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Abstract 

The nanofluid/air interface is practically used in enhancing heat transfer 

efficiency in thermal management systems, such as in cooling electronics and 

improving the performance of solar collectors. Additionally, it finds 

applications in advanced manufacturing processes and biomedical devices, 

where precise temperature control is crucial. The study investigates the 

instability of the interface between a Newtonian nanofluid and air in a 

rectangular setup. This instability arises when the two fluids flow at different 

velocities, leading to Kelvin-Helmholtz instability at the interface. The air is 

treated as a viscous, incompressible fluid due to its low Mach number, 

positioned above the nanofluid. The stability of the interface is determined 

based on the relative velocity of the fluid layers. The study reveals that various 

flow parameters, including viscosity ratio, density ratio, volume fraction, and 

nanoparticle diameter, influence the stability or instability of the interface. 

Four types of nanofluids are considered, and a comparative analysis is 

conducted. Interestingly, the nanofluid/air system is found to be more stable 

compared to the viscous liquid/air system. Sensitivity analysis is performed to 

examine the impact of different physical variables and their interactions on 

the critical relative velocity. It is observed that the critical velocity consistently 

exhibits positive sensitivity to the density ratio. Moreover, the magnitude of 

critical velocity sensitivities for the density ratio remains constant across all 

cases. The critical velocity demonstrates the highest positive sensitivity with 

respect to the parameter of air thickness, with this maximum sensitivity 

occurring when the air thickness equals 1 and the densities of both fluids are 

identical. 

Keywords: Nanofluids; Kelvin-Helmholtz instability; Brownian motion; Normal-mode analysis; 

Sensitivity Analysis 

1. Introduction 

The interface of two distinct fluids may be unstable if a velocity difference occurs at the interface. This 

velocity difference causes fluctuations in pressure, which trigger the instability. This phenomenon was observed 
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by Helmholtz [1] in the flow field, and Thomson [2] provided a mathematical description of it. As a result, this 

instability is known as Kelvin-Helmholtz instability (KHI). KHI is commonly observed in various natural and 

industrial scenarios, such as when air blows over mercury, during the entry of meteors into Earth's atmosphere, 

and in the swirling movement of ionized bolides in air purifiers, among others. 

Drazin [3] conducted a study on the Kelvin-Helmholtz instability, where the fluids were assumed to be non-

viscous and the flows were considered non-rotational. In this analysis, the flow field was left unrestricted so that 

disturbances would decay far from the interface. Maslowe and Kelly [4] utilized the power-series expansion 

method to investigate the finite amplitude periodic interfacial waves of two incompressible fluids. Nayfeh and 

Saric [5] conducted a nonlinear analysis to study the stability of a liquid film neighboring a compressible gas, 

considering the effect of body force directed either externally from or in the direction of the liquid. Weissmann [6] 

examined the interfacial instability between two streaming semi-infinite fluids and derived time-dependent first 

and second-order equations. It's worth noting that these studies were limited to inviscid fluids. 
In fluid dynamics, if the motion of a fluid is irrotational, it means that the fluid particles don't rotate as they 

move. Joseph and Liao [7] proposed a theory called VPF (viscous potential flow) theory, which analyzes 

irrotational fluid flow even when there's viscosity involved. This theory includes viscosity in the dynamical 

equation at the interface. Funada and Joseph [8] further explored the Kelvin-Helmholtz instability (KHI) for two 

viscous fluids in a horizontal rectangular channel. Although their study was inspired by the work of Drazin, they 

considered viscosity to be present. Awasthi and Agrawal [9] investigated KHI at a cylindrical interface. Their 

findings were similar to those of Funada and Joseph for plane geometry, but they discovered that cylindrical 

geometry was less stable than planar geometry. Kim et al. [10] conducted a comparison of KHI using four different 

theories and found that the dissipationmethod predicts the most stable interface among them. Various authors [11-

13] applied VPF theory to examine KHI at the interface of two Newtonian/non-Newtonian fluids. 

