه با نظریۀ گواه دمسترـ شفر کاهش هزینۀ چشمگیری داشته است که هر دو این الگوریتمها، در سطح تصمیم بهکار رفتهاند. همجوشی احتمالی نسبت به شبکۀ عصبی مصنوعی، کاهش هزینهای معادل ۴/۲۱ درصد و نسبت به الگوریتم K نزدیکترین همسایه، کاهش هزینهای معادل ۸/۳۵ درصد داشته است. نتیجۀ این مطالعه، در نهایت با مقالهای که اولین بار این مجموعه داده در آن با الگوریتم سیستم ایمنی مصنوعی بهکار رفته است، مقایسه شده و کاهش هزینۀ چشمگیری را نشان داده است. نتیجهگیری: در این مطالعه با استفاده از دو الگوریتم طبقهبندی و خوشهبندی و همجوشی آنها در سطح تصمیم، نشان دادیم که روشهای ترکیبی در مقایسه با استفادۀ هر یک از الگوریتمها به تنهایی، کاهش هزینۀ بیشتری خواهند داشت. همچنین همجوشی احتمالی در مقایسه با نظریۀ گواه دمستر ـ شفر، هزینۀ کمتری برای کشف تقلب در سیستمهای مالی دارد که این نتیجه درخور توجهی برای بانکها و مؤسسههای مالی است تا یک سیستم کشف تقلب خوب بسازند. | ||
کلیدواژهها | ||
همجوشی؛ نظریۀ گواه دمستر ـ شفر؛ کشف تقلب؛ کارتهای اعتباری؛ شبکۀ عصبی مصنوعی | ||
مراجع | ||
آهنگربهان، حمید و منتظر، غلامعلی (1395). طراحی سامانه تشخیص دستبرد ادبی جمله بنیاد در متون فارسی به کمک همجوشی گواهها. پردازش علایم و دادهها، 1 (27)، 71-85.
وثوق، ملیحه؛ تقویفرد، محمدتقی و البرزی، محمود (1393). شناسایی تقلب در کارت های بانکی با استفاده از شبکه های عصبی مصنوعی. مدیریت فناوری اطلاعات، 6(4)، 721- 746.
References Abdallah, A., Maarof, M. A. & Zainal, A. (2016). Fraud detection system: A survey. Journal of Network and Computer Applications, 68, 90-113. Adibi, M. A. & Shahrabi, J. (2015). Online anomaly detection based on support vector clustering. International Journal of Computational Intelligence Systems, 8(4), 735-746. Ahangarbahan, H. & Montazer, Gh.A. (2016). Design A Sentence Based Plagiarism Detection System by Evidences Fusion in Persian Text. Signal and Data Processing, 1(27), 71-85. (in Persian) Akila, S. & Reddy, U. S. (2018). Cost-sensitive Risk Induced Bayesian Inference Bagging (RIBIB) for credit card fraud detection. Journal of computational science, 27, 247-254. Albashrawi, M. (2016). Detecting financial fraud using data mining techniques: A decade review from 2004 to 2015. Journal of Data Science, 14(3), 553-569. Al-Ani, A. & Deriche, M. (2002). A new technique for combining multiple classifiers using the Dempster-Shafer theory of evidence. Journal of Artificial Intelligence Research, 17, 333-361. Aral, K. D., Güvenir, H. A., Sabuncuoğlu, İ. & Akar, A. R. (2012). A prescription fraud detection model. Computer methods and programs in biomedicine, 106(1), 37-46. Awasthi, A. & Chauhan, S. S. (2011). Using AHP and Dempster–Shafer theory for evaluating sustainable transport solutions. Environmental Modelling & Software, 26(6), 787-796. Awoyemi, J. O., Adetunmbi, A. O. & Oluwadare, S. A. (2017, October). Credit card fraud detection using machine learning techniques: A comparative analysis. In 2017 international conference on computing networking and informatics (ICCNI) (pp. 1-9). IEEE. Bae, H. R., Grandhi, R. V. & Canfield, R. A. (2004). An approximation approach for uncertainty quantification using evidence theory. Reliability Engineering & System Safety, 86(3), 215-225. Bahnsen, A. C., Aouada, D., Stojanovic, A. & Ottersten, B. (2016). Feature engineering strategies for credit card fraud detection. Expert Systems with Applications, 51, 134-142. Bhatia, S., Bajaj, R. & Hazari, S. (2016). Analysis of credit card fraud detection techniques. International Journal of Science and Research, 5(3), 1302-1307. Boström, H., Andler, S. F., Brohede, M., Johansson, R., Karlsson, A., Van Laere, J., ... & Ziemke, T. (2007). On the definition of information fusion as a field of research. Brause, R., Langsdorf, T. & Hepp, M. (1999, November). Neural data