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Abstract  

Estimating the punching shear strength of reinforced concrete (RC) flat slabs is critical in 

structural engineering due to potential catastrophic failures. This study introduces advanced 

data-driven methods, including machine learning (ML), deep learning (DL), and genetic 

expression programming (GEP), to improve predictions of punching shear strength. Analyzing 

a dataset of 380 test samples, the research evaluates various models such as linear regression, 

stochastic gradient descent, ridge regression, decision trees, K-nearest neighbors, random 

forests, adaptive boosting, extreme gradient boosting (XGBoost) for ML, alongside artificial 

neural networks (ANNs) for DL, and GEP for deriving explicit equations. Significant 

enhancements in model performance were achieved through rigorous hyperparameter tuning, 

notably with the XGBoost model, which attained an R² (coefficient of determination) score of 

0.98, surpassing other models and existing code-based predictions. The study uses SHapley 

values to interpret model predictions, highlighting the significant impact of slab depth on 

punching shear strength, especially in the XGBoost model. Additionally, the GEP method 

derives explicit equations that accurately represent the relationship between input features and 

punching shear strength. This research highlights the advantages of advanced computational 

models and offers new insights into the factors influencing punching shear strength in RC slabs. 

Keywords 

Machine learning, Artificial neural networks, Extreme gradient boosting, Punching shear 

strength, Genetic expression programming 
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1. Introduction 

Concrete structures are the most prevalent types of structures worldwide, with extensive 

research conducted on the load capacity of concrete elements such as beams, columns, and 

slabs . Flat slabs, critical elements in reinforced concrete structures, are directly supported by 

concrete columns without any intervening beams. These slabs are deemed cost-effective due 

to the reduced construction time compared to traditional slabs and are particularly 

advantageous in scenarios where higher headroom or lower story heights are required. Ensuring 

the structural safety of various components is paramount in structural engineering, highlighting 

the importance of detecting visible signs of failure before the actual collapse of members. 

However, reinforced concrete (RC) flat slabs, lacking beams as a primary load path between 

slabs and columns, are prone to brittle punching failures, often occurring without prior visible 

warning signs and resulting in sudden collapses a situation that is critically concerning for civil 

engineers. This vulnerability is primarily attributed to the concentrated column reactions in the 

flat slabs. The collapse of RC flat slabs typically results from a combination of concrete 

crushing and the extensive spread of flexural fractures and punching shear. 

Experimental tests conducted in the literature have led to the derivation of several punching 

shear strength formulations, which serve as the primary method for designing RC flat slab 

punching shear strength. However, the accuracy of these models, as proposed in various codes, 

has not been thoroughly investigated, casting doubts on their reliability (ACI Committee 318, 

2019; Canadian Standards Association, 2014; European Committee for Standardization, 2004; 

Standards Australia, 2011). 

The literature on the punching shear behavior of reinforced concrete slabs has primarily 

investigated the influence of various parameters, including the compressive strength of 

concrete, type of concrete, yield strength of reinforcement, reinforcement ratio, slab 
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configurations, and conditions of support and load (Birkle & Dilger, 2008; Elstner & Hognestad, 

1956; Guandalini et al., 2009; Ozden et al., 2006; Regan, 1986; Rizk et al., 2011; 

Theodorakopoulos & Swamy, 2002). Notably, (Liang et al., 2023) proposed a hybrid model 

known as the Symbolic Regression MCFT (SR-MCFT) to estimate the punching shear 

resistance of Fiber Reinforced Polymer (FRP)-reinforced concrete slabs, utilizing results from 

154 experimental samples. Similarly, (Liu et al., 2024) developed an explainable XGBoost 

model to predict the punching shear strength of flat slabs constructed from various types of 

fiber-reinforced concrete (FRC), based on a comprehensive database of 251 flat slabs that 

include normal strength, high-performance, and ultra-high-performance FRC slabs. 

Furthermore, (Alotaibi et al., 2021) assessed the performance of several machine learning 

algorithms, including Artificial Neural Networks (ANN) and Support Vector Machines (SVM), 

for estimating the punching shear capacity of fiber-reinforced concrete slabs. The results show 

that ANN-based models perform best, with the slab's effective depth being the most influential 

factor. Consequently, these studies provide a vast amount of datasets which are beneficial for 

having a data-driven insight into the problem. 

