
تعداد نشریات | 163 |
تعداد شمارهها | 6,714 |
تعداد مقالات | 72,518 |
تعداد مشاهده مقاله | 130,570,960 |
تعداد دریافت فایل اصل مقاله | 102,848,601 |
اثر تابش مرحلهای نور UV-C روی برخی پارامترهای کیفی و فعالیت آنتیاکسیدانی میوه توتفرنگی رقم پاروس در دوره انبارمانی | ||
علوم باغبانی ایران | ||
دوره 55، شماره 4، دی 1403، صفحه 655-678 اصل مقاله (1.86 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2024.376357.2174 | ||
نویسندگان | ||
مهنوش هاشمی1؛ محمد سیاری* 2؛ مرتضی سلیمانی اقدم3؛ علی عزیزی1؛ وحیده مهدوی4 | ||
1گروه علوم باغبانی،دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران | ||
2گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران. | ||
3گروه علوم باغبانی دانشکده کشاورزی، دانشگاه بین المللی امام خمینی، قزوین، ایران | ||
4بخش تحقیقات آفتکش ها، موسسه تحقیقات گیاهپزشکی کشور، سازمان تحقیقات،آموزش و ترویج کشاورزی،تهران، ایران | ||
چکیده | ||
این پژوهش با هدف بررسی کاربرد مرحلهای نور UV-C روی برخی ویژگیهای کیفی و فیتوشیمیایی میوه توت فرنگی رقم پاروس طی دوره انبار 14 روزه در دمای 4 درجه سلسیوس و رطوبت نسبی 90-85 درصد انجام گرفت. این آزمایش در سال 1401 و به صورت فاکتوریل در قالب طرح کاملاً تصادفی با دو فاکتور انجام شد. فاکتور اول نور UV-C (شاهد، بدون تابش UV-C)، تک مرحلهای، دو مرحلهای و چند مرحلهای با شدت4 کیلو ژول یر مترمربع(، و فاکتور دوم دوره انباری (صفر، 7 و 14 روز) بود. نتایج نشان داد که در پایان دوره انبارداری، میزان کاهش وزن و پوسیدگی در تیمار تابش چند مرحلهای UV-C به ترتیب 17/55 درصد و 73/72 بود. همچنین، این تیمار توانست سفتی و مقدار اسیدیته قابل تیتراسیون را به ترتیب 148 و 64 درصد بهتر از تیمار شاهد حفظ کند. بین میزان پی اچ تیمارهای UV-C در پایان انبارداری تفاوت معنی داری وجود نداشت. علاوه بر این، در پایان دوره انبارداری تیمار چند مرحلهای UV-C مقدار ویتامین ث (65/61 درصد)، محتوای فنل کل (44/49 درصد) و فعالیت آنتی اکسیدانی (92/22 درصد) بیشتری را نسبت به تیمار شاهد نشان داد. در تیمار تابش تک مرحلهای UV-C میزان محتوای فلاونوئید و آنتوسیانین کل بهترتیب 51 و 111 درصد بیشتر از تیمار شاهد در پایان انبارداری بود. تابش UV-C سبب کاهش مقدار L* شد، اما این کاهش در تیمار چند مرحلهای کمتر بود. همچنین، تحت تیمار UV-C افزایش میزان a* و زاویه هیو مشاهده شد که میزان این افزایش در تیمار چند مرحلهای بیشتر از سایر تیمارها بود. در مجموع، تابش چند مرحلهای UV-C بیشترین تأثیر را در افزایش ترکیبهای زیست فعال و حفظ کیفیت میوه توتفرنگی نشان داد. تیمار دو مرحلهای UV-C نیز اثرات مثبت بیشتری نسبت به تیمار تک مرحلهای داشت. | ||
کلیدواژهها | ||
آنتوسیانین؛ انبارمانی؛ پوسیدگی؛ سفتی؛ فنل کل | ||
مراجع | ||
منابععسگریان، زهرا سادات؛ سیاری، محمد و اثنی عشری، محمود (1398). اثر پرتودهی با نور UV-C بر کاهش سرمازدگی میوه خرمالو رقم کاشان طی انبارمانی. مجله تولیدات گیاهی، 42(2)، 181-194. حسینی فرهی، مهدی؛ رادی، محسن؛ باقری، فرود و جمشیدی، احسان (1397). بررسی ویژگیهای کیفی و ارگانولپتیکی پس از برداشت میوه توتفرنگی با کاربرد ژل آلوئهورا، استیک اسید و پرتو فرابنفش بی. مجله علوم و فنون باغبانی ایران، 19(1)، 99-114. محمدی، امیر علی؛ شهابیان، مهرداد؛ رمضانپور، محمودرضا و حاجیوند، شکراله (1401). بررسی اثرات نیترات کلسیم و فسفیت پتاسیم بر عمر انباری و برخی صفات کیفی پرتقال تامسون ناول. تولیدات گیاهی، 45(2)، 181-192. نصیر زاده، م. (1389). اثر کاربرد پس از برداشت پلیآمینها بر کاهش سرمازدگی، رسیدن میوه و افزایش ماندگاری میوه گوجه فرنگی. (پایان نامه کارشناسی ارشد. دانشگاه شیراز، ایران).
