
تعداد نشریات | 163 |
تعداد شمارهها | 6,839 |
تعداد مقالات | 73,820 |
تعداد مشاهده مقاله | 136,292,152 |
تعداد دریافت فایل اصل مقاله | 106,107,414 |
بررسی تاثیر محرکهای قارچی، باکتریایی، مخمر و نیتراتنقره بر محتوای ترکیبات آنتیاکسیدانی و سیلیمارین در مراحل نموی مختلف گیاه خارمریم (Silybum marianum L.) | ||
علوم باغبانی ایران | ||
دوره 56، شماره 1، فروردین 1404، صفحه 153-178 اصل مقاله (2.16 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2024.380169.2197 | ||
نویسندگان | ||
الهام امجدی1؛ علی گنجعلی* 1؛ ابولفضل شاکری2؛ مهرداد لاهوتی1؛ سعید توکلی3 | ||
1گروه زیست شناسی، دانشکده علوم، دانشگاه فردوسی مشهد، مشهد، ایران | ||
2گروه فارماکوگنوزی، دانشکده داروسازی، دانشگاه علوم پزشکی مشهد، مشهد، ایران. | ||
3مرکز تحقیقات گیاهان دارویی، پژوهشکده گیاهان دارویی جهاد دانشگاهی، کرج، ایران. | ||
چکیده | ||
گیاه خارمریم ((L.) Gaertn. Silybum marianum) بهدلیل داشتن ویژگیهای فیتوشیمیایی از فعالیتهای بیولوژیک موثر شامل فعالیتهای آنتیاکسیدانی و ضد سرطان برخوردار است و از این رو از دیرباز بهعنوان یک گیاه دارویی با ارزش مورد توجه بودهاست. مطالعه حاضر بهمنظور بررسی تاثیر محرکهای زیستی شامل باکتری (Pseudomonas putida)، مخمر (Yarrowia lipolytica)، قارچ (Aspergillus niger) و الیسیتورAgNO3 بر محتوای ترکیبات فنلی، سیلیمارین و پتانسیل آنتیاکسیدانی در بذر و بخش هوایی گیاه در مراحل رشد رویشی و زایشی بهصورت آزمایشهای جداگانه در قالب طرح کاملا تصادفی با 3 تکرار در گلخانه تحقیقاتی دانشکده علوم دانشگاه فردوسی مشهد انجام شد. نتایج آزمایش نشان داد که تحت تاثیر محرکهای زیستی و غیر زیستی در هر دو مرحله رشد رویشی و زایشی، محتوای فنل موجود در بذر بیشتر از بخش هوایی بود، این در حالی است که کمترین میزان IC50 در تمامی تیمارهای مورد بررسی به بذر اختصاص داشت. در این بررسی محتوای فلاونوئید کل با گذر از مرحله رویشی به زایشی و سپس تولید بذر کاهش یافت که احتمالا به افزایش تمایز سلولی در طول دوره تکمیل رشد، حفاظت در برابر حمله آفات، تجزیه و کاهش فعالیت آنزیمهای مسیر بیوسنتزی مربوط میشود. اگرچهAgNO3 درصد سلیمارین را در مراحل رشد رویشی (96/9 درصد) و زایشی (64/6 درصد) نسبت به شاهد افزایش داد ولی در مرحله تولید بذر، تلقیح باکتری بیشترین تاثیر را در بهبود محتوای سیلیمارین داشت و مقدار سیلیمارین بذر را نسبت به شاهد به میزان 33 درصد افزایش داد. | ||
کلیدواژهها | ||
ترکیبات فنلی؛ رادیکال آزاد؛ سیلیمارین؛ فنولوژی | ||
مراجع | ||
منابعحسنلو، طاهره؛ احمدی، معصومه؛ خیام نکویی، سید مجتبی و صالحی جوزانی، غلامرضا (1392). اثرات تحریکی عصاره قارچی بر تولید سیلیمارین در کشت ریشههای مویین گیاه دارویی خار مریم (Silybum marianum L.). حسنلو، طاهره؛ اسکندری، سحر و نجفی، فرزانه (1394). نقش کیتوزان در افزایش تولید فلاونولیگنانها در کشت ریشههای مویین خارمریم (Silybum marianum L.). مجله سلول و بافت، 6(3)، 267- 257. http://dx.doi.org/10.52547/JCT.6.3.257 سروری، سوفیا و باقریان لمراسکی، حسن (1399). مطالعه تاثیر محلول پاشی اسپرمیدین، اسیدسیتریک و پرولین بر رشد و گلدهی همیشه بهار (Calendula officinalis L.) تحت تنش خشکی. فصلنامه گیاه و زیست فناوری ایران، 15(4)، 39-27.
