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INTRODUCTION

Air quality is one of the essential aspects in maintaining the health of society. Air pollution 
can lead to various health problems for humans, including respiratory diseases, cardiovascular 
diseases, cancer, and more (Kim et al., 2015). Pollution sources can be classified into two groups: 
natural and man-made. Natural sources, for example, can include dust and plant pollen, while 
human sources involve activities such as transportation, industry, and commercial activities 
(Santos et al., 2019). One of the main sources of air pollution in the country is emissions 
from mobile sources, especially vehicles (Pio et al., 2020). Various studies have examined 
the contribution of pollutant sources to air pollution (Abbas et al., 2021). Transportation 
plays a significant role in the emission of nitrogen dioxide (NO2) and particulate matter (PM) 
(Monjardino et al., 2018). Emissions from industrial facilities include pollutants such as sulfur 
dioxide (SO2), NO2, and PM, which lead to a decrease in air quality.
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Wireless sensor networks (WSNs) are crucial for environmental monitoring, particularly for 
assessing air quality. However, optimizing energy consumption remains a significant challenge 
due to the limited energy resources of the sensor nodes, which adversely affects the network's 
performance and lifespan. This study aims to enhance the longevity and efficiency of WSNs by 
implementing metaheuristic algorithms, specifically Ant Lion Optimization (ALO) and Cheetah 
Optimization (CO), for effective energy management through clustering strategies. Utilizing 
simulations, we compared the performance of ALO against CO in terms of energy efficiency, 
network lifespan, and resilience within heterogeneous network conditions. The results indicate 
that ALO optimizes data transmission by reducing network traffic through efficient cluster 
communication. Additionally, ALO's scalability enables the network to adapt to changing 
sensor deployments, while data aggregation at the cluster head level further minimizes energy 
consumption. This load balancing ensures a more even distribution of energy usage, further ALO 
outperforms CO by extending network lifespan, improving energy management, and providing 
better scalability. The findings suggest that ALO is a robust approach for optimizing clustering 
and energy consumption in WSNs.
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Studies indicate that there is a relationship between population density and air pollution in 
urban areas, but the findings are varied and often depend on the specific location and conditions 
(Chen et al., 2020). For example, researchers have shown that population density is generally 
associated with lower levels of air pollution and greenhouse gas emissions due to the more 
efficient transportation systems and reduced use of personal vehicles (Muñiz and Galindo, 2005; 
Yang et al., 2021). On the other hand, some studies suggest that higher population density in 
urban areas leads to increased air pollutant emissions (Schweitzer and Zhou, 2010; Wang et al., 
2017). A review of the literature on the subject indicates that there are many complexities and 
challenges in studying pollutant sources and pollution emissions, which may be due to limited 
access to extensive information given the lack of recorded data in this field (Abdelzaher and 
Awad, 2022; Abdelzaher et al., 2023).

An effective approach to reduce this challenge is the use of online data monitoring networks, 
which are continuously developing with the advancement of technology (Rayalu et al., 2023). 
Due to advancements in wireless communication technology, the design and development of 
small and economic smart sensors, easy deployment of sensor nodes, wireless sensor networks 
(WSNs) have become an essential part of monitoring systems (Hassan et al., 2020). This is 
due to the ability of sensor nodes to operate in harsh environments, inaccessible areas without 
supervision, and the availability of various types of sensors such as chemical, optical, magnetic, 
thermal sensors, etc., leading to the emergence of wireless sensor networks of various sizes and 
even networks consisting of thousands of sensor nodes and multiple base stations (Amutha et 
al., 2022; Itaya et al., 2023).