RERERENCES Abdipour, M., Hosseinifarahi, M. & Naseri, N. (2019). Combination method of UV-B and UV-C prevents post-harvest decay and improves organoleptic quality of peach fruit. Scientia Horticulturae, 256, 108564. http://dx.doi.org/10.1016/j.scienta.2019.108564 Abdipour, M., Sadat Malekhossini, P., Hosseinifarahi, M. & Radi, M. (2020). Integration of UV irradiation and chitosan coating: A powerful treatment for maintaining the postharvest quality of sweet cherry fruit. Scientia Horticulturae, 264, 109197. http://dx.doi.org/10.1016/j.scienta.2020.109197 Ali, L. M., Ahmed, A. E. R.A. E. R., Hasan, H.E S., Suliman, A. E. R. E., & Saleh, S.S. (2022). Quality characteristics of strawberry fruit following a combined treatment of laser sterilization and guava leaf-based chitosan nanoparticle coating. Chemical and Biological Technologies in Agriculture, 9, 80 . https://doi.org/10.1186/s40538-022-00343-x Alothman, M., Bhat, R. & Karim, A. A. (2009a). Effects of radiation processing on phytochemicals and antioxidants in plant produce. Trends in Food Science & Technology, 20(5), 201–212. http://dx.doi.org/10.1016/j.tifs.2009.02.003 Alothman, M., Bhat, R. & Karim, A. A. (2009b). UV radiation-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innovative Food Science & Emerging Technologies, 10(4), 512–516. http://dx.doi.org/10.1016/j.ifset.2009.03.004 Amatori, S., Mazzoni, L., Alvarez-Suarez, J. M., Giampieri, F., Gasparrini, M., Forbes-Hernandez, T. Y. … & Battino, M. (2016). Polyphenol-rich strawberry extract (PRSE) shows in vitro and in vivo biological activity against invasive breast cancer cells. Scientific Reports, 6(1), 30917. http://dx.doi.org/10.1038/srep30917 Amiri, A., Mortazavi, S. M. H., Ramezanian, A., Mahmoodi Sourestani, M., Mottaghipisheh, J., Iriti, M. & Vitalini, S. (2021). Prevention of decay and maintenance of bioactive compounds in strawberry by application of UV-C and essential oils. Journal of Food Measurement and Characterization, 15(6), 5310–5317. https://link.springer.com/article/10.1007/s11694-021-01095-2 Araque, L.C.O., Rodoni, L. M., Darré, M., Ortiz, C. M., Civello, P.M. & Vicente, A. R. (2018). Cyclic low dose UV-C treatments retain strawberry fruit quality more effectively than conventional pre-storage single high fluence applications Enhanced Reader. LWT, 92, 304–311. http://dx.doi.org/10.1016/j.lwt.2018.02.050 Asgareyan, Z. S., Sayyari, M. & Asnaashari, M. (2019). The Effect of UV-C Radiation on Alleviating Chilling Injuries of Persimmon Fruit Cv. Kashan During Cold Storage. Plant Production, 42(2), 181-194. http://dx.doi.org/10.22055/ppd.2019.18805.1367 (In Persian). Barikloo, H. & Ahmadi, E. (2018). Effect of nanocomposite-based packaging and chitosan coating on the physical, chemical, and mechanical traits of strawberry during storage. Journal of Food Measurement and Characterization, 12(3), 1795–1817. https://link.springer.com/article/10.1007/s11694-018-9795-3 Becerra-Moreno, A., Redondo-Gil, M., Benavides, J., Nair, V., Cisneros-Zevallos, L. & Jacobo-Velázquez, D. A. (2015). Combined effect of water loss and wounding stress on gene activation of metabolic pathways associated with phenolic biosynthesis in carrot. Frontiers in Plant Science, 6, 837. https://doi.org/10.3389/fpls.2015.00837 Brand-Williams, W., Cuvelier, M. E. & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology. 