The physical properties of liquids such as viscosity, conductivity, density, etc. play a significant impact in 
the phenomenon of stability of ordinary liquids; these properties remain the same over a particular range of 

temperatures. Therefore, to improve the stabilization of the flow either the fluid has to be changed or the channel 

should be changed. Since flow stability has so many practical and natural applications, it is not possible to change 

the channel as well as the fluid flowing through the channel. Therefore, if the physical properties of the pure liquid 

can be changed by using some additives, the stabilization phenomenon can be modified. In comparison to ordinary 

fluids, the metal density and metal oxide densities are very high and therefore, the physical properties of an 

ordinary fluid can be revised by adding metal oxide/metal particles into it. The inclusion of nano-sized metal-

oxide/metal particles into an ordinary fluid makes the nanofluids. The applications of nanofluids in various 

industries through their physical properties were examined by various authors [14-18]. They established that the 

physical variables of a nanofluid significantly depend on the size and shape of suspended metal nanoparticles, the 

physical and thermal properties of the nanoparticles, the nanoparticle concentration, and the base fluid. It was 

shown by Gaganpreet and Srivastava [19] that the nanofluids viscosity depends upon the shape and size of the 
interfacial layer of the dispersed nano-sized metal oxide/metal nanoparticles. 

Nanofluids have vast industrial applications such as microelectronics, automobiles, nano-chips, etc. and 

therefore, it has attracted numerous researchers working in the field of stability of fluid flow. Moatimid and Hassan 

[20] analyzed the linear convection instability of the viscoelastic nano-fluid of Walter's type along with a vertical 

layer. The stability of two electrically conducting nano-fluid layers was made by Moatimid and Gaber [21]. They 

consider two combinations for their study namely; water𝐴𝑙2𝑂3 −oil 𝐶𝑢𝑂 nanofluid and water𝐴𝑙2𝑂3 −oil 𝑇𝑖𝑂2 

nanofluid. They consider the effect of temperature difference at the basic state and found that the increase in 

temperature difference has a destabilizing effect. Ahuja and Girotra [22] studied RTI in nanofluids numerically as 

well as analytically. Awasthi et al. [23] examine the temporal instability of the interface between a power-low 

viscoelastic nanofluid and a viscous fluid. Girotra et al. [24] added rotational effects on the RTI of the nanofluids 
interface. The RTI of nanofluids in a porous medium was analytically analyzed by Ahuja and Girotra [25]. Awasthi 

et al. [26] examine the RTI at the interface of nanofluid in a circular geometry. The interface of a nanofluid film in 

a cylindrical configuration with heat transport was considered by Motaimid et al. [27]. Han [28] considered the 

temperature and concentration effects on the KHI of a nanofluid layer. He also included the Marangoni effect. The 

instability of nanofluid-viscous fluid in a circular cavity was examined by Awasthi et al. [29]. The spherical 

interface of nanofluid-viscous fluid was studied by Agarwal et al. [30]. 

The study of the division of uncertainty into the output of a mathematical model or system is called sensitivity 

analysis. Through this analysis, one can also find the allocation of various sources of uncertainty. It can also be 

referred to as a simulation mechanism or ‘what-if’. The method of redirecting a given decision by a certain category 

also comes under sensitivity analysis. An analyst, by aggregating all the variables, can also know how changes in 

one variable can affect the result. Leonzio and Zondervan [31] analyzed the absorption process of CO2 from gas 

with ionic fluid statistically. The sensitivity analysis of MHD nanofluid flow with MWCNTs containing engine 
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oil over a disk with rotation was established by Mehmood et al.[32]. They reported that if the nanoparticle's volume 

fraction increases, the fluid velocity deteriorates.Other recent works on the sensitivity analysis of sisko nanofluid 

flow and hybrid nanofluid flow were investigated by Upreti et al. [33] and Uddin et al. [34], respectively. Beg et 

al. [35] conducted an experimental investigation into the lubricity and rheology properties of a drilling fluid, driven 

by its potential applications in extended reach wells.  Shamshuddin et al. [36] made a significant contribution by 

thoroughly examining the heat and mass transfer phenomena in the NF ND–Cu/H₂O system, specifically under 

the effect of an exponentially stretching velocity. Salawu et al. [37] conducted a study on the hybridization of 

zirconium dioxide and copper tangent hyperbolic nanofluid in an ethylene glycol (EG) solvent to optimize thermal 

power. 