Wireless sensor networks have been utilized in various fields such as environmental pollution 
monitoring stations, agriculture, surveillance of pollution levels in seas and rivers, and so on 
(Ketshabetswe et al., 2019). Despite all the applications, sensors have important limitations. 
The energy limitation is the most important challenge of sensor networks, which affects the 
overall performance and network lifetime (Kandris et al., 2020). Sensors usually have limited 
energy sources; however, technological advancements in this area have also contributed to 
energy supply from various methods such as solar energy (Fahmi et al., 2022). Nevertheless, 
considering the energy limitation constraint for monitoring networks is considered a logical 
matter. Therefore, the useful lifetime of the network can be a fundamental criterion for 
evaluating the network. This criterion depends on two factors: energy consumption during 
network operations and remaining energy in the network after operation (Sharmin et al., 2023).

One of the methods proposed to reduce the impact of challenges is the use of clustering 
approaches. Clustering mechanisms improve energy efficiency by grouping sensors into clusters 
with designated cluster heads that manage data collection and transmission. This enhances 
network performance by optimizing energy consumption, reducing traffic, balancing loads, 
and extending network lifespan. This approach, by utilizing a hierarchical structure, has the 
capability to manage the energy consumption of wireless sensor networks (Pal et al., 2024). In 
the hierarchical structure, the network is divided into different clusters. Each cluster consists 
of cluster member nodes and a cluster head (CH). The cluster head is a node responsible for 
collecting data from cluster members and transmitting the aggregated data to the base station 
(Sinde et al., 2020).

In most designed networks, the cluster head node sends information in a single step. However, 
other strategies have also been proposed to optimize energy consumption, where data can be sent 
to the base station in multiple stages (via auxiliary cluster head nodes) depending on the strategy 
used (Vijayan et al., 2024). The most important issue in clustering strategy is the selection of 
optimal cluster heads, which, based on the nature of the mathematical model, becomes an NP-
hard problem (Gupta et al., 2022). Solving NP-hard problems requires searching in a vast space. 
Assuming N sensor nodes exist in the network, if there is a need to form K optimal clusters in 
the network, a combination of n and K search operations is required, which will be very time-
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consuming. Additionally, with the network expansion, challenges may arise. 
Metaheuristic optimization algorithms have emerged as effective tools for enhancing network 

lifetime in IoT-based sensor networks by addressing energy constraints and optimizing routing 
(Malik et al.). 

Kim et al. (2014) introduced the Ant Colony Optimization (ACO) algorithm called IC-ACO 
to improve the efficiency of wireless sensor networks. The proposed IC-ACO algorithm uses 
ant colony for data packet routing in wireless sensor networks. Furthermore, they compared 
the results of the IC-ACO algorithm with the LEACH protocol. Simulation results showed 
that the IC-ACO algorithm has a longer stability period compared to the LEACH protocol and 
performs better in energy efficiency in dense environments. Especially when the number of 
nodes increases from 100 to 200 or 300, the performance of the LEACH protocol decreases, 
while the performance of IC-ACO improves or remains stable. These two algorithms were 
compared based on parameters such as stability period and network lifetime.

Dixit and Jindal (2020) conducted a study on cluster-based routing protocols for air 
pollution monitoring using WSN. They utilized the (Clustering Protocol of Air Sensor System) 
CPAS method for clustering wireless sensor networks. This article explains how the use of a 
random controller for selecting each cluster, determining the cluster head (CH), the process of 
selecting sensor data, and communication distances. They also synchronize sensor performance 
in clusters and sensor cycle synchronization based on sensor types. The article examines 
the protocol for data aggregation based on data measurement distances, LEACH, designed 
for air quality monitoring. The goal of LEACH is to minimize data transmission for energy 
savings and improve network lifetime by reducing data communications and optimizing power 
consumption based on air quality conditions. Finally, they highlight the importance of efficient 
protocols such as CPAS and LEACH in monitoring air quality, reducing energy consumption, 
and enhancing network performance in wireless sensor networks.

