
 
 

 

ABSTRACT  ARTICLE INFO 
The paper introduces a new method called ABCL-
EHI for human identification using 
electroencephalographic (EEG) signals. EEG 
signals have unique information among 
individuals, but current systems lack accuracy and 
usability. ABCL-EHI addresses this by combining 
a convolutional neural network and a long short-
term memory network with an attention mechanism 
which enhances the utilization of spatial and 
temporal characteristics of EEG signals. The 
proposed system is evaluated using a public dataset 
of EEG signals. The results demonstrate that 
ABCL-EHI achieves high accuracy while using 
high or low number of channels. This outperforms 
previous studies and highlights the system's 
reliability and ease of deployment in real-life. 
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1 Introduction 

The user identification system is a key component in different systems and is deployed in many 
real-life applications such as the internet of things (IoT), healthcare systems and is also used to 
manage access to physical and digital resources such as borders, buildings, cellphones and 
computing devices by identifying or confirming user’s identity to protect the restricted content 
from unauthorized access [2,3].  

The biometric recognition process is often performed between a human and a machine and is 
usually based on some unique information about the specified user called authentication factors 
[1,3]. Generally, there are three types of authentication factors. First, the knowledge factor, which 
is information only the user knows. The second, ownership factor, which is an object only the user 
owns, and the third one, known as a biometric factor, is the user’s physical or behavioral 
characteristics [1]. 

Despite the popularity, passwords or smart cards are considered classic factors for subject 
identification. They suffer from some critical drawbacks, such as getting stolen or being forgotten 
by the user. By the passage of time, password-based security has gradually been replaced by the 
use of biological characteristics of the user [1-3]. Although different biometric factors such as iris, 
palm, voice, and fingerprint can be monitored and processed automatically, these biometric factors 
also have serious weaknesses, making biometric identification susceptible to possible attacks [1, 
2, 4]. For instance, Biometric factors such as iris, voice, and fingerprints may be forged or imitated 
by attackers [5]. Some researchers have proven that fingerprints can be faked by just having a 
picture of one’s finger or by using a fingerprint left on surfaces and obtained by malicious 
attackers. Moreover, irises and voices can be extracted from high-quality audio recordings, videos, 
and photos [3, 5].  

Recently, researchers have shown great interest in taking advantage of biometric signals such as 
electroencephalogram (EEG), electrocardiogram (ECG), and Electromyography (EMG) as 
appropriate biometric factors for biometric identification [3, 6, 7]. These signals have numerous 
advantages over other mentioned biometric factors. For example, they are more robust and safer 
against attacks [1]. Among biometric signals, EEG biometrics has paramount advantages, which 
makes it desirable. As a result, researchers have gained a great interest in developing EEG-based 
biometric identification [1, 8].  

EEG represents the neural activities of the human brain. It has various characteristics which depend 
on the person’s brain structure and is highly affected by a person’s memory, mood, stress, and 
mental state [1, 3]. Therefore, EEG signals are unique and nearly impossible to be faked or mimic 
[1, 9, 10].  

Moreover, an EEG recording headset must be attached to the user’s head to record EEG signals. 
As they must be conscious, it significantly reduces the chance of attacks [3]. Furthermore, EEG 
based biometric identification can be integrated by other fields of computer science. Brain-
Computer Interface (BCI) is an outstanding example of this issue [1, 4, 11]. In the BCI, the humans 
control an electronic device by using explicit and direct commands and brainwaves. Since BCI is 
based on the brain signals, Integrating BCI and EEG-based biometric identification leads BCI 
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systems to execute the user's commands and recognize their identity before execution of 
commands [1, 11, 12].  

Despite numerous advantages and the growing popularity of EEG-based biometric identification, 
some aspects must be addressed to pave the way to utilizing these systems in real-world user 
identification.   

For instance, while recording EEG signals, users usually must perform a specific task under 
predefined protocols, which may not be convenient for some of them. Furthermore, the number of 
channels required for sampling EEG signals in previous works is more than the number of 
electrodes in most commercially available EEG recorder devices, making the current EEGbased 
biometric identifications challenging to use in practice [1]. As a result, the number of required 
channels in EEG-based human identification should be reduced as much as possible without 
significant degradation of the system’s overall accuracy.  

Another point to mention is that as far as we know, most of the previous studies have considered 
a small population of subjects in training and evaluation of their proposed approach, which 
decreases the generalization of their proposed approach [1, 3, 8]. Moreover, most of them have 
applied handcrafted feature extraction methods and classified them using conventional machine 
learning methods such as support vector machine (SVM) [13, 14], k-Nearest Neighbors and, 
Eigenvectors [15].  