The sensitivity analysis of an unstable interface involving moving fluids has not yet been thoroughly 

investigated in academic research. This paper addresses the stability of the plane interface formed between a 

viscous fluid and a Newtonian nanofluid. Using the Response Surface Method (RSM), we perform a sensitivity 
analysis of the nanofluid/air interface. The fluids flow at different velocities, causing the interface to experience 

Kelvin-Helmholtz Instability (KHI). 

Funada and Joseph [8] studied the stability of a pure water-air interface without addressing the sensitivity of 

any parameters. In contrast, this study focuses on the stability of the nanofluid-air interface and includes a 

comprehensive sensitivity analysis of various parameters affecting the system's stability. We utilize a planar 

coordinate system ( , , )x y z  to formulate the mathematical governing equations. The irrotational theory of viscous 

fluids is employed to solve the linear perturbed equations. Applying the normal mode procedure, a second-order 
polynomial based on the perturbation’s growth parameter is derived through a linear stability analysis. Our analysis 

successfully recovers the dispersion relation of Funada and Joseph [8] for the corresponding Newtonian fluid. 

The paper is organized as follows: Section 2 presents the modeling of the physical problem, including 

differential equations and the necessary boundary and interfacial conditions. In Section 3, the perturbation is 

applied, resulting in the derivation of linear equations. The relationship between the growth parameter and wave 

number, derived through linear stability analysis, is also included in this section. Section 4 discusses the numerical 

computation and sensitivity analysis. Finally, Section 5 outlines the key results of the study. 

2. Mathematical Modeling 

Consider an interface 0y =  (figure 1) that separates the Newtonian nanofluid and air in a rectangular 

channel. Both the nanofluid and the air are assumed to be incompressible and viscous fluids, and the depth of the 

channel is finite. Specifically, the nanofluid occupies the lower portion of the channel, while the air is located in 

the upper region. The nanofluid has density
nf

 , viscosity 
nf

  and depth 
nf

h  while air has respective parameters 

are 2
 , 2

  and 2
h . Accepting the formulation given by Ziya et al.[15], the nanofluid density, in terms of 

nanoparticles volume fraction  , base fluid density 
f

 ,and metal particle density 
p

 defined as 

(1 )
nf p f

   = + −                                                                                                                       (1) 

The nanofluid's viscosity is a function of base fluid viscosity, volume fraction of nanoparticles, shape of the 

metal nanoparticles, and the nano-layer formed around the nanoparticles by fluid elements. Considering the impact 

of the above parameters, the mathematical expression of nanofluid viscosity nf
  can be written as (Gaganpreet et 

al. [19]) 
[ ]

1

m

ag

nf f

m

 


 



−

= −
 
 
 

                                                                                                                    (2) 

In the above expression, f
  denotes the base fluid viscosity. The nanoparticles shape parameter is denoted 

by  and for sphere-shaped nanoparticles 2.5 = . Here it is assumed that the nanoparticles are swirling about 

their axes and therefore prolate spheroids shape nanoparticles considered here. In equation (2), the term m


represents the prolate spheroid’s maximum volume fraction and it was shown through various experiments that 

0.68 0.74.
m
   In the present analysis, m

 is taken as 0.74. The term ag
  denotes aggregate volume fraction 

which is related to the equivalent volume fraction mod
 with fractal index  d  as  
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                                                                                                                                                    (3)   

The relation of 
mod
  and   can be expressed in terms of interfacial layer thickness  , semi-minor axis 

length b , and semi-major axis length a of nanoparticles as follows  
2

mod
1 1

a b

 
 = + +

  
  
  

                                                                                                                 (4) 

 

 
Figure 1: Schematic diagram of the problem. 