RERERENCES Akowuah, G. A., Ismail, Z., Norhayati, I. & Sadikun, A. (2005). The effects of different extraction solvents of varying polarities on polyphenols of Orthosiphon stamineus and evaluation of the free radical-scavenging activity. Food Chemistry, 93(2), 311–317. http://dx.doi.org/10.1016/j.foodchem.2004.09.028 Anastassiadis, S., Morgunov, I. G., Kamzolova, S. V. & Finogenova, T. V. (2008). Citric acid production patent review. Recent Patents on Biotechnology, 1923, 107–123. http://dx.doi.org/10.2174/187220808784619757. Asghari-Zakaria, R., Panahi, A. R. & Sadeghizadeh, M. (2008). Comparative study of chromosome morphology in Silybum marianum. Cytologia, 73(3), 327–332. http://dx.doi.org/10.1508/cytologia.73.327 Ashtiani, S. R., Hasanloo, T. & Bihamta, M. R. (2010). Enhanced production of silymarin by Ag+ elicitor in cell suspension cultures of Silybum marianum. Pharmaceutical Biology, 48(6), 708–715. http://dx.doi.org/10.3109/13880200903264426 Blume, B., Nurnberger, T., Nass, N. & Scheel, D. (2000). Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. Plant Cell, 12(8), 1425–1440. http://dx.doi.org/10.1105/tpc.12.8.1425 Chang, C. C., Yang, M. H., Wen, H. M. & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary c. Journal of Food and Drug Analysis, 10(3), 178–182. http://dx.doi.org/10.38212/2224-6614.2748 Chen, R., Xue, G., Chen, P., Yao, B., Yang, W., Ma, Q., Fan, Y., Zhao, Z., Tarczynski, M. C. & Shi, J. (2008). Transgenic maize plants expressing a fungal phytase gene. Transgenic Research, 17(4), 633–643. http://dx.doi.org/10.1007/s11248-007-9138-3 Coelho, M. A. Z., Amaral, P. F. F. & Belo, I. (2010). Yarrowai lipolytica: an industrial workhorse. Currient Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, 2,930–944. Conforti, F., Statti, G., Uzunov, D. & Menichini, F. (2006). Comparative chemical composition and antioxidant activities of wild and cultivated Laurus nobilis L. leaves and Foeniculum vulgare subsp. piperitum (Ucria) Coutinho seeds. Biological and Pharmaceutical Bulletin, 29(10), 2056–2064. http://dx.doi.org/10.1248/bpb.29.2056 da Veiga Moreira, J., Jolicoeur, M., Schwartz, L. & Peres, S. (2021). Fine-tuning mitochondrial activity in Yarrowia lipolytica for citrate overproduction. Scientific Reports, 11(1), 1–11. http://dx.doi.org/10.1038/s41598-020-79577-4 del Baño, M. J., Lorente, J., Castillo, J., Benavente-García, O., Del Río, J. A., Ortuño, A., Quirin, K. W. & Gerard, D. (2003). Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. Antioxidant activity. In Journal of Agricultural and Food Chemistry. 51(15). 4247–4253. http://dx.doi.org/10.1021/jf0300745 Elumalai, E. K., Prasad, T. N. V. K. V, Kambala, V., Nagajyothi, P. C. & David, E. (2010). Green synthesis of silver nanoparticle using Euphorbia hirta L and their antifungal activities. Archives of Applied Science Research, 2(6), 76–81. Feduraev, P., Chupakhina, G., Maslennikov, P., Tacenko, N. & Skrypnik, L. (2019). Variation in phenolic compounds content and antioxidant activity of different plant organs from Rumex crispus l. and Rumex obtusifolius l. at different growth stages. Antioxidants, 8(7). http://dx.doi.org/10.3390/antiox8070237 Gad, D., Elhaak, M., Pompa, A., Mattar, M., Zayed, M., Fraternale, D. & Dietz, K. J. (2020). A new strategy to increase production of genoprotective bioactive molecules from cotyledon-derived Silybum marianum l. Callus. Genes, 11(7), 1–14. http://dx.doi.org/10.3390/genes11070791 Georgieva, G., Nedeva, T., Badalova, M., Deleva, V. & Savov, V. (2023). Study of the plant growth-promoting capacity of Pseudomonas putida 1046 in a model plant system. BioRisk, 