A stable and intelligent energy-efficient pollution monitoring protocol using wireless sensor 
networks (IEESEP) was proposed by (Dixit and Jindal, 2022). The main goal of this research 
is to improve energy efficiency and reduce end-to-end delay in information transmission to the 
destination node in these networks. The proposed protocol (Intelligent Energy Efficient Stable 
Election Routing Protocol) IEESEP forms an optimal path in the network using the feedforward 
neural network algorithm with error backpropagation. This method improves by using an air 
pollution monitoring system (Intelligent Energy Efficient Stable Election Routing Protocol) 
trained on a large dataset. IEESEP protocol increases network stability using advanced and 
ordinary nodes and determines an effective threshold value for selecting the optimal path. The 
results showed that the packet delivery rate of the IEESEP protocol reaches 78%, while the 
delivery rates of other protocols such as SEP (Stable Election Protocol) and ELDC (Energy-
Efficient and Robust Routing Scheme) are 50% and 27% respectively. The proposed protocol 
outperforms existing protocols in terms of energy consumption, packet delivery ratio, end-to-
end delay, number of live nodes in each round of clustering, and overall performance efficiency.

Lin et al. (2020) introduced a novel approach for inter-cluster routing in wireless sensor 
networks aiming to enhance network lifetime. This method is designed based on Compressive 
Sensing (CS) theory and Economic Welfare Theory. During the intra-cluster phase, data is 
collected using Compressive Sensing theory to reduce the extra energy consumption caused 
by spatiotemporal correlation. The inter-cluster phase utilizes Economic Welfare Theory to 
balance energy consumption among different clusters. This article introduces a new concept 
called “energy welfare” and an inter-cluster routing method named EIREC. Comparison of 
results with existing strategies demonstrates the effectiveness of this approach in improving 
energy efficiency and increasing network lifetime through reducing energy consumption in the 
intra-cluster phase and establishing energy balance in the inter-cluster phase.

In this research, we explore advanced clustering algorithms, particularly ALO and CO, 
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aimed at improving the energy consumption of Wireless Sensor Networks (WSNs). The main 
objectives ar as follow:

·	 To assess the potential of these algorithms to prolong the operational lifespan of WSNs 
by implementing effective energy management techniques that extend sensor functionality. A 

·	 To systematically compare the performance of ALO and CO with traditional methods, 
such as the LEACH protocol, focusing on metrics like network stability, energy usage, and 
sensor durability in both homogeneous and heterogeneous environments. 

Therefore, the research aims to create a comprehensive framework for the selection of optimal 
cluster heads, thereby enhancing cluster management strategies within WSNs. Additionally, to 
assess the efficacy of the proposed algorithms relative to previous research, the initial network 
configurations were derived from the work of (Kim et al., 2014), and the results were compared 
with those obtained in our study. 

MATERIAL AND METHODS

This study investigates the application of innovative algorithms i.e. Iranian Cheetah 
Optimization (ICO) and Ant Lion Optimization (ALO) to enhance the performance and lifespan 
of wireless sensor networks (WSNs). The proposed approach integrates these algorithms within 
an energy consumption model and sensor clustering framework. Initially, it is assumed that the 
WSN nodes are randomly and uniformly distributed in the environment, with fixed positions 
and initial energy levels. The optimal number of clusters is calculated, and the network is 
clustered accordingly. The type of cluster (large or normal) is determined, and the optimal 
cluster head for each cluster is selected based on factors such as remaining energy, distance 
to the cluster center, and distance to the base station. In large clusters, primary and secondary 
cluster heads are identified, and network information is updated by calculating the energy of 
nodes and determining active and inactive nodes. The iteration process is stopped when the 
network energy is depleted (Figure 1). In the next phase, the study shifts to a heterogeneous 
WSN scenario, where sensors have different initial energy levels. The simulation follows the 
same steps as in the homogeneous case, allowing for a comparative analysis with the model 
presented by J.-Y. Kim et al. (2014). 

• Energy model
The principles involved in designing clustering protocols include considering the sensing 

range, transmission, and neighbor set. In this study, we assume that the monitored area is a 
circle with a diameter of M meters. The following sections will define the fundamental concepts 
and present a commonly used energy model applicable in most protocols.