In recent years, deep neural networks have also been used for EEG-biometric identification [1, 3, 
4, 8]. To the best of our knowledge, most of the previously proposed deep EEG Biometric 
identification systems have been based on Convolutional neural networks (CNNs) [15-21]. 
Although CNNs have shown an appropriate performance in extracting reliable features from static 
data, such as images and part of signals, they cannot take temporal and prior information in the 
time-series signal into account [3, 4].  

In EEGbased biometric identification, the input signals are the time-series of potential electrical 
fluctuations recorded from different areas of the brain, and features can be extracted from any 
spatial domain, time domain, and frequency domain [1]. Hence, some works have applied deep 
neural networks, including Recurrent Neural Networks (RNNs) such as “Repeatable Gateway 
Units” (GRUs) and “Long-Short Term Memories” (LSTMs) in their proposed EEG Based 
biometric identification to consider both spatial and temporal information of EEG signals [3, 22].  

Although LSTM is supposed to capture the long-range dependencies better than the RNN, it tends 
to become forgetful in specific cases. Another problem is that LSTM cannot give more importance 
to some of the inputs compared to others. [23] came up with a reasonable solution by introducing 
the Attention mechanism. The attention mechanism has been one of the most important 
breakthroughs in Deep Learning models in the last decade. As a neural network is considered to 
be an effort to emulate human brain actions in a simplified manner, Attention Mechanism, in deep 
neural networks, is also an attempt to implement the same action by selectively concentrating on 
a few relevant areas while ignoring others [23].  
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In this paper, a novel attention-based CNN-LSTM model for EEG-based human identification 
(ABCL-EHI) is proposed in order to extract both temporal and spatial distinguishing 
characteristics of EEG signals in EEG-based user identification. The proposed approach can 
efficiently extract spatial and temporal features of EEG signals by taking advantage of the attention 
mechanism. The experimental results show that the proposed approach (ABCL-EHI) outperforms 
CNN-LSTM models which do not use the attention mechanism. It is worth mentioning that our 
proposed ABCL-EHI uses only one-second segments of EEG signals to identify users. 

In this paper, we have used the motor imagery dataset from the PhysioNet database, which contains 
EEG signals collected from 109 subjects and a wide variety of imaginary and physical tasks for 
each Subject [24]. By including all 109 subjects and a variety of the performed tasks in training 
and evaluation of our proposed approach, we demonstrate that our EEG Based biometric 
identification can keep its great performance in large number of subjects and its robustness to the 
various performed task only by using 1-second segments of raw EEG signal as input. 

The main novelties of this study lie in several folds, including: 

● Proposing   a   novel   attention-based   CNN-LSTM   model   for   EEG   Based   
human identification. 

● Proposing a model that can achieve high accuracy even by using the information of 
fewer EEG channels make our system easier to be deployed by users in real life. 

● Using EEG signals associated with the various performed task by subjects in training 
and evaluation of a proposed system to make it more user-friendly by giving 
subjects the autonomy to choose their task of interest while being identified by 
the system. 

● Proposing a high accuracy approach EEG-Based human identification under the 
condition of using EEG signals more than 100 subjects, six various tasks for each 
subject, and using only 1 second raw EEG signal as input. 

● Taking advantage of different kinds of layers in our novel deep learning approach to
 efficiently exploit discriminative temporal and spatial characteristics of EEG 
signals.  

2 Related works 

The proposed EEG-based biometric identification systems in the literature are usually divided into 
machine learning models and deep neural networks. The first category can be considered as a two-
step method consisting of extraction of distinguishing features and then applying a classification 
method on the extracted features [1, 3]. Different features such as power spectrum density, wavelet 
transforms, peak amplitude eigenvector centrality, statistical descriptors including mean and 
variance, and other features have also been used in previous studies for EEG biometric 
identification [1, 3, 8]. The second category includes previous works which have used deep 
learning approaches in their proposed biometric identification systems [16, 25]. To the best of our 
knowledge, most of the proposed deep EEG-based biometric identification approaches have been 
based on CNNs [1]. Although CNNs have performed very well with static data such as images or 
part of a signal, they have not been good enough to extract information and temporal characteristics 
in time series such as EEG signals. Hence, other deep learning methods, including RNNs have 
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been utilized for EEG-based biometric identification. RNNs and their families, LSTMs and GRUs, 
have been known as promising tools for the extraction of temporal features in sequences [1, 3] An 
overview of the previous works on EEG-based biometric identification are summarized in Table 
1. 