 

The mathematical governing equations for fluid phases can be written as (Awasthi et al. [23]) 
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Here, ( , )
nf nf nf

q u v=  and 
2 2 2

( , )q u v=  are the velocities in the nanofluid phase and viscous fluid phase, 

respectively. The gravitational acceleration is represented by g  and 
2

,
nf

p p are the pressures in the nanofluid and air 

phases, respectively. 

 

2.1. Boundary conditions 

The boundaries nf
y h= − and 

2
y h=  are rigid and therefore there is no flow across them (Awasthi et al. 
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[23]).  

2 2

0      at            

0       at            

nf nf
v y h

v y h

= = −

= =
                                                                                                                        (7) 

2.2.  Interfacial conditions 

At the free surface, the normal component of interfacial velocity will be zero, and therefore,   

2
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0
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t
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q
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=
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+ 


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                                                                                                                                               (8) 

Here ( , , )E E x y t=  represents the interface equation. 

The surface tension force will neutralize the difference between normal stresses at the free surface. This condition is 

called the dynamical interface condition. Mathematically (Awasthi et al. [23]), 

2 2
ˆ ˆ ˆ( ) ( )nf nfp n p n n  −  − −  = −                                                                                                                  (9) 

Here, 
2
,

nf
  denote normal viscous stresses in air and nanofluid phase, respectively.  represents surface tension 

while n̂ indicates unit outward normal at the interface. 

Initially, the undisturbed interface between two fluid layers is at 0y = . In this state, ( , )0
nf nf

q U= and 
2 2

( , )0q U=  

where 
nf

U  and 
2

U  are constant velocities and therefore 
2

constant
nf

p p= = . 

The stability of the plane interface is examined in the sense that whether a perturbation of small amplitude at the 

interface grows diminishes. Imposing perturbation, the interface takes the form as 

( , , ) ( , ) 0E x y t y x t= − = .                                                                                                                                      (10) 

Here, ( , )x t denotes interface elevation. The outward unit normal to the first-order term is given by 

ˆ ˆˆ ( )
x

n i j= − +                                                                                                                                                           (11) 

In the perturbed state, the velocity of the nanofluid phase ( ),
nfnf nf nf

q U u v=  +  and the velocity of the viscous fluid 

phase
22 2 2

( ),q U u v=  + . Since the perturbed flow is taken as irrotational here, there exist potential functions 
nf

  for 

nanofluid and 
2

  for viscous fluid which satisfies the Laplace equation i.e. 

2
0

nf
 =                                                                                                                                                                   (12) 

2

2
0 =                                                                                                                                                                    (13) 

The normal mode procedure is applied to study the stability of the plane interface. The interface elevation is expressed 

as ( , )
i t ikx

x t e eE



−=  and perturbed quantities ( , , ) ( )

i t ikx
F x y t e F y e

− = . Here,  denotes growth rate parameter 
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while k represents wavenumber, E is a constant. 

In the perturbed state, the linear form of equation (8) at 0y = can be written as 

2

2

nf

nf
U

t x y

U
t x y

 

 

 
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                                                                                                                                                  (14)  

3. Dispersion relationship 

Hence the expression of 
nf

  and 
2

  are 

cosh( (1
( )
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nfi t ikx
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The linear dynamical equation in a perturbed state can be achieved as 

( )
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                                                                        (17) 

Bernoulli's equation is employed to compute the pressures in equation (17) and therefore, it reduces to 

[ ] 22 2

2 2 2

2 2 2 2 2 2
2 2 1
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nf nf ag nf
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    (18) 

 

Putting the expressions of𝜂, 𝛷𝑛𝑓and 𝛷2to the equation (18), the relation is achieved as 

        (19) 

 

Where 
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In equation (18) replacing 𝜔 by 𝑖𝜔,the relation given by Funada and Joseph [8] is achieved. 