Nowadays, the integration of computer science skills such as machine learning (ML), gene 

expression programming (GEP), finite element analysis (FEM), and probability analysis with 

other fields of expertise like structural engineering has proven to be successful (Al-Bayati, 2023; 

Anjali et al., 2023; Li & Li, 2023; Marmarchinia et al., 2024; Palomino Ojeda et al., 2023; Tavasoli, 2023), 

and there have been various models in numerous studies which have been conducted for 

damage assessment in structures (Afzali et al., 2023; Aminian et al., 2011; Bypour et al., 2024; 

Gandomi et al., 2015; Hamidia et al., 2024; Jamshidian & Hamidia, 2023; Mirzahosseini et al., 

2019; Naderpour et al., 2024; Tajik et al., 2023; Taleshi et al., 2024; Zaker Esteghamati, 2024; 

Zaker Esteghamati & Huang, 2023). However, investigating the punching shear strength of RC 

flat slabs without transverse reinforcement has not been taken seriously in the literature over 
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the years. For instance, in the study of (Abambres & Lantsoght, 2020), only the important 

parameters in a structure on the shear capacity prediction of one-way slabs under concentrated 

loads which are the width of the slab, effect of the beam span-to-depth ratio, and concrete 

compressive strength have been introduced.  

According to the literature, some deep learning models have been developed with 

acceptable accuracies, such as the deep learning models of (Tran & Kim, 2021); where a total 

number of 218 sample data were used to develop the ANN models for predicting the punching 

shear strength of two‑way reinforced concrete slabs, where the R2 score of the implemented 

model was 0.995. Mangalathu et al., (2021) investigation of machine learning models revealed 

that the R2 score accuracy of the XGBoost model (one of the well-known ML models that have 

been used in predicting the punching shear capacity) is 0.98 for estimation of punching shear 

capacity of RC slabs. Additionally, some studies focus on implementing machine learning and 

metaheuristic methodologies into flat slab design, such as the work by (Alkhawaldeh, 2024). 

which combined the Light Gradient Boosting Machine (LGBM) and Locust Swarm Algorithm 

(LSA) to improve punching shear strength predictions in flat slabs. 

This study addresses a crucial gap in the current understanding and prediction of punching 

shear strength in RC flat slabs. While traditional code-based methods offer a standardized and 

generally reliable approach, their predictive accuracy, although good, can still be significantly 

enhanced. This limitation presents an opportunity for improvement in ensuring infrastructure 

safety, underscoring the need for more precise and robust predictive models. The primary goal 

of this research is to develop and validate advanced data-driven models, including machine 

learning (ML), deep learning (DL), and genetic expression programming (GEP) techniques, to 

predict punching shear strength with higher accuracy than current code formulations. By 

comparing these models' performance against existing codes, this study aims to demonstrate 

the superiority of modern computational methods in capturing the complex interactions that 



 

6 
 

govern punching shear failure. It has been tried to use the grid-search method for tuning the 

hyperparameters of the ML model (Jiang & Xu, 2022) for capturing higher accuracy of 

prediction for the existing 380 experimental sample dataset. Then, to propose an explicit 

formula to calculate the punching shear capacity of conventional concrete slab, genetic 

expression programming is implemented, which provides the function between inputs and 

outputs in a given dataset. 

The first section of this study aims to present and describe various ML models suitable for 

certain applications, highlighting the advantages and disadvantages of each algorithm. 

Following this, the study delves into the utilized dataset and describes the implemented 

methods, including linear regression, stochastic gradient descent, ridge regression, support 

vector machine, K-nearest neighbors, decision tree, random forest, adaptive boosting, extreme 

gradient boosting, and artificial neural networks (ANNs). This section also introduces the 

evaluation metrics used to measure the accuracy of these models. Given the opaque nature of 

machine learning and deep learning algorithms, subsequent sections endeavor to demystify the 

impact of each model feature on the final predictions through the use of Shapley values. 

Additionally, the study explores the generation of mathematical equations for predicting the 

target value using GEP. A separate section is dedicated to comparing the outputs generated by 

ML algorithms with those of conventional design codes and formulations, demonstrating the 

effectiveness of these modern tools. Finally, the study concludes with a summary and remarks 

on the findings presented in the last section. 
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2. Overview of machine learning 

2.1. Machine learning and deep learning methods  

Machine learning methods are now widely used to make logical predictions for unseen datasets 

by training with a limited amount of data. Civil engineers have seized this opportunity, striving 

to enhance their research by incorporating these techniques. Among these, linear regression is 

a well-known algorithm that trains a model as a linear combination of dependent variables. 

This study investigates nine linear regression models, including linear regression, stochastic 

gradient descent (SGD), ridge regression, support vector machine (SVR), K-nearest neighbors 

(KNN), decision tree (DT), random forest (RF), adaptive boosting (AdaBoost), and extreme 

gradient boosting (XGBoost), to predict the final punching shear capacity of reinforced 

concrete flat slabs without transverse reinforcement. 

In the case of simple linear regression, just one feature and one target are involved. 

However, multiple linear regressions are used since the dataset has several features and a single 

dependent variable. But in the famous machine learning libraries in Python programming 

language, linear regression specifically means using the normal equation for regression tasks. 

As in equation (1), the normal equation is a closed-form solution used to determine the 

parameters (W) that minimize the cost function. 

𝑊 = (𝑋𝑇𝑋)−1. (𝑋𝑇𝑦) (1) 

Stochastic gradient descent is a numerical method used to decrease the amount of loss 

function. In fact, SGD works as an optimizer for a model that helps to converge the model. 