The sensing range of a sensor node si is represented as a circle or disk with a radius di, which 
includes its boundary. The sensor node is positioned at the center χi and is defined by a set of 
points (Xiuwu et al., 2019).

{ }i i i iD( ,d )= : dχ χ χ χ− ≤ � (1)

where iχ χ−  denotes the Euclidean distance between the locations χi (the position of sensor 
si) and χ. The transmission range of a sensor node si is also a circle or disk with a radius Ri, 
including its boundary, where the sensor node is located at the center χi and is defined by a set 
of points.

{ }i i i iD( ,R )= : Rχ χ χ χ− ≤ � (2)

The sensing and communication ranges in randomly distributed nodes are determined by 
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the maximum distance between any two neighboring sensor nodes within a specified area. The 
distance between node i and node j is denoted by D(i,j), which is defined as:

( ) ( )( ) ( )( )2 2
D i, j ( ) ( )x i x j y i y j= − + −

� (3)

where i,j = 1,2,3,…,N with i = j, and the terms (x(i), y(i)) and (x(j), y(j)) represent the 
coordinates of nodes i and j, respectively.

It can be assumed that energy consumption in sensors primarily relates to the transmission 
and reception of data. The energy expended in transmitting an n-bit message over a distance l, 
known as the transmission distance, is given by the following equation:

( )T amp elecl nκδ + Γ=Γ � (4)

In this equation, Γelec represents the energy consumed by the transmitter/receiver’s electronic 
circuitry. Additionally, δamp ϵ{δfs, δmp} is the transmitter amplifier factor in free space δfs or the 
multi-path model δmp, and κ is the path loss exponent.

If l≤l0, then κ =2; if l>l0, then κ =4. Considering the energy consumption model, it can be 
expressed as follows (Matin, 2012):

 

 

 

Figure 1. Flowchart of simulation and problem solving process 

  

Fig. 1. Flowchart of simulation and problem solving process
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Furthermore, the received energy is given by:

R elecnΓ = Γ � (6)

• Clustering protocol
In this section, the optimal number of clusters is determined through the proposed combined 

clustering algorithm with energy consumption-based optimization, and then the optimal cluster 
heads are identified. If the number of nodes in a cluster exceeds a certain value (large cluster), a 
secondary mechanism is activated to determine the cluster head with the aim of reducing active 
energy consumption. Subsequently, after data transmission, the energy update process takes 
place. The simplest method for clustering is to initially consider each sensor as a cluster, then 
calculate the distance between them, and based on the proximity of the sensors to each other, 
the process of combining and forming a new cluster occurs. This process continues until the 
number of clusters becomes equal to the optimal k clusters. The simplicity of this method is its 
most important advantage, and its disadvantages include being time-consuming and requiring 
extensive calculations in high-dimensional and large datasets. One way to reduce this challenge 
is to use the k-means clustering algorithm. In the k-means clustering method, a number of k 
optimal clusters are considered as centers. Then, sensors are assigned to a center based on 
their proximity to randomly selected centers. Subsequently, by averaging the position of each 
cluster’s coordinates.

• Cluster Head selection
The concept of a “large cluster,” defined by its energy consumption relative to the average 

energy consumed by other clusters, is explored in this research with the goal of reducing overall 
network energy consumption. The process of selecting a cluster differs between general clusters 
and large clusters. Generally, for a node to be selected as the Cluster Head (CH), it must satisfy 
three criteria: proximity to the cluster center, a short distance from the base station, and having 
more remaining energy compared to most other nodes. If we consider C as a hypothetical 
cluster, the optimal node for the cluster head is chosen based on the following objective function 
(Sharmin et al., 2023).