20, 115–128. http://dx.doi.org/10.3897/ biorisk, 20, 115-128 Gupta, K. M. & R. G. (2012). Effect of Various Media Types on the Rate of Growth of. Indian Journal of Fundamental and Applied Life Sciences ISSN:, 2(2), 141–144. Hao, Y. J., An, X. L., Sun, H. D., Piao, X. C., Gao, R. & Lian, M. L. (2020). Ginsenoside synthesis of adventitious roots in Panax ginseng is promoted by fungal suspension homogenate of Alternaria panax and regulated by several signaling molecules. Industrial Crops and Products, 150, 112414. http://dx.doi.org/10.1016/j.indcrop.2020.112414. Hasanlo, T., Khavari Nejad, R. A., Majidi, E. & Shams Ardakani, M. R. (2008). Flavonolignan production in cell suspension culture of Silybum marianum. Pharmaceutical Biology, 46(12), 876–882. http://dx.doi.org/10.1080/13880200802367684 Hazrati, S., Mollaei, S., Rabbi Angourani, H., Hosseini, S. J. & Sedaghat, M. (2020) How do essential oil composition and phenolic acid profile of Heracleum persicum fluctuate at different phenological stages? Food Science & Nutrition, 8(11), 6192-6206. Tabriz,. http://dx.doi.org/10.1002/fsn3.1916. Humbal, A. & Pathak, B. (2023). Influence of exogenous elicitors on the production of secondary metabolite in plants: A review ( “VSI: secondary metabolites”). Plant Stress, 100166. http://dx.doi.org/10.1016/j.stress.2023.100166. Jaberian, H., Piri, K. & Nazari, J. (2013). Phytochemical composition and in vitro antimicrobial and antioxidant activities of some medicinal plants. Food Chemistry, 136(1), 237–244. http://dx.doi.org/10.1016/j.foodchem.2012.07.084 Karla. Y. (1998). handbook of reference methods for plant analysis. 320 pp. CRC Press. http://dx.doi.org/10.2135/cropsci1998.0011183x003800060050x Khalili, M., Hasanloo, T. & Tabar, S. K. K. (2010). Ag+ enhanced silymarin production in hairy root cultures of Silybum marianum (L.) Gaertn. Plant Omics, 3(4), 109–114. Kurkin, V. A. (2003). Medicinal plants: Saint-Mary thistle - a source of medicinals (a review). Pharmaceutical Chemistry Journal, 37, 189–202. http://dx.doi.org/10.1023/A:1024782728074 Lam, V. P., Beomseon, L., Anh, V. K., Loi, D. N., Kim, S., Kwang-ya, L. & Park, J. (2023). Effectiveness of silver nitrate application on plant growth and bioactive compounds in Agastache rugosa (Fisch. & C.A.Mey.) kuntze. Heliyon, 9(9). http://dx.doi.org/10.1016/j.heliyon.2023.e20205 Li, C., Zhou, J., Du, G., Chen, J., Takahashi, S. & Liu, S. (2020). Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnology Advances, 44, 107630. http://dx.doi.org/10.1016/j.biotechadv.2020.107630 Lubna, Asaf, S., Hamayun, M., Gul, H., Lee, I. J. & Hussain, A. (2018). Aspergillus niger CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indoleacetic acid. Journal of Plant Interactions, 13(1), 100–111. http://dx.doi.org/10.1080/17429145.2018.1436199 Lv, Y., Marsafari, M., Koffas, M., Zhou, J. & Xu, P. (2019). optimizing oleaginous yeast cell factories for flavonoids and hydroxylated flavonoids biosynthesis. ACS Synthetic Biology, 8(11), 2514–2523. http://dx.doi.org/10.1021/acssynbio.9b00193 Maina, S., Ryu, D. H., Bakari, G., Misinzo, G., Nho, C. W. & Kim, H. Y. (2021). Variation in phenolic compounds and antioxidant activity of various organs of african cabbage (Cleome gynandra l.) accessions at different growth stages. Antioxidants, 10(12). http://dx.doi.org/10.3390/antiox10121952 Marceddu, R., Dinolfo, L., Carrubba, A., Sarno, M. & Di Miceli, G. (2022). Milk thistle (Silybum Marianum L.) as a Novel multipurpose crop for agriculture in marginal environments: a review. Agronomy, 12(3). http://dx.doi.org/10.3390/agronomy12030729 