Moreover, SGD is based on trial and error, which is why it has relatively high calculation costs 

and errors. Support vector regression is one of the reputed regression algorithms used to predict 

independent variables (Parbat & Chakraborty, 2020). K-nearest neighbors are a popular machine 

learning non-parametric algorithm, and the output is estimated as the weighted average of the 
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KNN (Mangalathu et al., 2021). Model ensembling is another method that refers to the process 

of employing several models to gets an improved prediction performance. In ensemble models 

like random forests, each base model is a decision tree, and the result of the random forest 

model is the aggregate output of these decision trees. In random forests, all the base models are 

constructed independently using different subsamples of the data (see Fig. 1). The RF model 

efficiently handles tabular data with numerical or categorical features that have fewer than 

hundreds of categories. Unlike other linear models, RF can capture nonlinear interactions 

between features and targets. Adaptive boosting is an ensemble of many decision tree models, 

each of which is a weak learner and is slightly better than random guessing. However, the 

adaptive AdaBoost algorithm carries the gradient of previous trees to the next ones to improve 

the error of the previously mentioned trees. Thus, this subsequent learning of trees at each step 

builds up a strong learner. Final prediction is the weighted average of the predictions given by 

each tree. Because of high adaptability, AdaBoost is more sensitive to outliers data which is a 

key requirement in the case of this study (Patil et al., 2018). In XGBoost, trees are grown 

sequentially, and continuous scores are allocated to each leaf (Chen & Guestrin, 2016). In 

addition to the mentioned models, in this study, the artificial neural networks (ANNs) models 

are also being used to improve the accuracy of punching shear strength prediction in the flat 

slabs. Fig. 2. shows the inter-relationship between ANNs and ML. Consider ANN as a subset 

of deep learning, which is a subset of machine learning, which is a branch of artificial 

intelligence. 
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Fig. 1. Schematic of random forest model. 

  

Fig. 2. AI vs. machine learning vs. neural network vs. deep learning. 

It should be noted that ANNs are usually used for large datasets due to their increased 

model capacity. However, depending on the model type, sometimes it can be useful for small 

datasets. The main concept behind using the ANN approach is that it learns adaptively from 

experience and extracts various functions, each appropriate for its purpose. ANN has the ability 

to operate on large quantities of data and learns complex model functions from examples by 

training on a set of inputs and the corresponding outputs. ANNs can take into account the 

nonlinear and complex interactions that take place among the variables of a system without the 

need for assuming the form of the relationship that exists between the independent variables 

and those that are dependent is the primary advantage that ANN has over more conventional 

modeling techniques (Soleimani-Babakamali & Zaker Esteghamati, 2022; Tran & Kim, 2021). An 

ANN model is a mathematical tool for imitating human brain functions like learning, reasoning, 

and performing heavy parallel computations. The smallest unit that makes up an ANN model 

is referred to as a neuron, and it is developed in three distinct levels (Mehrzad et al., 2023). 

These layers are the input layer, the hidden layer, and the output layer (Tran & Kim, 2021). As 

the grid search parameters in neural networks were reviewed in previous sections, the 

aforementioned parameters were implemented with the dataset studied in this research, and the 

following results were achieved. 
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There are various metrics to evaluate the accuracy of a model (A. Habib & Yildirim, 2022; M. 

Habib et al., 2023), which MSE (mean squared error) being the most common. This method 

which is shown in equation (2), considers the average squared difference between the actual 

and predicted values as the error. However, the problem with this method is that the MSE value 

is not understandable to users, so another method shown in equation (3), called R2 score is 

used. R2 score is a statistical measure representing the proportion of the variance for a 

dependent variable explained by an independent variable or variables in a regression model. 

𝑀𝑆𝐸 =
∑(𝑦𝑖 − �̂�𝑖)2

𝑛
 (2) 

 

𝑅2 = 1 −
∑ (𝑦𝑖 − �̂�𝑖)2𝑁

𝑖=1

∑ (𝑦𝑖 − �̂�)2𝑁
𝑖=1

 (3) 

2.2. Overview of Genetic Expression Programming (GEP) 

In artificial intelligence, GEP is a robust and advanced evolutionary algorithm, motivated by 

natural selection and genetics concepts. Like the process of gene expression in natural living 

organisms, GEP mimics their process to solve complicated problems. Since Ferreira (Ferreira, 

2001), initially presented it, it has grown in popularity due to its effectiveness and adaptability. 

GEP algorithm can be used to achieve a mathematical function between the features and the 

targets. In this function, logical operators (AND, IF, …), algebraic operators (+ - * /), and 

algebraic functions such as trigonometric, exponential, etc., could be used.  