mining for credit card fraud detection. In Proceedings 11th international conference on tools with artificial intelligence (pp. 103-106). IEEE. Carneiro, N., Figueira, G. & Costa, M. (2017). A data mining based system for credit-card fraud detection in e-tail. Decision Support Systems, 95, 91-101. Chang, R. I., Lai, L. B., Su, W. D., Wang, J. C. & Kouh, J. S. (2007). Intrusion detection by backpropagation neural networks with sample-query and attribute-query. International Journal of Computational Intelligence Research, 3(1), 6-10. Duman, E. & Ozcelik, M. H. (2011). Detecting credit card fraud by genetic algorithm and scatter search. Expert Systems with Applications, 38(10), 13057-13063. Fiore, U., De Santis, A., Perla, F., Zanetti, P. & Palmieri, F. (2019). Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. Information Sciences, 479, 448-455. Gadi, M. F. A., Wang, X. & do Lago, A. P. (2008, December). Comparison with parametric optimization in credit card fraud detection. In 2008 Seventh International Conference on Machine Learning and Applications (pp. 279-285). IEEE. Ghobadi, F. & Rohani, M. (2016, December). Cost sensitive modeling of credit card fraud using neural network strategy. In 2016 2nd international conference of signal processing and intelligent systems (ICSPIS) (pp. 1-5). IEEE. Gravina, R., Alinia, P., Ghasemzadeh, H. & Fortino, G. (2017). Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges. Information Fusion, 35, 68-80. Guan, J. W. & Bell, D. A. (1991). Evidential reasoning and its applications. North-Holand. Gupta, S., Malsa, N. & Gupta, M. V. (2017). Credit card fraud detection and prevention—a survey. International Journal for Innovative Research in Science & Technology, 4, 1-7. Hadavandi, E., Shahrabi, J. & Hayashi, Y. (2016). SPMoE: a novel subspace-projected mixture of experts model for multi-target regression problems. Soft Computing, 20, 2047-2065. Halvaiee, N. S. & Akbari, M. K. (2014). A novel model for credit card fraud detection using Artificial Immune Systems. Applied soft computing, 24, 40-49. He, W., Williard, N., Osterman, M. & Pecht, M. (2011). Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method. Journal of Power Sources, 196(23), 10314-10321. Hormozi, H., Akbari, M. K., Hormozi, E. & Javan, M. S. (2013, May). Credit cards fraud detection by negative selection algorithm on hadoop (To reduce the training time). In The 5th Conference on Information and Knowledge Technology (pp. 40-43). IEEE. Jaradat, A., Safieddine, F., Deraman, A., Ali, O., Al-Ahmad, A. & Alzoubi, Y. I. (2022). A probabilistic data fusion modeling approach for extracting true values from uncertain and conflicting attributes. Big Data and Cognitive Computing, 6(4), 114. Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto, S., Portier, P. E., He-Guelton, L. & Caelen, O. (2018). Sequence classification for credit-card fraud detection. Expert systems with applications, 100, 234-245. Khatibi, V. & Montazer, G. A. (2010). A fuzzy-evidential hybrid inference engine for coronary heart disease risk assessment. Expert Systems with Applications, 37(12), 8536-8542. Kotu, V. & Deshpande, B. (2014). Predictive analytics and data mining: concepts and practice with rapidminer. Morgan Kaufmann. Kumar, K. & Rao, P. (2013). A Valuable Progress on the Way to Credit Card Deception Revelation System. International Journal of Computer and Electronic research. Lu, X. Y., Chu, X. Q., Chen, M. H. & Chang, P. C. (2015). Data Analytics for Bank Term Deposit by Combining Artificial Immune Network and Collaborative Filtering. In Proceedings of the ASE BigData & SocialInformatics 2015 (pp. 1-6). MacQueen, J. (1967, January). Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics (Vol. 5, pp. 281-298). University of California press. Maes, S., Tuyls, K., Vanschoenwinkel, B. & Manderick, B. (2002, January). Credit card fraud detection using Bayesian and neural networks. In Proceedings of the 1st international naiso congress on neuro fuzzy technologies (Vol. 261, p. 270). Malini, N. & Pushpa, M. (2017). Analysis on credit card fraud detection techniques by data mining and big data approach. International journal of research in computer applications and robotics, 5(5), 38-45. Mansouri, T., Nabavi, A., Zare Ravasan, A. & Ahangarbahan, H. (2016). A practical model for ensemble estimation of QoS and QoE in VoIP services via fuzzy inference systems and fuzzy evidence theory. Telecommunication Systems, 61, 861-873. Mansouri, T., Ravasan, A. Z. & Gholamian, M. R. (2014). A novel hybrid algorithm based on k-means and evolutionary computations for real time clustering. International Journal of Data Warehousing and Mining (IJDWM), 10(3), 1-14. Ngai, E. W., Hu, Y., Wong, Y. H., Chen, Y. & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision support systems, 50(3), 559-569. Panigrahi, S., Kundu, A., Sural, S. & Majumdar, A. K. (2009). Credit card fraud detection: A fusion approach using Dempster–Shafer theory and Bayesian learning. Information Fusion, 10(4), 354-363. Phua, C., Lee, V., Smith, K. & Gayler, R. (2010). A comprehensive survey of data mining-based fraud detection research. arXiv preprint arXiv:1009.6119. Popescu, D. E., Lonea, M., Zmaranda, D., Vancea, C. & Tiurbe, C. (2010). Some aspects about vagueness & imprecision in computer network fault-tree analysis. International Journal of Computers Communications & Control, 5(4), 558-566. Sherly, K. K. (2012). A comparative assessment of supervised data mining techniques for fraud prevention. International Journal of Science and Technology, 1(16). SamanehSorournejad, Z. Z., Atani, R. E. & Monadjemi, A. H. (2016). A survey of credit card fraud detection techniques: Data and technique oriented perspective. arXiv preprint ArXiv:1611.06439 [Cs]. Stolfo, S., Fan, D. W., Lee, W., Prodromidis, A. & Chan, P. (1997, July). Credit card fraud detection using meta-learning: Issues and initial results. In AAAI-97 Workshop on Fraud Detection and Risk Management (Vol. 83). Tabassian, M., Ghaderi, R. & Ebrahimpour, R. (2012). Combination of multiple diverse classifiers using belief functions for handling data with imperfect labels. Expert systems with applications, 39(2), 1698-1707. Tripathi, K. K. & Pavaskar, M. A. (2012). Survey on credit card fraud detection methods. International Journal of Emerging Technology and Advanced Engineering, 2(11), 721-726. Vosough, M., Taghavi Fard, M.T. & Alborzi, M. (2015). Bank Card Fraud Detection Using Artificial Neural Network. Journal of Information Technology Management, 6(4), 721- 746. (in Persian) Xu, P., Davoine, F., Bordes, J. B., Zhao, H. & Denœux, T. (2016). Multimodal information fusion for urban scene understanding. Machine Vision and Applications, 27, 331-349. Yen, J. (2002). Generalizing the Dempster-Schafer theory to fuzzy sets. IEEE Transactions on Systems, man, and Cybernetics, 20(3), 559-570. Zareapoor, M. & Shamsolmoali, P. (2015). Application of credit card fraud detection: Based on bagging ensemble classifier. Procedia computer science, 48(2015), 679-685. Zareapoor, M., Seeja, K. R. & Alam, M. A. (2012). Analysis on credit card fraud detection techniques: based on certain design criteria. International journal of computer applications, 52(3). | ||
آمار تعداد مشاهده مقاله: 216 تعداد دریافت فایل اصل مقاله: 7 |