( )( ) ( ), , ii i
CH C Bi i i

C B

r
Z r l l

l lα β

Γ
Γ =

+ � (7)

where, Γr(i) represents the residual energy of node i, i
Cl  denotes the distance from node i to 

the center, i
Bl  represents the distance from node i to the base station, and the coefficients α and β 

are corrective factors that sum to one. A higher value of ZCH for node i increases the probability 
of it being selected as the cluster head.

For large clusters, the energy balance strategy involves selecting both a primary cluster head 
(FCH) and a secondary cluster head (SCH). A cluster is classified as a large cluster if the energy 
consumption of its cluster head exceeds one and a half times the average energy consumption 
of network cluster heads. The average energy consumption of cluster heads is calculated using 
equation 8.
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δ δ δ
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Assuming that there are x nodes in each cluster, the energy consumption of the cluster is 
calculated from the following equation.

( ) .elec DAxn A nΓ+ +Γ=Γ � (9)

By determining the energy of each cluster and the average energy, the large clusters are 
identified. Then, the main cluster and the auxiliary clusters are selected. For example, in Figure 
2, the sensor network consists of 5 clusters (2 large clusters and 3 general clusters). Compared 
to the general cluster, the member nodes in the large cluster collect environmental data and send 
it to the primary cluster. After sending the data to the secondary cluster, they are combined. The 
final data is sent to the base station for decision-making.

• k-means algorithm
The k-means method is an iterative clustering algorithm that involves partitioning a set of 

n elements into k clusters, where k is greater than or equal to 2. The members within a cluster 
exhibit similar characteristics, distinguishing them from members of other clusters. Let O = 
{x1,…,xn} represent a collection of n sensors that need to be clustered in the real number space 
based on a distance metric. Assuming the number of clusters is an integer, K = {1,…, k} denotes 

 

 

 

Figure 2. A schematic representation of the combined strategy for selecting primary and secondary 

cluster heads (FCH and SCH). 

  

Fig. 2. A schematic representation of the combined strategy for selecting primary and secondary cluster heads (FCH and SCH).
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the k clusters, and the clustering is represented as R = {P(1),…, P(k)}, with μj indicating the 
centroid of cluster P(j). Consequently, the vector of cluster centroids is denoted as M = {μ1,…, 
μk}, and W = {w11,…,wij} represents the membership vector for each cluster. This implies that 
wij = 1 indicates that sensor xi belongs to cluster P(j). If l(xi, μj) denotes the Euclidean distance 
between the sensor and the cluster centroid for i = 1,…,n and j = 1,…,k, the clustering problem 
can be reformulated as an optimization problem with the following objective function (Sinaga 
and Yang, 2020).

( ) ( )ij
1 1

ij
1

Min z , = w l ,   

St.

w 1,  for i=1,...,n

n k

i j
i j

k

j

W M x µ
= =

=


=



∑∑

∑ � (10)

A challenge encountered when employing the k-means algorithm is the lack of consideration 
for cluster size differences. Certain clusters may contain more nodes than others. A suggested 
strategy for this issue involves optimization through the application of heuristic algorithms. 
This research incorporates a combination of the k-means and heuristic algorithms to ensure an 
even distribution of sensors within the clusters.

• Cheetah Optimizer
The Cheetah Algorithm is designed based on the hunting behavior of cheetahs to solve 

optimization problems and resource allocation (Sharma and Kumar, 2023). This algorithm 
has numerous advantages such as simple modeling of the cheetah hunting process, reducing 
the number of initial populations, balancing between exploratory search and exploitation, 
considering below equations, preventing premature convergence in optimization problems 
(Akbari et al., 2022). The strategies of this algorithm include stalking and waiting for prey, 
attacking, returning home in case of failure, and using the latest successful hunt. Let χi represents 
the current position of cheetah i (where ( i = 1, 2, ..., n )) in dimension (j) (where ( j = 1, 2, ..., 
D)). Here, n is the number of cheetah populations and D is the dimension of the optimization 
problem.