In order to implement the GEP framework, first a linear chromosome population needs to 

be formed, which can be single or multi-gene (Fig. 3 depicts a chromosome example with N 

genes). One of the variables, targets, or guessed mathematical operators may be placed in each 

gene position of this chromosome. Some rules have been established by the inventor of the 

algorithm for choosing the length of the gene and the placement of these variables: 
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Fig. 3. An example of a chromosome. 

• Every gene has a head and a tail section, and the functions of a gene cannot be assigned 

to the tail part. 

• As seen in equation (4), the maximum number of function parameters (n) determines 

the tail section length (t), while the head section length (h) is user-specified. 

𝑡 = ℎ(𝑛 − 1) + 1 (4) 

Then, it's time to assess each chromosome's fitness in the generation after chromosomes 

have been created and inserted into their proper locations. For this purpose, in the GEP 

algorithm, chromosomes are expressed as Tree Expression (TE), enabling the algorithm to 

assess and evolve the most promising solutions within each generation. Because of its creative 

methodology and adherence to genetic principles, GEP is recognized as a strong and 

trustworthy instrument for handling challenging problems in a variety of intersecting fields 

(Ferreira, 2001; Mansouri et al., 2021). The flowchart of GEP process is shown in Fig. 4. 
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Fig. 4. Flowchart of GEP process. 

2.3. SHapley values  

Machine learning models have been increasingly utilized to address a wide range of problems, 

yet the manner in which results are derived from these models often remains scrutinized. To 

aid in the interpretation of results produced by machine learning models, techniques such as 

SHapley values have proven to be effective. Based on the principles of game theory, SHapley 

values significantly enhance the interpretability of machine learning models. The SHAP 

(Shapley Additive exPlanations) method, which is grounded in the Shapley value theory from 
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cooperative game theory, was initially introduced by Lundberg and Lee (Lundberg & Lee, 2017). 

This method has since been recognized for its ability to provide clear explanations for the 

output of machine learning models, making it a pivotal tool in understanding and justifying the 

decision-making processes of these models.(see Fig. 5) 

The SHAP method employs two key equations to facilitate the interpretation of machine 

learning models through an additive feature attribution approach. This approach decomposes a 

model's output into the sum of contributions from its input variables, enhancing interpretability. 

equation (5), outlines the basic form of the explanation model, g(x'), which uses a simplified 

version of the input, x', to approximate the original model's behavior, f(x). In this equation 

(Lundberg & Lee, 2017): 

𝑓(𝑥) = 𝑔(�́�) = 𝜑0 + ∑ 𝜑𝑖𝑥𝑖
′

𝑀

𝑖=1

 (5) 

• x', represents the simplified input variables, derived from the original input variables. 

• M denotes the total number of features. 

• 𝜑0 is the constant value indicating the model's output in the absence of all inputs. 

• 𝜑𝑖 signifies the attributed contribution of each individual variable to the model's output. 

Equation (6), provides a formula for calculating the contribution of each feature. The 

parameters in this equation include (Lundberg & Lee, 2017): 

𝜑𝑖(𝑓, 𝑥) = ∑
|𝑧′|!  (𝑀 − |𝑍′| − 1)!

𝑀!
𝑍′⊑𝑥′

[𝑓𝑥(𝑧′) − 𝑓𝑥(𝑧′\𝑖)] (6) 

• |𝑧′| represents the count of non-zero elements within 𝑍′, indicating the number of active 

features in the subset . 
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• 𝑍′ ⊑ 𝑥′ signifies all instances of 𝑍′ vectors where their non-zero elements correspond 

to a subset of the non-zero elements found in x', focusing on specific combinations of 

features. 

 

Fig. 5. Shematic of SHapley values method. 

2.2. Dataset  

Achieving a precise machine learning model entails having a clean dataset. Dataset plays a 

vital role in machine learning models. The preprocessing of the dataset is more significant than 

the dataset itself, which requires great accuracy. In this study, 380 samples, each with six 

independent variables and one dependent variable, have been investigated (Mangalathu et al., 

2021). Since the target variable under study is a discrete variable, it is clear that regression-

based models should be used, and these algorithms are briefly introduced in the previous 

section. To evaluate the model effectively, not all available data is presented to it during 

training. A portion of the dataset, typically 10-30%, is reserved as test data. This allows for the 

evaluation of the model's performance after the learning process is complete. It is crucial that 

the test data be randomly selected to ensure it is representative of the entire dataset, facilitating 

a comprehensive evaluation of the model. The normal distribution, also known as the Gaussian 

distribution, is a symmetric probability distribution centered around the mean, which indicates 
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that data points close to the mean are more common than those far from it. This study presents 

the normal distribution of each feature and target to highlight this aspect, as shown in Fig. 6. 