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5 Bravo, S., García-Alonso, J., Martín-Pozuelo, G., Gómez, V., Santaella, M., Navarro-González, I. & Periago, M.J. (2012). The influence of post-harvest UV-C hormesis on lycopene, β-carotene, and phenolic content and antioxidant activity of breaker tomatoes. Food Research International, 49(1), 296–302. http://dx.doi.org/10.1016/j.foodres.2012.07.018 Caner, C., Aday, M. S. & Demir, M. (2008). Extending the quality of fresh strawberries by equilibrium modified atmosphere packaging. European Food Research and Technology, 227(6), 1575–1583. http://dx.doi.org/10.1007/s00217-008-0881-3 Chang, C. C., Yang, M. H., Wen, H. M. & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10(3), 178-182. http://www.fda.gov.tw/tc/includes/GetFile.ashx?id=f636694411578267719 Cisneros-Zevallos, L., Jacobo-Velázquez, D. A., Pech, J.C., & Koiwa, H. (2014). Signaling Molecules Involved in the Postharvest Stress Response of Plants: Quality Changes and Synthesis of Secondary Metabolites. In M. Pessarakli (Ed.), Handbook of Plant and Crop Physiology (pp. 259-276, 3rd edition, CRC Press. Damdam, A., Al-Zahrani, A., Salah, L. & Salama, K. N. (2023). Effect of combining UV-C irradiation and vacuum sealing on the shelf life of fresh strawberries and tomatoes. Journal of Food Science, 88(2), 595–607. http://dx.doi.org/10.1111/1750-3841.16444 Darvishi, S., Fatemi, A. & Davari, K. (2012). Keeping quality of use of fresh “Kurdistan” strawberry by UV-C radiation. World Applied Sciences Journal, 17(7), 826–831. El Ghaouth, A., Wilson, C. L. & Callahan, A. M. (2003). Induction of chitinase, β-1,3-glucanase, and phenylalanine ammonia lyase in peach fruit by UV-C treatment. Phytopathology, 93(3), 349–355. https://doi.org/10.1094/phyto.2003.93.3.349 Erkan, M., Wang, S. Y. & Wang, C. Y. (2008). Effect of UV treatment on antioxidant capacity, antioxidant enzyme activity and decay in strawberry fruit. Postharvest Biology and Technology, 48(2), 163–171. http://dx.doi.org/10.1016/j.postharvbio.2007.09.028 Formica-Oliveira, A. C., Martínez-Hernández, G. B., Díaz-López, V., Artés, F. & Artés-Hernández, F. (2017). Use of postharvest UV-B and UV-C radiation treatments to revalorize broccoli byproducts and edible florets. Innovative Food Science & Emerging Technologies, 43, 77–83. http://dx.doi.org/10.1016/j.ifset.2017.07.036 García, M. A., Ventosa, M., Díaz, R., Falco, S. & Casariego, A. (2014). Effects of Aloe vera coating on postharvest quality of tomato. Fruits, 69(2), 117–126. http://dx.doi.org/10.1051/fruits/2014001 Gill, S. S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909–930. http://dx.doi.org/10.1016/j.plaphy.2010.08.016 Gol, N. B., Chaudhari, M. L. & Rao, T. V. R. (2015). Effect of edible coatings on quality and shelf life of carambola (Averrhoa carambola L.) fruit during storage. Journal of Food Science