Equation (19) may be re-written as 

 

 (20) 

The perturbation’s growth is a complex quantity i.e. . Equation (20) can be separated into real and 

imaginary parts as  

 (21) 

Substitute 

 

Then (20)  

 (22) 

Where 

 (23) 

We found a biquadratic equation in 𝜁 as 

 (24) 

 (25) 

Then the decrement instability will look like 

 (26) 
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From equation (26), the wave growth parameter can be obtained as a function of wave number. it is well-known fact 

that for neutral stability 𝜔𝐼 = 0  and therefore the neutral stability curves can be achieved by the expression 

 which in turn implies that  

 

          (27) 

 

Eliminating 𝑝, 𝑞, 𝑐, 𝑐1into the above equation, the expression of the relative velocity is achieved as 

 

       (28) 

 

The lowest point on the curves is obtained as 

 

         (29) 

 

The flow is unstable if 

 

.                                                                                                       (30) 

 

Take as characteristic length and 

  and  

 

The dimensionless form of equation (28) is given as 

 

                     (31) 

 

Here   and   ,  

In the case of 𝛢 = 1 and 𝛣 = 1, equation (30) reduces to the same expression as achieved by Funada and Joseph [8]. 
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4. Results and Discussions 

4.1. Stability Analysis 

This study carried out the numerical computation for four different types of nanofluids viz. 𝐴𝑙2𝑂3 +
𝐻2𝑂, 𝐶𝑢𝑂 + 𝐻2𝑂 ,𝐴𝑙2𝑂3 + 𝐸𝐺  (ethylene glycol), and 𝐶𝑢𝑂 + 𝐸𝐺  with different nanoparticle concentrations. The 

viscosity model used for the calculations is validated from the published literature [19]. To compute the results the 

computer codes were written in MATLAB. Sphere-shaped particles have been considered for the calculation, therefore 

the value of δis fixed at 2.5 and the value of fractal index parameter 𝑑 is taken as 1.8. Other physical properties of the 

nanoparticles and the base fluids are the following: 

 

 

 

 

 

 

 

 

Figure 2: Comparison of water & air and water-based alumina 𝜑 = 0.5 

In Figure 2, a comparison between two cases of fluid layers viz. pure water & air versus water-based alumina 

nanofluid & air for different upper fluid (Air) fractions have been made.  It is observed that Nano fluid & Air is more 

stable than Water & Air combination for the same upper fluid fraction. With the increase in the value of the upper 

fluid fraction stability region also increases. The minimum values of wave number and corresponding minimum 

relative velocities for each of these neutral curves have been tabulated in table 1. 

 

Table 1: Minimum relative velocity and wave number. 

Fluid type Upper fluid fraction β Min k (1/m) Min V (m/sec) 
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Water & Air (Funada and 

Joseph[8]) 

0.5 403.1 5.741 

Water-based Alumina & Air 0.5 424.6 6.19 

Water & Air 0.6 407.5 5.7412 

Water-based Alumina & Air 0.6 425.6 6.19 

Water & Air 0.7 407.5 5.743 

Water-based Alumina & Air 0.7 425.6 6.19 

 

In Figure 3, a comparison among pure water &air, water-based alumina (𝐴𝑙2𝑂3), and cupric oxide (𝐶𝑢𝑂) 

nanofluids has been made. The interface of pure water& air has already been discussed by Funada and Joseph [8]. It 

is depicted from the figure that the insertion of nano-sized particles in pure water stabilizes the flow behavior. The 

reason for this is the dependence of nanofluid viscosity on the density of nanoparticles. As given in the literature 

survey and equation (2), the viscosity of the nanofluid increases with the insertion of nanoparticles in pure fluid 

(water). It is also observed from the same figure that a water-based 𝐶𝑢𝑂 nano fluid &air combination is more stable 

than water-based𝐴𝑙2𝑂3  nanofluid & Air. 