 

 

 

 

Fig. 6. Normal distribution of features and outputs. 
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2.3. Grid search  

Grid search is designed to conduct hyperparameter tuning systematically by automatically 

going through a possible set of hyperparameter values during learning. In a grid search, each 

hyperparameter is given a series of values, and the program will then iterate through every 

hyperparameter value combination possible to train models (Jiang & Xu, 2022). We applied 

hyperparameter tunning and grid search to optimize model performance in this study, which 

helped us achieve high accuracy in our machine-learning models (see Fig. 7). It should be 

noted that not all parameters of a model are considered hyperparameters. However, the most 

important ones, which probably significantly impact the model's accuracy, are considered 

hyperparameters.  

 

Fig. 7. Flowchart of grid search. 

In the SGD model, 81 models used different values for the four arguments in Table 1. 

Among them, the penalty argument that prevents model overfitting and the learning rate 

determining the speed of reaching the minimum point in the cost function are more important. 
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Table 1. SGD grid search parameters. 

penalty max_iter learning_rate alpha 

l1 1000 constant 0.0001 

l2 1500 optimal 0.001 

elasticnet 2000 invscaling 0.01 

 

As shown in Table 2, 120 different models have been tested for KNN; the most important 

argument of KNN is the number of neighbors in predicting punch shear strength values. It 

should be noted that selecting a small number of neighbors, such as one or two, leads to model 

overfitting. 

Table 2. KNN grid search parameters. 

neighbors weights algorithm p 

3 uniform auto 1 

4 distance Ball_tree 2 

5 - Kd_tree 3 

6 - brute - 

7 - - - 

 

Table 3 and Table 4 show that 50 different models have been used for DT and RF 

algorithms, each having different values for the arguments mentioned. Criterion  is the function 

to measure the quality of a split, and max_depth expresses the maximum depth of a decision 

tree in which the chosen numbers are suitable and widely used. Also, n_estimators is the 

number of trees used in the random forest. 

Table 3. DT grid search parameters. 

criterion splitter max_depth 

squared_error best 5 

friedman_mse random 10 

absolute_error - 15 
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Table 4. RF grid search parameters. 

n_estimators criterion max_depth 

100 squared_error 5 

200 absolute_error 10 

300 - 15 

400 - 20 

 

Table 5 and Table 6 show that 648 models for XGBoost and 60 models for AdaBoost with 

different values for the mentioned arguments have been tested. The number of trees in the 

ensemble often increased until no further improvements were seen. The boost parameter 

specifies the type of learner. In most cases, this is either a tree or a linear function. In the case 

of trees, the model will consist of an ensemble of trees. 

Table 5. AdaBoost grid search parameters. 

n_estimators Learning_rate loss 

50 0.001 linear 

80 0.01 square 

100 0.1 exponential 

150 1 - 

250 - - 

 

Table 6. XGBoost grid search parameters. 

n_estimators max_depth Bace_score learning_rate 

100 2 0.4 0.05 

200 4 0.5 0.1 

400 6 0.6 0.2 

600 8 0.7 - 

800 10 0.8 - 

1000 15 1 - 

 

As shown in Table 7, 162 models with different parameters for different arguments have 

been used in artificial neural networks. The first and second columns show the number of 

neurons in each layer. Another important parameter is the batch size, which indicates how 

much data is entered into the model in each iteration. Then, the type of optimizer, the most 
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well-known of which is adam, is specified, and finally, the activation function is added to the 

model after the last layer. 

Table 7. ANNs grid search parameters. 

Layer1 Layer2 batch size optimizer active function 

16 16 64 adam relu 

32 32 128 SGD linear 

64 64 256 RMSprop - 

 

3. Machine learning and deep learning models of punching shear strength 

3.1. Features  

The important parameters used in this study to calculate the punching shear strength (𝑉𝑛) are 

divided into two categories: (I) Parameters related to materials include compressive strength of 

slab concrete and slab flexural reinforcement yield strength. (II) Parameters related to geometry 

include the effective flexural depth of slab (d), which expresses the average value of the 

effective flexural depth of the slab in two orthogonal directions, the shear span (a), which 

shows the distance between the slab supports and the face of the column, the slab reinforcement 

ratio (ρ), which is an estimate of the slab reinforcement ratio it is orthogonal in two directions 

and the equivalent width of the column (b). Because punching shear occurs in a critical 

perimeter (𝑏0), it is necessary to find this value using different codes. The critical perimeter is 

located at a certain distance from the face of the column, for which different codes have stated 

different values. For example, ACI-318-14, CSA A23.3-19, and AS 3600 consider the critical 

section at half of the effective flexural depth of the slab from the face of the column, while 

Eurocode 2 considers it twice the depth from the face of the column. However, this study 

follows ACI-318-14. 

For a better understanding of the relation between the features, Fig. 8 is used. This scatter 

plot indicates that the closer the slope of the regressor is to the angle of 45 degrees, the more 
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the two features are related to each other. Also, The exact relation is expressed through the 

correlation matrix shown in Fig. 9. To be more precise, the slope of the regressor drawn in the 

scatter plot shows that the relationship between 𝑑 and 𝑃𝑚𝑎𝑥  is close to an angle of 45 degrees, 

indicating the strong relation between these two features . 