and Technology, 52(1), 78–91. http://dx.doi.org/10.1007/s13197-013-0988-9 Gonzalez-Aguilar, G. A., Celis, J., Sotelo-Mundo, R. R., De La Rosa, L. A., Rodrigo-Garcia, J. & Alvarez-Parrilla, E. (2008). Physiological and biochemical changes of different fresh-cut mango cultivars stored at 5 °C. International Journal of Food Science & Technology, 43(1), 91–101. http://dx.doi.org/10.1111/j.1365-2621.2006.01394.x González-Aguilar, G. A., Villegas-Ochoa, M. A., Martínez-Téllez, M. A., Gardea, A. A. & Ayala-Zavala, J.F. (2007). Improving antioxidant capacity of fresh-cut mangoes treated with UV-C. Journal of Food Science, 72(3), S197–S202. http://dx.doi.org/10.1111/j.1750-3841.2007.00295.x González-Aguilar, G. A., Zavaleta-Gatica, R. & Tiznado-Hernández, M. E. (2007). Improving postharvest quality of mango ‘Haden’ by UV-C treatment. Postharvest Biology and Technology, 45(1), 108–116. http://dx.doi.org/10.1016/j.postharvbio.2007.01.012 Gumede, M., Mditshwa, A., Tesfay, S. Z., Magwaza, L. S. & Mbili, N. C. (2020). The effect of ozone and UV-C irradiation on strawberry postharvest quality. Acta Horticulturae, 1275, 15–22. http://dx.doi.org/10.13140/RG.2.2.22753.35685 Hakguder Taze, B. & Unluturk, S. (2018). Effect of postharvest UV-C treatment on the microbial quality of ‘Şalak’ apricot. Scientia Horticulturae, 233, 370–377. https://doi.org/10.1016/j.scienta.2018.02.012 Han, C., Zhao, Y., Leonard, S. W. & Traber, M.G. (2004). Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria × ananassa) and raspberries (Rubus ideaus). Postharvest Biology and Technology, 33(1), 67–78. http://dx.doi.org/10.1016/j.postharvbio.2004.01.008 Hosseini, F.S., Akhavan, H.R., Maghsoudi, H., Hajimohammadi-Farimani, R. & Balvardi, M. (2019). Effects of a rotational UV-C irradiation system and packaging on the shelf life of fresh pistachio. Journal of the Science of Food and Agriculture, 99(11), 5229–5238. http://dx.doi.org/10.1002/jsfa.9763 Hosseinifarahi, M., Radi, M., Bagheri, F. & Jamshidi, E. (2018). Evaluation of postharvest quality and organoleptic characteristics of Strawberry with application of Aloe vera gel, acetic acid and UV-B irradiation. Iranian Journal of Horticultural Science and Technology, 19(1), 99-114. https://dor.isc.ac/dor/20.1001.1.16807154.1397.19.1.5.5 (In Persian). Hu, X., Chen, Y., Wu, X., Liu, W., Jing, X., Liu, Y., Yan, J., Liu, S. & Qin, W. (2022). Combination of calcium lactate impregnation with UV-C irradiation maintains quality and improves antioxidant capacity of fresh-cut kiwifruit slices. Food Chemistry: X, 14, 100329. http://dx.doi.org/10.1016/j.fochx.2022.100329 Idzwana, M. I. N., Chou, K. Sen, Shah, R. M. & Soh, N. C. (2020). The effect of ultraviolet light treatment in extend shelf life and preserve the quality of strawberry (Fragaria x ananassa) cv. Festival. International Journal on Food, Agriculture and Natural Resources, 1(1), 15–18. http://dx.doi.org/10.46676/ij-fanres.v1i1.4 Kataoka, I., Sugiyama, A. & Beppu, K. (2005). Involvement of UV rays in sweet cherry fruit coloration during maturation. Acta Horticulturae, 667, 461–466. http://dx.doi.org/10.17660/ActaHortic.2005.667.66 