1 ^ 1
, , , ,
t t t
i j i j i j i jX X r α+ −= + ⋅ � (11)

The next and current positions of cheetah in dimension j are indicated by 1
,
t
i jX +  and ,

t
i jX . 1

,i jr−  and 
,
t
i jα  are randomization parameter and step length for cheetah i in dimension j, respectively. If a 

cheetah spots prey, it may ambush. Therefore, in this case, the cheetah remains in its position 
and waits for the prey to come closer. The cheetah uses speed and agility in the attack to catch 
the prey. Each cheetah can adjust its position based on the fleeing prey and the position of the 
leader or neighboring cheetah.

,

1
, , ,i j

t t t
i j B j i jX X r β+ = + ⋅ � (13)

,
t
B jX  is the current position of the prey is in dimension j. In other words, it represents the 

optimal current position of the population. Additionally, ,i jr  and ,
t
i jβ  are the rotation factor and 

the interaction factor associated with cheetah i.
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• Ant Lion Optimizer
The Ant Lion Optimization (ALO) algorithm is inspired by the hunting behavior of ant 

lions in nature (Mirjalili, 2015). This algorithm is a heuristic method used to solve complex 
optimization problems (Behnamfar et al., 2021). In fact, ants move randomly in the search 
space. The following equation is used to model the movement of ants: 

10, (2 1),..., (2 )tt tX C r C r = −  � (13)

where C is the cumulative sum function, n is the maximum number of iterations, t is the 
random walk step, and r(t) is a random function. 

0 0.5
1 0.5

t if rand
r

if rand
≤

=  >
� (14)

The positions of the ants during optimization are stored in the matrix (M). 

A ,dA

1,1 1, d

nn ,1

A A

A A

 …
 

=  
 … 

M   

� (15)

where n is the number of ants and d is the number of variables. The random movement 
function of the ants is as follows: 

( ) ( )( )( ), , ,
,

1t i t i i i t i i
i i

X X a b c c
d a

  
  = − − +
  −  

� (16)

where 
ia  is the minimum random step of variable i and 

ib  the maximum random walk in 
variable c.

, ,

ti t , j t

 Al 
 d  Al d

t i t j tc c= +

= +
� (17)

RESULTS AND DISCUSSION

We supposed that the network model consists of 100 sensor nodes in a circular area with a 
diameter of 100 units randomly distributed, with the base station located at the center of the 
network area. Energy consumption at the base station and the process of transmitting control 
messages for cluster formation and cluster head identification are not considered. The model 
is compared for homogeneous and heterogeneous scenarios by comparing the performance 
of two optimization algorithms introduced. Figure 3 shows the distribution of sensors in the 
hypothetical monitoring area. Additionally, Table 1 presents the parameters considered for this 
network.

Figure 4 presents a comparison of the simulation results for the sensor network utilizing the 
Cheetah and Ant Lion algorithms, focusing on a homogeneous network with an initial energy 
level of 0.5J. 
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Figure 3. Distribution of sensors in the monitoring area. 

  

Table 1: Initial Values of Simulation Parameters 
 
 

Parameter Value
Γelec 50 nJ/bit
ΓDA 5 nJ/bit/message 
δfs 10 pJ/bit/m² 
δmp 0.0013 pJ/bit/m⁴ 
Message Size 4000 bits
Initial Energy 0.4~0.6 J (0.5 J) 

 
  

Fig. 3. Distribution of sensors in the monitoring area.

Table 1. Initial Values of Simulation Parameters

 

 

 

Figure 4. Performance of the Cheetah (CO) and Ant Lion (ALO) algorithms in terms of the percentage of 

sensors alive in a homogeneous network. 