Matkowski, A., Zielińska, S., Oszmiański, J. & Lamer-Zarawska, E. (2008). Antioxidant activity of extracts from leaves and roots of Salvia miltiorrhiza Bunge, S. przewalskii Maxim., and S. verticillata L. Bioresource Technology, 99(16), 7892–7896. http://dx.doi.org/10.1016/j.biortech.2008.02.013 Medina, A., Roldán, A. & Azcón, R. (2010). The effectiveness of Arbuscular-mycorrhizal fungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil. Journal of Environmental Management, 91(12), 2547–2553. http://dx.doi.org/10.1016/j.jenvman.2010.07.008 Moradi, H., Ghavam, M. & Tavili, A. (2020). Study of antioxidant activity and some herbal compounds of Dracocephalum kotschyi Boiss. in different ages of growth. Biotechnology Reports, 25, e00408. http://dx.doi.org/10.1016/j.btre.2019.e00408 Muhammad, A., Feng, X., Rasool, A., Sun, W. & Li, C. (2020). Production of plant natural products through engineered Yarrowia lipolytica. Biotechnology Advances, 43, 107555. http://dx.doi.org/10.1016/j.biotechadv.2020.107555 Omezzine, F. & Haouala, R. (2013). Effect of Trigonella foenum-graecum L. development stages on some phytochemicals content and allelopathic potential. Scientia Horticulturae, 160, 335–344. http://dx.doi.org/10.1016/j.scienta.2013.06.023 Palmer, C. M., Miller, K. K., Nguyen, A. & Alper, H. S. (2020). Engineering 4-coumaroyl-CoA derived polyketide production in Yarrowia lipolytica through a β-oxidation mediated strategy. Metabolic Engineering, 57, 174–181. http://dx.doi.org/10.1016/j.ymben.2019.11.006 Pérez-Ochoa, M. L., Vera-Guzmán, A. M., Mondragón-Chaparro, D. M., Sandoval-Torres, S., Carrillo-Rodríguez, J. C., Mayek-Pérez, N. & Chávez-Servia, J. L. (2023). Effects of annual growth conditions on phenolic pompounds and antioxidant activity in the roots of eryngium montanum. Plants, 12(18), 1–15. http://dx.doi.org/10.3390/plants12183192 Premanath, R., Sudisha, J., Devi, N. L. & Aradhya, S. M. (2011). Antibacterial and anti-oxidant activities of fenugreek (Trigonella foenum graecum L.) leaves. In Research Journal of Medicinal Plant. 5(6). 695–705. http://dx.doi.org/10.3923/rjmp.2011.695.705 Qavami, N., Naghdi Badi, H., Labbafi, M. R. & Mehrafarin, A. (2013). A review on pharmacological, cultivation and biotechnology aspects of milk thistle (Silybum marianum (L.) Gaertn.). Journal of Medicinal Plants, 12(47), 19–37. Rahimi, S., Hasanloo, T., Najafi, F. & Khavari Nejad, R. A. (2011). Enhancement_of_silymarin_accumulation_using_Precursor feeding in 'Silybum marianum' hairy root cultures. Plant Omics, 4(1), 34–39. Rainone, F. (2005). Milk thistle - American Family Physician. 72(7), 1285–1288. http://www.aafp.org/afpsort.xml. Saffaryazdi, A., Ganjeali, A., Farhoosh, R. & Cheniany, M. (2020). Variation in phenolic compounds, α-linolenic acid and linoleic acid contents and antioxidant activity of purslane (Portulaca oleracea L.) during phenological growth stages. Physiology and Molecular Biology of Plants, 26(7), 1519–1529. http://dx.doi.org/10.1007/s12298-020-00836-9 Schrall, R. & Becker, H. (1977). Callus– und suspensionskulturen von Silybum Marianum. Planta Medica, 32(5), 27–32. http://dx.doi.org/10.1055/s-0028-1097554 Shokati, B. & Poudineh, Z. (2017). An overview of plant growth promoting rhizobacteria and their influence on essential oils of medicinal plants. Iranian Journal of Plant Physiology, 7(3), 2051–2061. http://dx.doi.org/10.22034/ijpp.2017.533559 Simpson, C. A., Geornaras, I., Yoon, Y., Scanga, J. A., Kendall, P. A., Sofos, J. N. & Dalynn Biologicals. (2014). McFarland Srandard. Journal of Food Protection, 71(3), 2. http://dx.doi.org/10.4315/0362-028x-71.3.494 