Li, D., Luo, Z., Mou, W., Wang, Y., Ying, T. & Mao, L. (2014). ABA and UV-C effects on quality, antioxidant capacity and anthocyanin contents of strawberry fruit (Fragaria ananassa Duch.). Postharvest Biology and Technology, 90, 56–62. http://dx.doi.org/10.1016/j.postharvbio.2013.12.006 Li, M., Li, X., Han, C., Ji, N., Jin, P. & Zheng, Y. (2019). UV-C treatment maintains quality and enhances antioxidant capacity of fresh-cut strawberries. Postharvest Biology and Technology, 156, 110945. http://dx.doi.org/10.1016/j.postharvbio.2019.110945 Lichtscheidl‐Schultz, I. (1985). Effects of UV-C and UV-B on cytomorphology and water permeability of inner epidermal cells of Allium cepa. Physiologia Plantarum, 63(3), 269–276. https://doi.org/10.1111/j.1399-3054.1985.tb04264.x Lin, Y., Huang, R., Sun, X., Yu, X., Xiao, Y., Wang, L., Hu, W. & Zhong, T. (2021). The p-Anisaldehyde/β-cyclodextrin inclusion complexes as fumigation agent for control of postharvest decay and quality of strawberry. Food Control, 130, 108346. https://doi.org/10.1016/j.foodcont.2021.108346 Liu, C. hong, Cai, L. yun, Lu, X. ying, Han, X. xu & Ying, T. jin. (2012). Effect of postharvest UV-C irradiation on phenolic compound content and antioxidant activity of tomato fruit during storage. Journal of Integrative Agriculture, 11(1), 159–165. http://dx.doi.org/10.1016/S1671-2927(12)60794-9 Liu, K., Yuan, C., Chen, Y., Li, H. & Liu, J. (2014). Combined effects of ascorbic acid and chitosan on the quality maintenance and shelf life of plums. Scientia Horticulturae, 176, 45–53. https://doi.org/10.1016/j.scienta.2014.06.027 Lu, Y., Li, D., Li, L., Belwal, T., Xu, Y., Lin, X., Duan, Z. & Luo, Z. (2020). Effects of elevated CO2 on pigment metabolism of postharvest mandarin fruit for degreening. Food Chemistry, 318, 126462. http://dx.doi.org/10.1016/j.foodchem.2020.126462 Maharaj, R., Arul, J. & Nadeau, P. (2014). UV-C irradiation effects on levels of enzymic and non-enzymic phytochemicals in tomato. Innovative Food Science & Emerging Technologies, 21, 99–106. https://doi.org/10.1016/j.ifset.2013.10.001 Maurer, L. H., Bersch, A. M., Santos, R. O., Trindade, S. C., Costa, E. L., Peres, M. M., … & Emanuelli, T. (2017). Postharvest UV-C irradiation stimulates the non-enzymatic and enzymatic antioxidant system of ‘Isabel’ hybrid grapes (Vitis labrusca × Vitis vinifera L.). Food Research International, 102, 738–747. https://doi.org/10.1016/j.foodres.2017.09.053 Mercier, J., Baka, M., Reddy, B., Corcuff, R. & Arul, J. (2001). Shortwave ultraviolet irradiation for control of decay caused by Botrytis cinerea in bell pepper: Induced resistance and germicidal effects. Journal of the American Society for Horticultural Science, 126(1), 128–133. http://dx.doi.org/10.21273/JASHS.126.1.128 Mohammadi, A., Shahabian, M., Ramezanpour, M. R. & Hajivand, S. (2022). Evaluation of the Effects of Calcium Nitrate and Potassium Phosphite on the Storage Life and Some Quality Traits of Thomson Navel Orange. Plant Productions, 45(2), 181–192. https://doi.org/10.22055/ppd.2021.35965.1959 (In Persian). Muhammad, I., Ashiru, S., Ibrahim, I., Kanoma, A. I., Sani, I. & Garba, S. (2014). Effect