 

Fig. 8. Scatter plot and regression of features and output. 

A correlation matrix is a matrix that shows the relationship and correlation of dataset 

features with each other . This matrix's number of rows and columns equals the number of 
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features of the dataset. Each cell is marked with a color ranging from minus one to plus one. 

The closer this number is to minus one, it means that these two features are inversely related 

to each other, and the closer this number is to plus one, it means that two features are directly 

related to each other. This matrix is symmetric, and the main diagonal of this matrix is equal 

to one because each feature naturally has a maximum correlation with itself. 

In this study, the correlation matrix is a matrix that has seven rows and seven columns. For 

example, in Fig. 9, the maximum compressive strength that enters the column (𝑃𝑚𝑎𝑥) has a 

positive correlation (+0.88) with the effective depth of the slab (d) and is marked with red color. 

This shows that when d increases, so does 𝑃𝑚𝑎𝑥. 

 

Fig. 9. Features and output correlation matrix. 
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3.2. Machine learning and deep learning with grid search results 

The first method used in this study is linear regression based on a normal equation shown in 

Fig. 10. Because this method is derived from an explicit equation, there is no need for trial and 

error and special hyperparameter tuning. Of course, it can achieve different accuracies by 

changing the training data size or the normalization method, but the difference in these 

accuracies is insignificant in this study. With a train size of 0.8 and the StandardScaler 

normalization method, the accuracy of this model on test data has been achieved at 0.88, as 

shown in Fig. 10. 

 

Fig. 10. The best linear regression model results. 

The next method used in this article is the SGD method. This method is based on trial and 

error and has various hyperparameters that can be changed, especially the learning rate. This 

method's best possible accuracy can be achieved by evaluating different hyperparameter values 

using a grid search, as shown in Table 8 and Fig. 11. 

Table 8. Results of grid search for SGD. 

𝐑𝟐_score Train 𝐑𝟐_score Test alpha penalty learning_rate 

0.89 0.88 0.1 l1 constant 
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Fig. 11. The best SGD regression model results. 

Although KNN is mostly used for classification tasks, it is also used in regression problems. 

As demonstrated in Fig. 12, applying an appropriate grid search, shown in Table 9, to this 

model can achieve high accuracy. In this model, according to the number of neighbors and type 

of distance, desired neighbors are selected, and their average label is considered the output 

label. According to the KNN grid search results in Table 9, the optimal number of neighbors 

in this dataset is four, and the power distance (p) type is one. The decision tree model usually 

works very well in train samples, but its test sample accuracy is not the same as train sample 

accuracy. Actually, this does not imply that overfitting has occurred in this model; rather, it 

indicates that its accuracy on train data is much higher. 

Table 9. Results of grid search for KNN. 

𝐑𝟐_score Train 𝐑𝟐_score Test neighbors weights algorithm p 

1 0.93 2 distance auto 2 
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Fig. 12. The best KNN regression model results. 

The grid search results in the DT model showed that the max_depth  

would probably not have a remarkable effect on the accuracy achieved in this dataset, as shown 

in Table 10. Furthermore, applying the grid search method for the DT model resulted in an 

accuracy of 0.93, as shown in Fig. 13. 

Table 10. Results of grid search for DT. 

𝐑𝟐_score Train 𝐑𝟐_score Test criterion splitter max_depth 

1 0.95 friedman_mse random 15 
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Fig. 13. The best DT regression model results. 

Random forest, AdaBoost, and XGBoost models are based on ensemble learning. In this 

field, techniques have been proposed that use several models in a combined and simultaneous 

way to make decisions to increase the model's power in estimating the data output. As 

demonstrated in Table 11, similar to DT, the max_depth parameter in RF models has little 

effect; however, this data set clearly shows that squared_error is the best criterion value, and 

applying the grid search method to the RF model resulted in an accuracy of 0.95, as shown in 

Fig. 14. 

Table 11. Results of grid search for RF. 

𝐑𝟐_score Train 𝐑𝟐_score Test n_estimators criterion max_depth 

0.99 0.95 100 squared_error 10 
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Fig. 14. The best RF regression model results. 

Applying grid search has led to various results in the AdaBoost models, as shown in Table 

12, but it is easy to understand that the best value for the learning rate is 0.1. As shown in Fig. 

15, the grid search method achieved the best AdaBoost model accuracy of 0.91. 

Table 12. Results of grid search for AdaBoost. 

𝐑𝟐_score Train 𝐑𝟐_score Test n_estimators learning_rate loss 

0.94 0.91 150 0.1 exponential 
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Fig. 15. The best AdaBoost regression model results. 

In the XGB algorithm, as many models as possible have been tested to achieve the best 

results. After seeing the results in Table 13, it can be concluded that the best input values for 

the arguments of max_depth, Base_score, and booster are 2, 1, and 5, dart, respectively. As 

seen in Fig. 16, the best accuracy achieved in XGB is 0.98. 