Table 1 A brief review of the previous studies on EEG-based biometric identification 

 
1

 Artificial neural network 
2

 Hidden markov model 

3 Power spectral density 
4 Linear detrimental analysis 
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78 DNN Wavelet REO, REC 3 6 [22] 
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s 88 ANN1 Gama band Wavelet Imaginary and Physical movement 1 5 [26] 
90 Euclidean distance Template VEP 4 37 [9] 

97 HMM/SVM Wavelet Acoustic ERP 14 60 [14] 

98 HMM2 AR, MFCC, and bump 
representation 

REO, REC and Mental 
computation 

19 45 [28] 

98 Euclidean distance, SVM 
and LDA 

PSD3 REO, REC 20 17 [13] 

93 Gaussian mixture method PSD Imaginary Tasks 8 10 [10] 

99 ANN Wavelet VEP 6 32 [29] 

99 LDA4 AR5 Eye blinking 1 10 [6] 

100 Cross correlation Template VEP 26 50 [30] 

100 Cross Correlation Template VEP 26 20 [31] 

89 CNN 1  RSVP 64 15 [21] 
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88 CNN 1 REC/REO 64 10 [15] 

96 CNN 1 RSVP 28 157 [25] 

97 CNN 1 Virtual Driving 64 100 [17] 

99 CNN 5 RSVP 16 10 [18] 

97 CNN 3 RSVP 16 15 [20] 

99 CNN 12 REC, REO 64 109 [19] 

94 CNN 6 VEP 14 23 [16] 

99 CNN 6 Imaginary and Physical  
Movement 

17 40 [32] 

99 CNN+LSTM 1 Imaginary and Physical 
Movement 

16 
and 
64 

109 [3] 

98 
(EO) 

CNN+LSTM 12 Physical movement 64 109 [4] 

99 
(EC) 

CNN+LSTM+GRU 10 REC, REO 64 32 [22] 
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3 Our Proposed Method 

Our primary focus in this study is to propose a novel EEG-based Human identification. Our 
proposed ABCL-EHI approach contains two phases, including the enrollment and identification 
phase. In both enrollment and identification phases, the recorded EEG signals of subjects will be 
preprocessed and segmented into 1-second signals before feeding to the ABCL-EHI. In the 
enrollment phase, an initial recording of all users is used to train the model. After that, users will 
be able to be identified by the system in the identification phase. The output of the trained network 
in the identification phase would be the identifying of subjects whose 1-second EEG signals have 
been fed into the network. 

More details of the main steps of the proposed method will be described in the following 
subsections. 

Figure 1- The main steps of the proposed approach for EEG biometric identification 
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Data Acquisition 
The proposed approach is being evaluated using a publicly available PhysioNet EEG Motor 
Movement/ Imagery Dataset that incorporates EEG signals of 109 subjects performing various 
motor/imagery tasks and recorded by the BCI2000 system. BCI consists of 64 channels and the 
sampling frequencies of 160 Hz for all channels. In this dataset, 14 experimental runs have been 
conducted for each subject, including Rest Eyes Open (REO) for one minute, Rest Eyes Close 
(REC) for one minute, and three sets of four tasks, including opening and closing fists and feet 
both physically and imaginarily [33]. 

Preprocessing 
In the proposed ABCL-EHI system, the stacked layers of the neural network are used to extract 
features of EEG signals that are able to take raw signals as input without the requirement of any 
significant preprocessing procedure. As a result, in the preprocessing step, only a little action is 
required to be taken including normalizing data of each channel based on Eq. (1): 

Normalized_Channel_Data=
∑ಿస64

స1 ି[]  

ℎ[௫]
− 𝐶ℎ[𝑚𝑖𝑛]  (1) 

Where N is the number of the channels, Ch refers to values of the channel, Ch[min] is the minimum 
value of the channel and Ch[max] is the maximum value of the channel. 

Signal Segmentation 
After normalizing the channel’s data, the next step is to segment EEG signals into fixed-length 
segments. In the next step, the segmented signals will be directly fed to the neural network. In 
order to segment EEG signals, we use the sliding window (SW), a method that was first proposed 
by [34]. SW method is especially suitable for CNN models that require all samples to be of the 
same length. The most significant advantage of SW is retaining basic information, increasing the 
number and variety of data. Choosing the appropriate window size plays an essential role in the 
efficiency of this method in different applications. Although choosing a small window size may 
eliminate discriminatory information, large size leads to the high dissimilarity between different 
obtained segments. Moreover, in EEG-based biometric identification, window length is 
particularly an important factor. A long window length is inconvenient to be recorded by users. 
Moreover, it can also make recorded EEG signals exposed to noise that degrades the system's 
performance to identify subjects. 