  

Fig. 4. Performance of the Cheetah (CO) and Ant Lion (ALO) algorithms in terms of the percentage of sensors alive in a ho-
mogeneous network.
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As can be seen, the Ant Lion algorithm outperforms the Cheetah algorithm in extending the 
network’s longevity by sustaining a greater proportion of active sensors. The performance of 
both algorithms is relatively comparable during the first 1600 simulation rounds. Furthermore, 
at approximately the 600th round, both algorithms successfully maintain around 95 percent of 
the sensors in operation. This level of performance for the Ant Lion algorithm continues until 
about the 2500th simulation round. In the concluding phases of sensor energy depletion, both 
algorithms exhibit similar behavior. Figure 5 illustrates the energy consumption pattern of the 
network throughout the simulation process.

As illustrated in the figure, the Ant Colony algorithm demonstrates superior performance in 
energy management within the network, effectively controlling energy consumption from round 
1000 onwards. Figure 6 presents the performance results of both the Ant Colony algorithm 
and the Cheetah algorithm in a heterogeneous network. In this heterogeneous scenario, it is 
assumed that the initial energy of the sensors is randomly distributed uniformly within the range 
of 0.4 to 0.6 joules.

It is evident from the figure that the Ant Colony algorithm outperforms the Cheetah algorithm 
in extending the overall lifespan of the network. However, the Cheetah algorithm manages to 
keep approximately 40 percent of the sensors operational until around round 3000, while the 
Ant Colony algorithm is only able to maintain about 15 sensors during this iteration. Upon 
examining Figure 6, it becomes clear that the algorithm’s performance in the heterogeneous 
state is weaker compared to the homogeneous state, with a difference of approximately 150 
simulation rounds in the energy depletion of the Cheetah algorithm. In contrast, this difference 

 

 

 

Figure 5. Performance of the Cheetah (CO) and Ant Lion (ALO) algorithms in terms of the residual 

energy in the homogeneous network. 

  

 

Figure 6. Performance of the Cheetah (CO) and Ant Lion (ALO) algorithms in the heterogeneous network. 

  

Fig. 5. Performance of the Cheetah (CO) and Ant Lion (ALO) algorithms in terms of the residual energy in the homogeneous 
network.

Fig. 6. Performance of the Cheetah (CO) and Ant Lion (ALO) algorithms in the heterogeneous network.



Abdolabadi and Khosravian436

in the lifespan of the network for the Ant Colony algorithm is around 100 simulation rounds. 
This observation also holds true for the remaining energy consumption within the network. 
Regarding the remaining energy, it is noteworthy that the rate of energy reduction in the 
heterogeneous network is consistent, which may indicate the algorithm’s capability.

• Performance of the proposed algorithms
The comparison of the performance of the proposed algorithms with the research conducted by 

J.-Y. Kim et al. (2014) highlights a method for evaluating the efficiency of algorithms in network 
simulation by examining energy consumption and network stability across various iterations. 

One of the methods for comparing the performance of algorithms in network simulation is 
to examine the energy consumption and network stability in different iterations. Additionally, 
a threshold of 40 percent energy depletion among sensors is utilized as another criterion for 
assessing network status. Table 2 presents the results obtained from the simulation of the 
proposed algorithms alongside the referenced research. 

LEACH algorithm demonstrated poor performance in maintaining active sensors and residual 
energy during both the 1500 and 2500 simulation rounds. Notably, at the 2500 round, no sensors 
remained alive, and energy was entirely depleted. The IC-ACO algorithm performed better than 
LEACH; however, it still yielded inferior performance compared to other algorithms. In both 
the 1500 and 2500 simulation rounds, the percentage of remaining active sensors and residual 
energy was similarly low. Conversely, the Cheetah algorithm exhibited acceptable performance 
in preserving active sensors and remaining energy. In the 1500 simulation round, 99 percent of 
sensors remained operational, with 39 percent of energy still available. In the 2500 simulation 
rounds, 86 percent of sensors were still active, and 24 percent of energy was retained. The Ant 
Lion algorithm achieved the best performance among all algorithms tested, with 99 percent of 
sensors remaining alive and 41 percent of energy available in the 1500 simulation round.