 

 

Figure 3: Comparison of pure water &air, water-based alumina, and water-based cupric oxide 𝛽 = 0.5, 𝜑 =

0.5 
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Figure 4: Comparison of water and eg-based nanofluids 𝛽 = 0.5, 𝜑 = 0.5 

Figure 4 shows the comparative stabilizing behavior for different nanofluids viz. water and ethylene glycol 

(EG) based 𝐴𝑙2𝑂3  and 𝐶𝑢𝑂 nanofluids with air. It is observed that 𝐶𝑢𝑂 − 𝐸𝐺&air combination is the most stable 

among all combinations. In the previous figure, it was observed that 𝐶𝑢𝑂 −water with air is more stable than 

𝐴𝑙2𝑂3 − water &air. This means that the stabilizing behavior depends upon both the nanoparticle and the base 

fluid. The higher the density of nanoparticles and the more viscosity of base fluid results in more stable flow 

behavior. From the figure, it is also depicted that the flow stability behavior is reversed for large wave numbers. 

The reason for this reversal might be the increasing Brownian motion of nanoparticles with higher wave numbers. 

From Figure 5 it is observed that with the increase in nanoparticle size the stability region decreases. This is 

because of the reason that for a fixed nanoparticle concentration in the pure base fluid, with the increase in 

nanoparticle size, aggregate volume fraction decreases. Therefore, with the increase of nanoparticle diameter the 

overall viscosity of nanofluid decreases, hence it destabilizes the flow. 

In Figure 6 neutral curves have been plotted for 𝐴𝑙2𝑂3 − water nanofluid and air combination with respect to 

different volume fractions of nano-sized 𝐴𝑙2𝑂3  particles in water. It is observed that stable region increases on 

increasing the particle volume fraction in the base fluid. It is obvious as well because with the increase in 

nanoparticle volume fraction, the equivalent volume fraction which resulted from the nanolayer formed around 

the nanoparticle increases, and hence aggregate fraction increases which further increases the viscosity of the 

nanofluid, and therefore results in the stability in the fluid flow behavior. 
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Figure 5: Water-based alumina for different diameters 𝛽 = 0.5, 𝜑 = 0.5 

 

Figure 6: water based Alumina for different 𝜑(𝛽 = 0.5) 
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Figure 7: Water-basedaluminafor different viscosity of upper fluids𝛽 = 0.5, 𝜑 = 0.5 

 

In Figure 7, Neutral curves have been plotted for different viscosity of upper fluids for water mixed with 

Aluminum Oxide & Air. It is observed that Viscosity stabilizes the system. The increase in viscosity induces extra 

viscous forces at the interface of two fluids and these viscous forces work to dampen the perturbations and the interface 

goes towards stability. 

4.2. Sensitivity Analysis 

The sensitivity of different parameters on 𝑉̂𝑚𝑖𝑛  is performed by fitting a full quadratic regression model and 

a detailed Analysis of variance is performed. For this analysis Response Surface Method (RSM) is utilized. This 

method utilizes the concept of regression fit along with statistical analysis. The output is maximized with respect to 

the input variables. Further details of this method can be found in [28], [29], and [30]. 

Fully quadratic regression fit for “𝑓” input variables used in RSM is given below: 

 
   (32) 

 

The above equation can also be represented as: 

 
 

 

here, ∈ represents the fitting error. The least square method is used to minimize the error for the best response surface 

fit. 
To generate the response surface given by equation (32), the FCCD is used, which is shown in figure 8. The 

independent variables (inputs) are coded in the form of low (-1), medium (0), and high (1) values.  