In order to make our proposed ABCL approach more convenient to be used in real-life application, 
as shown in Figure 2, we set window length equal to 1 second and step length equal to 80 which 
leads to 1-second windows, 160 samples for each window, and 80 samples overlap in each window 
as input of our proposed system. Overlapped windows provide the model with a larger number of 
training samples and helps to improve the efficiency of the learning process of the proposed deep 
neural network. 
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Figure 2- Overlapping windows extracted from multichannel EEG recordings 

One important point in designing CNN models is how to choose the shape of input data. The input 
shape usually is considered as a two-dimensional matrix, one dimension is the sampling channels 
and the other is the samples collected in each channel[1]. In this work, after preprocessing and 
segmentation of EEG recordings of subjects, all the segmented signals have the format 
(1*160*Nchannels) where 1 is windows length, 160 is a number of samples in each window, as the 
data have been recorded by 160 Hz frequencies each second contains 160 samples, Nchannels is the 
number of channels whose data is being used. 

Training 
At first, data is partitioned into the original training dataset and test datasets with the ratio of 9:1. 
Data splits are inter-subject and our considered dataset is partitioned in terms of subjects (persons) 
not signals. For example, if there are multiple signals captured from the same person, they all lie 
in the same dataset (original training dataset or test dataset) and they are not divided into both 
datasets. In other words, all signals for the same person belong to one of the original training and 
test datasets, not both of them. 

The second step is dividing the original training dataset into train and validation datasets. In order 
to divide all created segments into train and validation datasets, we first shuffled all the created 1-
second segments and considered 90% of segments as train, and validation datasets. The training 
and validation datasets are selected randomly by a 1:4 ratio. The training dataset is fed to the deep 
neural networks using a batch size of 32. In other words, each batch contains 32 records of 1*160* 
Nchannels EEG samples. The maximum number of epochs is set to 200. In order to avoid overfitting 
while training the network, an early stopping technique is used, which stops the training of the 
network when training and validation loss are no longer reduced for 12 successive epochs. 
Moreover, Adam optimizer with the learning rate of.0001 is used as an optimizer of the network, 
and weights and biases are initialized randomly.  
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Attention-based CNN-LSTM Network Architecture 
The prime proposed network (ABCL-EHI) consists of different layers to efficiently extract 
distinguishing temporal and spatial features of EEG signals and then identify users. At first, 1-
second EEG signals with the shape of 1×160×Nchannels are fed to the first convolutional layer. More 
details of this network have shown in figure 3. 

As shown in the figure 3, After convolution layers, the data will be reshaped and then pass through 
a LSTM layer. LSTMs include several gates which determine whether the cell stores, forgets or 
outputs its state. By using this procedure, LSTMs can extract and preserve temporal dependencies 
of the input sequence. In our proposed ABCL-EHI, layer 5 is a LSTM with 200 neurons. The input 
shape of the LSTM layer would be a 160×512 vector.  

By iterating the following equations from t=1 to T, the output vector yt is computed as Eq. (8)-(9): 

ℎ௧ = 𝛿(𝑥௧. 𝑐௧ି1. ℎ௧ି1)   (8) 

𝑦௧ = 𝜎𝑊௬ℎ௧ + 𝑏௬                               (9) 

Where 𝑥௧ and 𝑦௧ refer to the input and output in the state t, respectively, 𝑐௧ represents the cell 
vector, and ℎ௧ refers to the hidden vector. 𝜎 is the logistic sigmoid function, W terms denote weight 
matrices, the b terms denote bias vector, and 𝛿 is the operator of the hidden layer. The equation of 
the LSTM memory cell 𝛿 can be showed as Eq. (10)-(14): 

𝑖௧ = (𝑊 . [𝑥௧, ℎ௧ି1, +𝑏)                    (10) 

𝑓௧ = 𝜎(𝑊 . [𝑥௧, ℎ௧ି1] + 𝑏)               (11) 

𝑜௧ = 𝜎(𝑊. [𝑥௧ , ℎ௧ି1] + 𝑏)              (12) 

Ĉ௧ = 𝑡𝑎𝑛ℎ(𝑊 . [𝑥௧ , ℎ௧ି1] + 𝑏)          (13) 

ℎ௧ =𝑡𝑎𝑛ℎ 𝑡𝑎𝑛ℎ (𝑐௧)  ∗ 𝑜௧                   (14) 

Where 𝑖௧ denotes the input gate equation that determines how much input information should be 
kept, 𝑓௧  refers to the forget gate equation that determines how much previous information should 
be removed, and 𝑜௧ represents the output gate equation which indicates how much information 
should be output to the next state. 