The examination of network stability when 40% of the sensors are lost indicates that the Ant 

 

Figure 7. Performance of the Cheetah (CO) and Ant Lion (ALO) algorithms in terms of the residual energy 

in the heterogeneous network. 

 

Table 2: Comparison of Algorithm Performance in Network Simulation 
 
 

round/% 
 
        Algorithm 

1500 (simulation round) 2500 (simulation round) 60%
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Colony Algorithm with 2789 simulation rounds performed the best and has the capability to 
create a stable network by optimizing energy consumption. The IC-ACO algorithm achieves 
approximately 50% of the performance of the two proposed algorithms in this study.

In this research, the performance of the Ant Lion Optimization (ALO) and Cheetah 
Optimization (CO) algorithms were assessed in relation to wireless sensor networks (WSNs) 
designed for air quality monitoring. The findings revealed that ALO consistently has a better 
performance compared to the CO in terms of network longevity, energy management, and 
resilience across both homogeneous and heterogeneous sensor environments. The simulations 
indicated that ALO sustains a greater number of active sensors over time, highlighting its 
effective energy management strategies. This observation is consistent with existing literature 
that acknowledges the importance of energy optimization in prolonging the operational lifespan 
of WSNs (Sharmin et al., 2023). Conversely, the Cheetah algorithm showed limited efficacy, 
particularly under increased sensor load, underscoring the urgent need for adaptive and robust 
energy management solutions in WSNs.

A significant observation was the performance difference between homogeneous and 
heterogeneous network configurations. The ALO algorithm exhibited enhanced scalability 
and adaptability, which is particularly advantageous in heterogeneous scenarios where sensor 
energy levels can vary significantly. This finding supports the relevance of adaptive clustering 
strategies, which have been suggested in previous studies as a means to improve the stability 
and performance of WSNs (Dixit and Jindal, 2022; Lin et al., 2020). Additionally, clustering 
protocols were identified as crucial for optimizing energy consumption and enhancing network 
stability. The results reinforce theories that effective clustering can alleviate energy constraints 
within the network and improve overall performance (Pal et al., 2024). The careful selection 
of cluster heads, based on remaining energy and proximity metrics, was found to be vital in 
minimizing data transmission costs, a phenomenon also noted in the context of metaheuristic 
optimization in earlier research (Kim et al., 2014).

CONCLUSION

The results of this research significantly enhance the theoretical framework of wireless 
sensor networks (WSNs) in the context of air quality monitoring. By illustrating that the Ant 
Lion Optimization (ALO) algorithm substantially surpasses conventional techniques, such as 
Cheetah Optimization, this study emphasizes on the application of metaheuristic strategies in 
environmental monitoring. The suitable performance of ALO in managing energy consumption 
and extending network longevity indicates its potential for real-world applications, driving 
efficiency in sensor deployments and improving data reliability. A crucial insight derived from 
this study is the paramount significance of energy optimization within WSNs. The research 
acknowledges that clustering not only improves energy efficiency but that the careful selection 
of cluster heads can lead to considerable enhancements in overall network functionality. 
Furthermore, the adaptability of ALO in diverse environments is another essential takeaway, 
showcasing how customized algorithms can effectively address prevalent challenges associated 
with varying sensor node capabilities and environmental conditions. Nevertheless, it is important 
to recognize several limitations within this study. Primarily, the focus was narrowed to a limited 
number of metaheuristic algorithms; future investigations could gain from incorporating 
a wider array of optimization methods for a more comprehensive comparative analysis. 
Additionally, while the simulations yielded valuable findings, they may not entirely reflect the 
complexities encountered in real-world scenarios, where factors such as sensor malfunctions 
and environmental variability could impact results. Lastly, the scalability assessments conducted 
under different network configurations were limited, necessitating further investigation to 
evaluate the robustness of the ALO algorithm in larger-scale deployments.
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