The total number of combinations of input variables needed to create the FCCD structure is calculated with the 

help of 𝑁 = 2𝑓 + 2𝑓 + 𝐶, where 𝐶represents the number of central points of the cubical structure. For the present 

study, the total number of input variables is 3, and for FCCD =6, which gives 𝑁 = 20. The overall input variables 

combinations and the corresponding outputs (responses) are presented in table 2. To fit the model MiniTab software 
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is used. 

 

Figure8:  Full factorial face-centered central composite design 

To create the response, the surface of the input variables is considered in the below-given ranges. 
 

Considering all the possible combinations the coded input/output table for CCD is presented in Table 2. 

Table 2: Input-output Table for CCD. 

 Numerical 

experiment 

Serial no. 

Coded 

Variable A 

(A is coded 

ℎ̂2) 

Coded 

Variable B 

(B is coded 

∅) 

 

Coded 

Variable C 

(C is coded 

𝜌 ) 

 

Response/Out

put (1)𝑉̂𝑚𝑖𝑛 

Corner 

points (𝟐𝒇) 

1 -1 -1 -1 0.4181 

2 1 -1 -1 0.4242 
3 -1 1 -1 0.4283 

4 1 1 -1 0.4332 

5 -1 -1 1 0.4343 

6 1 -1 1 0.4447 

7 -1 1 1 0.4487 

8 1 1 1 0.4566 

Axial 

points (𝟐𝒇) 

 

9 -1 0 0 0.4321 

10 1 0 0 0.4391 

11 0 -1 0 0.4358 

12 0 1 0 0.4441 

13 0 0 -1 0.4287 

14 0 0 1 0.4508 

Repeated 

centre 

points(𝑪) 

 

15 0 0 0 0.4391 

16 0 0 0 0.4391 
17 0 0 0 0.4391 

18 0 0 0 0.4391 

19 0 0 0 0.4391 

20 0 0 0 0.4391 

 

(0,0

,0) 

(-1,-1,-1) 

(-1,1,-1) 
(1,1,-1) 

(1,-1,-1) 

(-1, 1,1) (1,1,1) 

(1-1,1) 
(-1-1,1) 

(-1,0,0) 

(1,0,0) 

(0,1,0) 

(0,-1,0) 

(0,0,-1) 

(0,0,1) 
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Quadratic Mathematical Model: 

The important independent variables and their mutual interactions are identified by using the statistical “Pareto 

chart at 𝛼 = 0.05” given in Figure 9. 

 

Figure 9: Pareto chart at 𝛼 = 0.05 

Based on the significant parameters the fitted quadratic models for 𝑉̂𝑚𝑖𝑛is given in equations (33). 

            (33)                                                                                                     

             

Analysis of Variance (ANOVA): 

To further confirm the validity of the equation (33), an Analysis of variance is utilized. The statistical significance 
of the terms in the regression equation is determined by computing the p-values using F-distribution. The detailed 

ANOVA is shown in Table 3. F-distribution and corresponding p-values are calculated for each term and at a 95% 

level of significance, the important parameters and corresponding interaction terms are identified. 

Table 3: ANOVA Table for 𝑉̂𝑚𝑖𝑛. 

 

Source 

 

 

DF 

 

 

Adj SS 

 

 

Adj MS 

 

 

F-Value 

 

 

P-Value 

 

Comment 

Model 9 0.001550 0.000172 281.76 0.000 * 

Linear 3 0.001474 0.000491 803.81 0.000 * 

A 1 0.000132 0.000132 215.59 0.000 Significant 

B 1 0.000289 0.000289 473.56 0.000 Significant 

C 1 0.001053 0.001053 1722.29 0.000 Significant 

Square 3 0.000061 0.000020 33.46 0.000 * 

A*A 1 0.000042 0.000042 68.27 0.000 Significant 

B*B 1 0.000001 0.000001 0.93 0.358 Insignificant 

C*C 1 0.000000 0.000000 0.29 0.601 Insignificant 

2-Way Interaction 3 0.000015 0.000005 8.00 0.005 * 
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A*B 1 0.000002 0.000002 2.80 0.125 Insignificant 