of ripening stage on vitamin C content in selected fruits. International Journal of Agriculture Forestry and Fisheries, 2(3), 60–65. Nadim, Z., Ahmadi, E., Sarikhani, H. & Amiri Chayjan, R. (2015). Effect of methylcellulose-based edible coating on strawberry fruit’s quality maintenance during storage. Journal of Food Processing and Preservation, 39(1), 80–90. http://dx.doi.org/10.1111/jfpp.12227 Nasirzadeh, M. (2010). Influence of Postharvest Application of Polyamines on Reducing Chilling Injury, Ripening and Improving the Shelf Life of Tomato (Lycopersicon esculentum L.) Fruit. (M. Sc. Thesis. Faculty of Agriculture, Shiraz University, Iran).(In Persian). Nigro, F., Ippolito, A. & Lima, G. (1998). Use of UV-C light to reduce Botrytis storage rot of table grapes. Postharvest Biology and Technology, 13(3), 171–181. https://doi.org/10.1016/S0925-5214%2898%2900009-X Ou, C., Liu, Y., Wang, W. & Dong, D. (2016). Integration of UV-C with antagonistic yeast treatment for controlling post-harvest disease and maintaining fruit quality of Ananas comosus. BioControl, 61(5), 591–603. https://doi.org/10.1007/s10526-016-9740-5 Pan, Y. G., & Zu, H. (2012). Effect of UV-C radiation on the quality of fresh-cut pineapples. Procedia Engineering, 37, 113–119. http://dx.doi.org/10.1016/j.proeng.2012.04.212 Perkins-Veazie, P., Collins, J. K. & Howard, L. (2008). Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest Biology and Technology, 47(3), 280–285. http://dx.doi.org/10.1016/j.postharvbio.2007.08.002 Petriccione, M., Mastrobuoni, F., Pasquariello, M. S., Zampella, L., Nobis, E., Capriolo, G. & Scortichini, M. (2015). Effect of chitosan coating on the postharvest quality and antioxidant enzyme system response of strawberry fruit during cold storage. Foods, 4(4), 501–523. https://doi.org/10.3390/foods4040501 Petrov, V., Hille, J., Mueller-Roeber, B. & Gechev, T. S. (2015). ROS-mediated abiotic stress-induced programmed cell death in plants. Frontiers in Plant Science, 6, 1-16, 125003. https://doi.org/10.3389/fpls.2015.00069 Prajapati, U., Asrey, R., Varghese, E., Singh, A. K. & Pal Singh, M. (2021). Effects of postharvest ultraviolet-C treatment on shelf-life and quality of bitter gourd fruit during storage. Food Packaging and Shelf Life, 28, 1-8, 100665. http://dx.doi.org/10.1016/j.fpsl.2021.100665 Promyou, S., & Supapvanich, S. (2012). Effect of ultraviolet-C (UV-C) illumination on postharvest quality and bioactive compounds in yellow bell pepper fruit (Capsicum annuum L.) during storage. African Journal of Agricultural Research, 7(28), 4084–4096. http://dx.doi.org/10.5897/AJAR12.242 Rabelo, M. C., Bang, W. Y., Nair, V., Alves, R. E., Jacobo-Velázquez, D. A., Sreedharan, S., de Miranda, M. R. A. & Cisneros-Zevallos, L. (2020). UVC light modulates vitamin C and phenolic biosynthesis in acerola fruit: role of increased mitochondria activity and ROS production. Scientific Reports, 10(1), 21972. https://doi.org/10.1038/s41598-020-78948-1 Rostami, M., Shokouhian, A. & Mohebodini, M. (2022). Effect of humic acid, nitrogen concentrations and application method on the morphological, yield and biochemical characteristics