Although LSTMs are supposed to capture the long-term dependency better than the RNNs, it tends 
to become forgetful when it tries to understand long inputs in sequential data. In order to increase 
the efficiency of LSTMs to preserve the long-term dependencies and more efficient extraction of 
temporal characteristics of EEG signals, we use an attention mechanism after the LSTM layer. The 
attention mechanism was first introduced by [23] as an improvement over the encoder-decoder-
based neural machine translation system in natural language processing (NLP). Later, this 
mechanism or its variants has used in other applications, including speech processing [35], 
computer vision [36], and so on. Using an attention mechanism after the LSTMs, it considers all 
the hidden states of LSTMs to generate the output vector instead of only the last hidden state of 
LSTMs. For this purpose, we set the return sequence of the LSTM layer equal to True, and it 
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outputs all the hidden states to be considered by the following layer, which is the attention 
mechanism. Some Previous studies have studied on selecting the most appropriate sensors [37] for 
EEG capturing and using conventional machine learning methods for biometric identification from 
EEG [38]. 

Attention takes a weighted sum of hidden states instead of LSTM unit outputs to create the output 
vector. The weights are learned by a feed-forward neural network based on Eq. (15):  

𝐶 =  𝛼ℎఫ̇  

ு

ୀ1

                   (15) 

Where ℎఫ̇ are the representation of  the hidden state vectors. The output vector ci for the output yi is 

generated using the weighted sum of ℎఫ̇. The weights 𝛼 are computed by a softmax function given 
as Eq. (16)-(17): 

𝑒 =
௫ (ೕ)

∑ ௫ (ೕ)ಹ
ೖస1

              (16) 

𝑒 = 𝑎(𝑠ି1. ℎఫ̇)                  (17) 

Where 𝑒 is the output score of a feedforward neural network described by the function a that 
attempts to capture the alignment between j’th and i’th inputs. 

If the LSTM produces H number of the hidden state vectors, each having dimension d, then the 
input dimension of the feedforward network is (H, 2d) (assuming the previous state of the LSTM 
also has d dimensions and these two vectors are concatenated). This input is multiplied with a 
matrix Wa of (2d, 1) dimensions (followed by addition of the bias term) to get scores eij (having a 
dimension (H, 1)). 

On the top of these eij scores, a tangent hyperbolic function is applied followed by a softmax to get the 
normalized alignment scores for output j as Eq. (18)-(20): 

E=I[H×2d] ×Wa[2d×a] ×B[H×1] (18) 

α = softmax (tanh (E)) (19) 

C = IT * α (20) 

To implement the so-called attention mechanism, we use the default Layer class in Keras. We 
define weights (Wa) and biases (B) as discussed previously. As the previous LSTM layer’s output 
shape is (None, 160, 512), the output weight would be (512, 1), and bias should be (512, 1) 
dimensional. Then, to write the main logic of the attention mechanism, we create a Multi-Layer 
Perceptron (MLP). Therefore, it takes the dot product of weights and inputs followed by the 
addition of bias terms. After that, a ‘tangent hyperbolic’ would be applied, followed by a softmax 
layer. The softmax gives the alignment scores. Its dimension will be the number of hidden states 
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in the LSTM, which is 160 in this case. Taking its dot product along with the hidden states will 
provide the output vector. 

 

 

Figure 3- the detailed flow diagram of our proposed ABCL-EHI architecture 

After passing the data through LSTM and attention layer, then the data is fed into two dense layers 
for classification. In the first dense layer, a dropout with rate of 0.5 is provided to avoid overfitting. 
Finally, a softmax layer with 109 neurons is used in the last layer to perform subject identification. 
Figure 4 shows the architecture of our proposed ABCL-EHI approach. 

Evaluation 
The performance of trained deep neural networks is evaluated by using different performance 
measures that have been used for human identification systems in previous studies, including 
Accuracy (Acc), False Acceptance Rate (FAR), and False Rejection Rate (FRR). The formulas of 
the performance measures are shown in EQ. (21)-(23): 
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Figure 4 Architecture of our proposed ABCL-EBHI 

 

𝐴𝐶𝐶 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛 

𝑡𝑜𝑡𝑎𝑙 𝑛𝑎𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑟𝑒𝑐𝑜𝑟𝑑𝑠
   (21) 

𝐹𝐴𝑅 =
ே௨  ௧ ௧

௧௧   ௧௦௦ ௧௦௧௦
                          (22) 

𝐹𝑅𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑎𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑐𝑙𝑎𝑠𝑠 𝑡𝑒𝑠𝑡𝑠
              (23) 

 

since human identification is kind of a classification problem, the classification performance 
measures such as specificity, sensitivity and F-1 score are also reported according to Eq. (24)-(26): 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                   (24) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
்ே

்ேା்
                                     (25) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
ௌ௦௧௩௧௬× ௌ௧௬

ௌ௦௧௩௧௬ାௌ
          (26) 

 

In which TP and TN are the numbers of the records truly accepted and rejected by the model, 
respectively. FP and FN denote the number of data records incorrectly accepted and rejected by 
the model, respectively. 
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4 Numerical Results 

The proposed model is trained and evaluated on the Physio Net Motor Imagery dataset using the 
information of all 64 EEG channels. Moreover, a similar CNN-LSTM model (CL) is designed and 
trained without using the attention mechanism to investigate the effectiveness of using the attention 
mechanism in our proposed ABCL-EHI network architecture.  