A*C 1 0.000007 0.000007 10.90 0.008 Significant 

B*C 1 0.000006 0.000006 10.31 0.009 Significant 

Error 10 0.000006 0.000001      

Lack-of-Fit 5 0.000006 0.000001 * * * 

Pure Error 5 0.000000 0.000000     * 

Total 19 0.001556        

 

The goodness of fitted quadratic models: 

The goodness of fitted models is evaluated by computing the corresponding coefficients of determination. For  

𝑉̂𝑚𝑖𝑛  this value is obtained as 0.9961. Various error plots areanalyzed to validate the analysis further. These plots are 

shown in figure 10. These residual plots confirm the normality, independence, and randomness assumptions of the 

Analysis of Variance. 

 

 

Figure 10: Residual plots for 𝑉̂𝑚𝑖𝑛 

Sensitivity Analysis: 

The sensitivities of 𝑉̂𝑚𝑖𝑛  on different parameters are obtained by partial differentiation of equations (33)with 

respect to the input parameters and are given in equations (33)-(38) 

 

     (34) 

 

      (35) 

 

     (36) 

 

In the present analysis, the sensitivities are analyzed by keeping B at medium value and changing the other 

variables from low to high values. The sensitivity plots for 𝑉̂𝑚𝑖𝑛are presented in Figures 11(a, b, c).In these figures, 
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the sensitivity is demonstrated using bar graphs. The bars in the positive direction show the positive sensitivity whereas 

the bars in the negative direction represent the negative sensitivity. The parameters A=-1, 0, 1, B=-1, 0, 1, and C= -1, 

0, 1 are representing the coded values for the non-dimensional parameter ℎ̂2=0.2, 0.5, 0.8, ∅=0.01, 0.03, 0.05 and 

𝜌=0.0010, 0.0011, 0.0012 respectively. 

Figure 11a depicts that for the minimum value of A, the 𝑉̂𝑚𝑖𝑛 is most sensitive to parameter A.  

From Figure 11b, it is depicted that 𝑉̂𝑚𝑖𝑛 is positively sensitive with respect to all the parameters A, B, and C, and 

the maximum sensitivity is observed for C, i.e. non-dimensional density parameter.  

The sensitivities of 𝑉̂𝑚𝑖𝑛 for the high value of A are plotted in Figure 11c. It is depicted that  𝑉̂𝑚𝑖𝑛is negatively 

sensitive to the parameter A, and the magnitude of this negative sensitivity decreases with increasing value of 

parameter C. Figure 10c also depicts that 𝑉̂𝑚𝑖𝑛 has the highest positive sensitivity for parameter C.  

 

Figure 11a: For A=-1 

 

Figure 11b: For A=0 
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Figure 11c: For A=1 

 

5. Conclusion 

The Kelvin-Helmholtz instability at the interface of air and nano-fluid is considered in the present study. Stability 

Analysis and sensitivity analysis are discussed in this paper. Marginal stability in terms of relative velocity is 

presented. A minimum relative velocity is required for the instability to set in. sensitivity analysis has been done to 

study not only the effect of different parameters on the stability but also to study their combined effect. It has been 

observed that the particle size has a destabilizing effect. Nanoparticle volume fraction has to stabilize effect. Ethylene 

glycol-based Cupric oxide is the most stable of all nano-fluids that we have considered in this study. Sensitivity 

analysis using RSM has been discussed for critical velocity (Minimum velocity on the neutral curve). The 

nanofluid/air system demonstrates greater stability compared to the viscous liquid/air system. It is observed that the 

critical velocity consistently shows positive sensitivity to the density ratio, and the magnitude of these sensitivities 

remains constant across all cases. The critical velocity exhibits the highest positive sensitivity concerning the air 

thickness parameter, with this maximum sensitivity occurring when the air thickness is 1 and the densities of both 

fluids are equal.  
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