Singleton, V. L., Orthofer, R. & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 152-178. http://dx.doi.org/10.1016/S0076-6879(99)99017-1 Sneath, P. H. A. (1973). Numerical taxonomy: the principles and practice of numerical classification.573 pp. San Francisco, Freeman. Soroori, S., & Bagherian Lemraski, H. B. (2021). Effect of foliar application of spermidine , citric acid and proline on growth and flowering in Calendula officinalis L . under drought stress. Iranian Journal of Plant and Biotechnology, 15(4). http://dx.doi.org/10.22059/ijhst.2022.341462.555 Stamford, N. P., Freitas, A. D. S., Ferraz, D. S. & Santos, C. E. R. S. (2002). Effect of sulphur inoculated with Thiobacillus on saline soils amendment and growth of cowpea and yam bean legumes. The Journal of Agricultural Science, 139(3), 275–281. http://dx.doi.org/10.1017/S0021859602002599 Sultana, B., Anwar, F. & Ashraf, M. (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 14(6), 2167–2180. doi: 10.3390/molecules14062167 Sun, J., Li, X. & Yu, X. (2016). Antioxidant activities, total flavonoids and phenolics content in different parts of Silybum marianum L. plants. Chemical Engineering Transactions, 55, 37–42. doi: 10.3303/CET1655007. Tong, Z., Tong, Y., Wang, D. & Shi, Y. C. (2023). Whole maize flour and isolated maizestarch for production of citric acid by Aspergillus niger: a review. Starch/Staerke, 75(3–4), 1–11. http://dx.doi.org/10.1002/star.202000014. Tripathi, D. K., Tripathi, A., Shweta, Singh, S., Singh, Y., Vishwakarma, K., Yadav, G., Sharma, S., Singh, V. K., Mishra, R. K., Upadhyay, R. G., Dubey, N. K., Lee, Y. & Chauhan, D. K. (2017). Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Frontiers in Microbiology, 8, 1–16. http://dx.doi.org/10.3389/fmicb.2017.00007 Tůmová, L., Tůma, J., Megušar, K. & Doležal, M. (2010). Substituted pyrazinecarboxamides as abiotic elicitors of flavolignan production in Silybum marianum (L.) Gaertn cultures in vitro. Molecules, 15(1), 331–340. http://dx.doi.org/10.3390 Verma, V. & Kasera, P. K. (2007). Short communication variations in secondary metabolites in some arid zone medicinal plants in relation to season and plant growth. Indian J. Plant Physiol. Vildová, A. A., Hendrychová, H., Kubeš, J. & Tůmová, L. (2014). Influence of AgNO3 treatment on the flavonolignan production in cell suspension culture of silybum marianum (L .) Gaertn . 1(7), 2014. Vinogradova, N., Vinogradova, E., Chaplygin, V., Mandzhieva, S., Kumar, P., Rajput, V. D., Minkina, T., Seth, C. S., Burachevskaya, M., Lysenko, D. & Singh, R. K. (2023). Phenolic compounds of the medicinal plants in an anthropogenically transformed environment. Molecules, 28(17). http://dx.doi.org/10.3390/molecules28176322 Wang, S. Y. & Lin, H. S. (2000). Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. Journal of Agricultural and Food Chemistry, 48(2), 140–146. http://dx.doi.org/10.1021/jf9908345 Wen, Z., Dumas, T. E., Schrieber, S. J., Hawke, R. L., Fried, M. W. & Smith, P. C. (2008). Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of Milk thistle extract. Drug Metabolism and Disposition, 36(1), 65–72. http://dx.doi.org/10.1124/dmd.107.017566 Zboralski, A. & Filion, M. (2023). Pseudomonas spp. can help plants face climate change. Frontiers in Microbiology, 14, 1–13. http://dx.doi.org/10.3389/fmicb.2023.1198131 Zhao, J. & Sakai, K. (2003). Multiple signalling pathways mediate fungal elicitor-induced β-thujaplicin biosynthesis in Cupressus lusitanica cell cultures. Journal of Experimental Botany, 54(383), 647–656. http://dx.doi.org/10.1093/jxb/erg062 | ||
آمار تعداد مشاهده مقاله: 405 تعداد دریافت فایل اصل مقاله: 86 |