Table 2- Comparing the performance of ABCL-EHI with CNN-LSTM using 64 channels EEG signals 
(position of the electrodes are shown in Fig. 4) with step length to 80 

 

 

Table 2 shows the results of running ABCL-EHI and CL systems on the test dataset, which are not 
used for training the models. The F1-score of the proposed ABCL-EHI approach is 99.65, which 
outperforms the state of art of the EEG-based human identification under the condition of using 
one-second segments of EEG signals for 6 various tasks and 109 subjects. CL model achieves F1-
score of 99.35, which shows a worse performance of CL compared to ABCL-EHI. The superiority 
of the ABCL-EHI system lies in using the attention mechanism after LSTM layer leads to more 
effective exploitation of the temporal differentiating characteristics of EEG signals. As a result, it 
brings about an improvement in the accuracy of the network in the identification of subjects. 
Moreover, Tensor-flow loading times for ABCL-EHI and CL are 19.9904 and 17.0567 seconds 
and T-batch sampling for ABCL-EHI and CL are 1.5621 and 0.4805, respectively. since the 
attention mechanism takes all the hidden states of LSTM layer into account, Tensor-flow loading 
time and T-batch sampling for ABCL-EHI is slightly longer than CL. The loss function values and 
the accuracies for training and test datasets per epochs during the training process of deep neural 
networks in this study are shown in the figure 5-6, respectively. 

Figures 5 and 6 show that both ABCL-EHI and CL have appropriate divergence speed while using 
the information of 64 EEG channels.  Although the maximum training epochs is set to be 200, 
training is early stopped because of lack of improvement in the loss function after a specified 
number of epochs which indicates the ideal divergence rate for both models. Moreover, there is no 
much distance between the value of the loss function for training data and test data, which indicates 
the efficient training of models during training epochs. 
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Figure 5  the training and test accuracy and loss function values per epoch for ABC-EHI trained using 

EEG signals with 64 channels. 

 
Figure 6 the training and test accuracy and loss function values per epochs for CNN-LSTM trained on 

EEG signals with 64 channels 

Using a Smaller number of EEG Channels 

As mentioned in previous paragraphs that one of the challenges of an EEG-based biometric 
identification system is using a large number of channels to record EEG signals. Number of the 
required channels in many approaches in previous studies are usually more than the number of 
channels in commercial EEG recorder devices. It makes them difficult to be used in the real-world 
applications [1].  

In order to cope with this issue, we train and evaluate the proposed ABCL-EHI system considering 
EEG recording with 14 and 9 number of symmetrically and empirically selected electrodes on the 
scalp, which are depicted in Figure 7.  
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Figure 7 Electrode positions on scalp and their corresponding channels (blue represents empirically 
selected channels and white represents the unused channels) 

By reducing the number of EEG channels that are used in EEG-based biometric identification, 
the distinguishing information of EEG signals decreases. Consequently, it can lead to a negative 
effect on the learning process which in turn degrades the performance of the system for 
identification of the subjects. To handle this problem and train the models more effectively under 
this condition, we reduced the step length in the SW phase from 80 to 40 to improve the 
efficiency of the learning process by providing the model with more training samples. The 
proposed ABCL-EHI approach and the CL model achieve F1-Score of 99.65 and 99.33 for 14 
EEG channels and 99.52 and 96.34 for 9 EEG channels, respectively. More details about the 
performance of ABCL-EHI and CL using 9 and 14 electrodes are shown in Table 3. 

Table 3 Comparison of the performance of ABCL-EHI and CNN-LSTM systems using 14 and 9 channels EEG 
signals (position of the electrodes are shown in Fig. 4) with step length equal to 40. 
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 Moreover, figures 8-11 show the loss function values and the accuracies for the training and the 
test datasets per epochs during the training process considering EEG signals with reduced number 
of channels. Figures 8-11 show accuracy and loss function values of ABCL-EHI and CL systems 
for train and test sets during training epochs while using the information of 14 and 9 EEG channels. 