of strawberry “Paros.” International Journal of Fruit Science, 22(1), 203–214. http://dx.doi.org/10.1080/15538362.2021.2022566 Santin, M., Lucini, L., Castagna, A., Chiodelli, G., Hauser, M. T. & Ranieri, A. (2018). Post-harvest UV-B radiation modulates metabolite profile in peach fruit. Postharvest Biology and Technology, 139, 127–134. https://doi.org/10.1016/j.postharvbio.2018.02.001 Sari, L. K., Setha, S. & Naradisorn, M. (2016). Effect of UV-C irradiation on postharvest quality of ‘Phulae’ pineapple. Scientia Horticulturae, 213, 314–320. http://dx.doi.org/10.1016/j.scienta.2016.09.049 Scattino, C., Castagna, A., Neugart, S., Chan, H. M., Schreiner, M., Crisosto, C. H., Tonutti, P. & Ranieri, A. (2014). Post-harvest UV-B irradiation induces changes of phenol contents and corresponding biosynthetic gene expression in peaches and nectarines. Food Chemistry, 163, 51–60. https://doi.org/10.1016/j.foodchem.2014.04.077 Severo, J., de Oliveira, I. R., Tiecher, A., Chaves, F. C., & Rombaldi, C.V. (2015). Postharvest UV-C treatment increases bioactive, ester volatile compounds and a putative allergenic protein in strawberry. LWT - Food Science and Technology, 64(2), 685–692. http://dx.doi.org/10.1016/j.lwt.2015.06.041 Shama, G. (2007). Process challenges in applying low doses of ultraviolet light to fresh produce for eliciting beneficial hormetic responses. Postharvest Biology and Technology, 44(1), 1–8. http://dx.doi.org/10.1016/j.postharvbio.2006.11.004 Shen, Y., Sun, Y., Qiao, L., Chen, J., Liu, D. & Ye, X. (2013). Effect of UV-C treatments on phenolic compounds and antioxidant capacity of minimally processed Satsuma mandarin during refrigerated storage. Postharvest Biology and Technology, 76, 50–57. http://dx.doi.org/10.1016/j.postharvbio.2012.09.006 Sheng, K., Zheng, H., Shui, S. S., Yan, L., Liu, C. & Zheng, L. (2018). Comparison of postharvest UV-B and UV-C treatments on table grape: Changes in phenolic compounds and their transcription of biosynthetic genes during storage. Postharvest Biology and Technology, 138, 74–81. http://dx.doi.org/10.1016/j.postharvbio.2018.01.002 Singelton, V. L., & Rossi, J. R. (1965). Colorimetry of total phenolics with phosphotungstic-phosphomolybdic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158. Doi. 10.5344/ajev.1965.16.3.144 Singh, C., Dhamsaniya, N. K., Kumar, P., Rathod, J. & Dhamsaniya, K. (2022). Effect of ultraviolet-c radiation processing on physical and microbial properties of horticulture produce. The Pharma Innovation Journal, 11(6), 1798–1804. Sousa-Gallagher, M. J., Mahajan, P. V. & Mezdad, T. (2013). Engineering packaging design accounting for transpiration rate: Model development and validation with strawberries. Journal of Food Engineering, 119(2), 370–376. https://doi.org/10.1016/j.jfoodeng.2013.05.041 Sripong, K., Jitareerat, P. & Uthairatanakij, A. (2019). UV irradiation induces resistance against fruit rot disease and improves the quality of harvested mangosteen. Postharvest Biology and Technology, 149, 187–194. https://doi.org/10.1016/j.postharvbio.2018.12.001 Sturm, K., Koron, D. & Stampar, F. (2003). The composition of fruit of