Table 13. Results of grid search for XGB. 

𝐑𝟐 score Train 𝐑𝟐 score Test n_estimators max_depth learning_rate 

0.9975 0.9802 300 2 0.05 
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Fig. 16. The best XGB regression model results. 

The findings from these models demonstrate that the XGBoost (XGB) model outperforms 

the Artificial Neural Networks (ANNs), exhibiting higher accuracy on this specific dataset. 

Despite achieving commendable accuracy with machine learning models, further 

investigations were conducted using neural network models varying in neuron counts, 

activation functions, and optimizers. According to the results presented in Table 16 and Fig. 

17, and Fig. 18, the accuracy attained by neural networks falls short of that achieved by the 

best machine learning model. It was also determined that the Adam optimizer and the relu 

activation function are the most effective for this dataset. 

 

 

 

 



 

29 
 

 

Fig. 17. The architecture of ANNs regression model. 

Table 14. Results of grid search for ANNs. 

𝐑𝟐_score Train 𝐑𝟐_score Test Layer1 Layer2 Batch size optimizer activatefuntion 

0.97 0.96 32 64 32 adam relu 

 

 

Fig. 18. The best ANNs regression model results. 
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3.3. GEP model proposal 

A section of this study proposes a precise model for predicting the punching shear strength of 

reinforced concrete flat slabs, using the GEP approach. The model inputs adhere to the 

standards commonly employed in machine learning practices. Through the application of the 

GEP technique, an empirical model was constructed to forecast the punching shear strength of 

reinforced concrete flat slabs, as elucidated in equation (7). 

𝑉 = 𝑉1 + 𝑉2 + 𝑉3 + 𝑉4 

𝑉1 = 𝑑3(𝑑4 + 𝑑1 − 𝑑2) +
𝑑5𝑑1

39.25
 

𝑉2 = 𝑑3(𝑑4 + 𝑑0 − 3.67) +
𝑑5

10.69
 

𝑉3 = −8.91𝑑3𝑑1 +
𝑑0

𝑒𝑑0
 

𝑉4 = 𝑑3𝑑1
2 +

𝑑0𝑑1

247.15
 

(7) 

 

Fig. 19 shows the expression tree of the estimation model, Fig. 20 demonstrates it’s results, 

and Table 17 details the operational and functional specifics of the proposed model. It is crucial 

to highlight that the selection of parameters greatly influences GEP's generalization ability. 



 

31 
 

 



 

32 
 

 

Fig. 19. Expression tree (ET) of GEP model proposed. 

 

 

Fig. 20. GEP model results. 
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Table 17. GEP model parameters. 

Function (+ - * /), pow, sqrt, Exp, Ln, Sin, Arctan, Tanh, Not 

Number of generations 63919 

Chromosomes 30 

Head size 8 

Number of genes 3 

Linking function Addition 

Mutation 0.44 

IS Transposition 0.1 

RIS Transposition 0.1 

One-point recombination rate 0.2 

Two-point recombination rate 0.3 

Gene recombination 0.2 

Gene transposition 0.1 

 

3.4. Feature importances 

In order to identify the black box of ML models, especially the XGB model, which exhibits the 

highest accuracy among the models in this study, SHapley values are employed. Fig. 21 and 

Fig. 22 reveal that the slab depth (d) is the most significant feature in this model, whereas the 

feature fy (MPa) ranks lowest in terms of importance. While Fig. 21 presents the SHapley 

values separately, Fig. 22 shows the average impact of each feature on the model's predictions. 

 

Fig. 21. The SHapley values of XGB model. 
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Fig. 22. The mean SHapley values of XGB model. 

3.4. Empirical design code equations  

The codes used in this study to calculate punching shear strength in two-way slabs without 

transverse reinforcement are ACI 318-14, ACI 318-19, ACI 440.1R-06, Eurocode 2, and CSA 

A23.3-14 (ACI Committee 318, 2014, 2019; ACI Committee 440, 2006; Adom-Asamoah & Kankam, 

2008; European Committee for Standardization, 2004). In ACI 318-14, the following equation (8) 

is used to find the punching shear strength, where 𝑏0 (mm), 𝑑 (𝑚𝑚), 𝑓𝑐
′ (MPa) have an effect. 