 

Figure 8 training and test accuracy and loss function values per epochs  for ABCL-EHI system 
considering 14 EEG Channels 

 

 

Figure 9 training and test accuracy and loss function values per epochs for CL system considering 14 
EEG Channels 
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Figure 10 training and test accuracy and loss function values per epochs  for ABCL-EHI considering 9 
EEG Channels 

 

 

Figure 11 training and test accuracy and loss function values per epochs for CL system considering 9 
EEG Channels 

Considering these figures, both ABCL-EHI and CL networks have appropriate divergence speed 
under the condition of using the information of 14 and 9 EEG channels.  Although the maximum 
training epochs for all scenarios are set to be 200, training is early stopped due to the lack of 
improvement in the loss function after a specified number of epochs, which indicates the ideal 
divergence rate of the models. Moreover, there is not much distance between the value of the loss 
function for the training and test data, which indicates the efficient training of models during 
training epochs. 

Figure 12 shows some sample EEG segments of one channel and their corresponding model output 
and real output (for simplicity, other channels are not displayed). 

Discussion 
As shown in Figures 2 and 3, The proposed ABCL-EHI system shows 99.65, 9965, and 99.52 F-
1 scores accuracy, and The CL also shows 99.38, 99.33, and 96.34 F-1 scores accuracy in 
identification of subjects by using the information of 64, 14, and 9 EEG channels, respectively. 
Although there is a slight improvement in the performance of the ABCL-EHI system compare 
with the CL system for 64 and 14 EEG channels, 0.27 and 0.32 higher accuracy for the ABCL-
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EHI network, the ABCL-EHI has shown 3.12 accuracy higher than CL network by using the 
information of 9 EEG channels which is a significant improvement. 

 
Figure 12- Some EEG segment samples (one-channel) and their corresponding model output and real output 

However, even a slight improvement in the performance of a biometric identification system can 
lead to a significant difference in the use of these systems in identifying a large number of people 
in real-life applications. Another point is that our proposed ABCL-EHI system demonstrates a 
slighter reduction in accuracy while using a smaller number of EEG channels than the simple CL 
model. This superiority of the ABCL-EHI approach can lies in using the attention mechanism after 
the LSTM layer leads to the more effective exploitation of the temporal discriminative 
characteristics of the EEG signals. In other words, the attention mechanism considers all hidden 
states of LSTM layer and passes it to dense layers for classification. As a result, it yields better 
performance in the identification of subjects by using a smaller number of channels.  

As shown in table 2 and 3, Tensor-flow models loading time and averaged execution time of batch 
testing (T-Batch) for ABCL-EHI system with attention mechanism (for all scenarios) are a little 
longer compare with CL system, which is due to considering all the states of the LSTM hidden 
layers by the attention mechanism. Although it can be interpreted as a drawback for our proposed 
approach, as ABCL-EHI Shows higher accuracy compare to CL system (about 7-10 seconds), its 
longer loading time and T-batch can be ignored by considering the prime importance of accuracy 
in the deployment of an EEG-based biometric identification system in real-life application. 

Unfortunately, EEG signals are very complex data modalities and capturing them for better 
analysis requires very standard situations. Noise and artifacts that are added to EEG signals has a 
significant negative effect on the models’ performance. Many recent studies [39] are focused on 
how to reduce the noise and artifact from EEGs and it is a hot topic. Therefore, it is an inevitable 
that the most of the previous studies as well as our study have focused on high-quality EEGs. 
Because analyzing EEGs having noise and artifacts can be considered as other problems and 
require a multi-step model. Moreover, an unavoidable limitation in the study similar to the 
previous studies in this field is that our analyzed EEGs have been collected in the laboratory 
situations not uncontrolled ones However, the noise and artifacts are the main issues for EEGs that 
are captured in the free situations and makes the analysis very hard if not impossible.  
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On the other hand, interpreting and explaining neural networks is a hard task because of their 
black-box nature. However, some novel methods [40] have been proposed to explain the output of 
the intermediate layers and can be used. 

Comparison with related works: 
The results of the proposed approach are compared with similar previous works in the literature as 
shown in Table 4. 

Table 4 Comparison with some state-of-the-art EEG-based human identification systems 

 

 

The number of electrodes, subjects, channels, performed tasks by the subjects during the recording 
of EEG signals, and duration of the EEG signal segments which are used as the input of the 
biometric identification systems are the most common and essential factors which usually have 

Acc/F1Score Classifier Segment 
Length 

(second) 

Task # of Channels # of 
Subjects 

Paper 

89 CNN 1  RSVP 64 15 [21] 

88 CNN 1 REC/REO 64 10 [15] 

96 CNN 1 RSVP 28 157 [25] 

97 CNN 1 
Virtual 
Driving 

64 100 [17] 

99.30 CCN 5 RSVP 16 10 [18] 

97.60 CNN 3 RSVP 16 15 [20] 

99.62 CNN 12 REC, REO 64 109 [19] 

94 CNN 6 VEP 14 23 [16] 

99.30 CNN 6 
Imaginary 
and body 

movement 
17 40 [32] 