different strawberry varieties depending on maturity stage. Food Chemistry, 83(3), 417–422. http://dx.doi.org/10.1016/S0308-8146(03)00124-9 Tanada-Palmu, P. S., & Grosso, C. R. F. (2005). Effect of edible wheat gluten-based films and coatings on refrigerated strawberry (Fragaria ananassa) quality. Postharvest Biology and Technology, 36(2), 199-208. https://doi.org/10.1016/j.postharvbio.2004.12.003 Wang, C. Y., Chen, C. T. & Wang, S. Y. (2009). Changes of flavonoid content and antioxidant capacity in blueberries after illumination with UV-C. Food Chemistry, 117(3), 426–431. http://dx.doi.org/10.1016/j.foodchem.2009.04.037 Wargent, J. J. (2016). UV LEDs in horticulture: From biology to application. Acta Horticulturae, 1134, 25–32. http://dx.doi.org/10.17660/ActaHortic.2016.1134.4 Xu, F. & Liu, S. (2017). Control of postharvest quality in blueberry fruit by combined 1-Methylcyclopropene (1-MCP) and UV-C irradiation. Food and Bioprocess Technology, 10(9), 1695–1703. https://link.springer.com/article/10.1007/s11947-017-1935-y Yang, J., Li, B., Shi, W., Gong, Z., Chen, L. & Hou, Z. (2018). Transcriptional activation of anthocyanin biosynthesis in developing fruit of blueberries (Vaccinium corymbosum L.) by preharvest and postharvest UV irradiation. Journal of Agricultural and Food Chemistry, 66(42), 10931–10942. http://dx.doi.org/10.1021/acs.jafc.8b03081 Zambrano-Zaragoza, M.L., Quintanar-Guerrero, D., González-Reza, R.M., Cornejo-Villegas, M.A., Leyva-Gómez, G. & Urbán-Morlán, Z. (2021). Effects of UV-C and edible nano-coating as a combined strategy to preserve fresh-cut cucumber. Polymers, 13(21), 3705. http://dx.doi.org/10.3390/polym13213705 Zhang, W., Jiang, H., Cao, J. & Jiang, W. (2021a). UV-C treatment controls brown rot in postharvest nectarine by regulating ROS metabolism and anthocyanin synthesis. Postharvest Biology and Technology, 180, 111613. http://dx.doi.org/10.1016/j.postharvbio.2021.111613 Zhang, Q., Yang, W., Liu, J., Liu, H., L, Z., Zhang, C., Chen, D. & Jiao, Z. (2021b). Postharvest UV-C irradiation increased the flavonoids and anthocyanins accumulation, phenylpropanoid pathway gene expression, and antioxidant activity in sweet cherries (Prunus avium L.). Postharvest Biology and Technology, 175, 111490. http://dx.doi.org/10.1016/j.postharvbio.2021.111490 Zhang, Y., Li, S., Deng, M., Gui, R., Liu, Y., Chen, X., Lin, Y., Li, M., Wang, Y., He, W., Chen, Q., Zhang, Y., Luo, Y., Wang, X. & Tang, H. (2022). Blue light combined with salicylic acid treatment maintained the postharvest quality of strawberry fruit during refrigerated storage. Food Chemistry: X, 15, 100384. Zhao, H., Wang, B., Cui, K., Cao, J. & Jiang, W. (2019). Improving postharvest quality and antioxidant capacity of sweet cherry fruit by storage at near-freezing temperature. Scientia Horticulturae, 246, 68–78. Zhou, Z., Zuber, S., Cantergiani, F., Sampers, I., Devlieghere, F. & Uyttendaele, M. (2018). Inactivation of foodborne pathogens and their surrogates on fresh and frozen strawberries using gaseous ozone. Frontiers in Sustainable Food Systems, 2, 399284. | ||
آمار تعداد مشاهده مقاله: 142 تعداد دریافت فایل اصل مقاله: 102 |