𝑉𝑛 =  
1

3
√𝑓𝑐

′ 𝑏0𝑑 (8) 

Based on ACI 318-19, equation (9) is an updated form of the equation (8) with three other 

parameters called 𝛼𝑠 (a constant dependent on supporting column location and its value is 40 

for interior columns, 30 for edge columns, and 20 for corner columns; since this study considers 

only interior columns,  𝛼𝑠 = 40), 𝛽 (The ratio of the long side to the short side of the column, 

concentrated load, or reaction area) and 𝜆𝑠 ( which follows:  𝜆𝑠 =  √2 /( 1 + 0.004𝑑)  ≤ 1) 

𝑉𝑛 = 𝑚𝑖𝑛[ 
1

3
 ,

1

6
( 1 + 

2

𝛽
 ) ,

1

12
( 2 +  

𝛼𝑠𝑑

𝑏0
 )] 𝜆𝑠 √𝑓𝑐

′ 𝑏0𝑑 (9) 
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ACI 440.1R-06, using the variable k in equation (10), also enters the ratio of the modulus 

of elasticity of steel to concrete: 

𝑉𝑛 =  0.8 √𝑓𝑐
′ 𝑘𝑏0𝑑 (10) 

Where   𝑘 =  √(𝑛𝜌)2 + 2𝑛𝜌  −  𝑛𝜌    ,    𝑛 =  𝐸𝑠/𝐸𝑐  

In equation (11), Eurocode 2 uses 𝑓𝑐𝑘 instead of 𝑓𝑐
′ as the indicator of characteristic cylinder 

strength (𝑓𝑐𝑘 =  𝑓𝑐
′ –  1.6). 

𝑉𝑛 =   0.18 𝜉 √100𝜌𝑓𝑐𝑘
3

  𝑏0𝑑 (11) 

It also introduces a new variable related to geometry, and this variable and its limit is as follows: 

𝜉 = ( 1 +  √
200

𝑑
)  ≤ 2  

CSA A23.3-14 (Canadian Standards Association, 2014) also uses the normal density of 

concrete (for normal density concrete, λ = 1) in relation to punching shear strength in two-way 

slabs without transverse reinforcement with equation (12): 

𝑉𝑛 = 𝑚𝑖𝑛[ 0.38 , 0.19 ( 1 + 
2

𝛽
 ) , ( 0.19 +  

𝛼𝑠𝑑

𝑏0
 )] 𝜆𝜙𝑐 √𝑓𝑐

′ 𝑏0𝑑 (12) 

Where  𝜙𝑐 = 0.65 and 𝛼𝑠 = 4 for interior columns, 3 for edge columns, and 2 for corner 

columns; since this study considers only interior columns, 𝛼𝑠 = 4. After introducing the above 

equations, the R2 score graphs of punching shear strength test values (V test) and punching 

shear strength results from codes equations (V predicted) are shown in Fig 
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Fig. 23. Comparison of the 𝑅2 score graphs of the punching shear strength test values (V test) vs. punching 

shear strength results from codes equations (V predicted): ACI 318-19, ACI 318-14, ACI 440.1R-06, Eurocode 

2, and CSA A23.3-14. 

4. Conclusions   

Several experimental and few machine learning investigations have been conducted due to the 

significance of the brittle punching shear failure of reinforced concrete flat slabs without 

transverse reinforcement. However, the improvement of machine learning models, which have 

a lower cost of computations (time and hardware) than deep learning models, has not been 

investigated in the studies of machine learning models or deep learning models. Therefore this 

study aims to provide improved machine learning and deep learning models with grid search 

for punching shear strength prediction in reinforced concrete flat slabs without transverse 

reinforcements to make supplementary design proposals. In addition, GEP is impelemeted in 

this study in order to propose a explicit formula to calculate the punching shear strength of 

concrete slabs. 

The following are the conclusions derived from this study: 

1. This study aimed to optimize the accuracy of machine learning and deep learning 

models by applying a grid search to various algorithm parameters. In this effort, 959 

machine learning models and 162 artificial neural network models were evaluated to 

identify the most effective model. Due to the limited number of experimental tests 

available, the methodology of this study—utilizing a range of models and refining their 

hyperparameters with optimization tools—provides a more accurate estimation of the 

punching shear strength of slabs compared to similar studies. 

2. Each model has a unique accuracy on the test data and a unique accuracy on the training 

data, but in ranking the best models, one should pay attention to the accuracy of the test 

data and rank the models accordingly. This is because the test data did not affect the 

training of the model, and the model did not see them. Therefore, it can be a good 
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criterion for evaluating the model. In this study, the best model achieved from the test 

data is the XGB model with an R2 score of 0.98; therefore, the XGB model is introduced 

as the best model in this study. 

3. An expilicit formula based on Genetic expression programming (GEP) for calculating 

punching shear strength of concrete slabs is proposed, which its 𝑅2 score on test data 

obtained 0.95. 

4. After comparing the punching shear obtained from Eurocode 2, ACI, and Canadian 

codes with the actual values of punching shear strength available in the dataset, the best 

R2 score achieved in Eurocode 2 was 0.93, followed by ACI 440.1R-06 with 0.91, while 

the best R2 score of machine learning and deep learning models, was achieved XGB 

accounting for 0.98. Therefore, the values obtained from the codes are far from the 

actual values of the punching shear strength compared to machine learning and neural 

networks models. Therefore, it is suggested that in the new editions of these codes, 

more statistical calculations should be performed on the actual data of punching shear 

strength in order to achieve a better formula closer to reality. 
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