99.58 CNN+LSTM 1 
Imaginary 
and body 

movement 
16 and 64 109 [3] 

98 (REO) CNN+LSTM 12 
Physical 

movement 
64 109 [4] 

99.95 (REC) 
CNN+LSTM+GR

U 
10 REC, REO 64 32 [22] 

99.65 ABCL-EHI 1 

REC, ROC. 
Imaginary 
and  body 
movement 

64 109 
Proposed 
Approach 

99.65 ABCL-EHI 1 

REC, ROC. 
Imaginary 
and  body 
movement 

14 109 
Proposed 
Approach 

99.52 ABCL-EHI 1 

REC, ROC. 
Imaginary 
and  body 
movement 

9 109 
Proposed 
Approach 
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been considered in the evaluation of the proposed deep learning models for EEG-based biometric 
identification in the previous studies. 

[19] proposed a CNN model which takes a 12-seconds length of raw EEG signals as input. They 
have trained and evaluated their proposed approach using REO and REC EEG signals of 109 
subjects. [32] have used a CNN model with four layers of convolution and two layers of the 
maximum pooling. Their proposed model achieved an accuracy of 99.30 in identifying 40 subjects 
using 17 channels and 6-second length EEG segments.[21] have proposed a hostile convolution 
network for EEG biometrics which takes 1-second EEG signals as input. Their proposed approach 
has achieved the accuracy of 89 in identifying 15 subjects using 64 EEG channels. [25] have 
proposed a novel convolutional neural network with global spatial filters called GSLT-CNN. Their 
proposed approach has achieved an accuracy of 96.  

[22] have proposed a combination of CNN and RNN networks. They have evaluated two types of 
RNNs, including LSTM and GRU. They have shown that although GRU and LSTM have 
comparable performance and accuracy, GRU training is faster and requires less data to generalize 
compared to the LSTM. The proposed CNN-GRU and CNN-LSTM have achieved the accuracy 
of 99.17 and 98.23, respectively. They have validated their proposed approach by using DEAP 
dataset with 32 subjects and 5 channels. [3] have proposed a CNN-LSTM neural network for EEG-
based identification. The authors have proved that their proposed approach is more accurate than 
CNN or LSTM and has achieved high accuracy performance even with a reduced number of 
channels.  

In this paper, we propose ABCL-EHI system Which takes 1-second EEG recordings as input to 
identify subjects. To the best of our knowledge, for the first time in the literature, we use an 
attention mechanism next to CNN, LSTM, and dense layers to improve the efficiency of biometric 
identification. We also use publicly available physio Net EEG motor Movement/ Imagery Dataset, 
which incorporates EEG signals of 109 subjects performing 6 various Motor/imagery tasks, to 
evaluate the proposed models. our proposed approach achieves F1-Score accuracy of 99.65, 99.65 
and 99.52 for 64, 14, and 9 EEG channels, respectively, which outperforms the state-of-the-art 
EEG-based human identification in the previous studies.  

5. Conclusion and future works 
In this paper, we proposed a novel deep neural network named ABCL-EHI, which takes advantage 
of the attention mechanism to efficiently exploit EEG signals' spatial and temporal information to 
identify subjects. We also used overlapping slice windows in the segmentation of signals to 1-
second signals to increase the training samples, which improved the efficiency of the learning 
process of the proposed system. We evaluated the system using the physio Net EEG Motor 
Movement/ Imagery Dataset. Results show that the proposed ABCL-EHI outperforms the simple 
CL approach, which does not have an attention mechanism in its architecture and outperforms the 
state of art of the previous studies of the EEG-based human identification. 

Although most of the challenges in the field of EEG-based human identification have already been 
addressed, some aspects must be addressed in future studies. One recommended issue to be 
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addressed is using EEG recordings of unhealthy subjects to develop an EEG-based human 
identification system that is likely to affect its performance.  

Another future direction can be testing our proposed model on a larger dataset to assess its 
scalability. Moreover, with the development of deep learning approaches, some methods like 
“Generative Adversarial Networks” (GANs) are able to generate artificial EEG signals highly 
similar to original signals. These tools have made it easier to threat the security of the EEG-based 
human identification systems. It is suggested to be addressed in future works by developing a 
system that is able to perform EEG-based biometric identification with emphasis on distinguishing 
fake and real EEG signals. 

In addition, we used empirically selected channels in the scenarios with the smaller number of 
electrodes in this study. Hence, some studies are needed to determine which EEG signal channels 
contain the most distinguishing information for different users to be used in Human Identification 
Systems. There is also room to develop automatic channel selection algorithms instead of the 
manual channel selection used in the current studies. 

References 

[1] Bidgoly, A.J., H.J. Bidgoly, and Z. Arezoumand, A survey on methods and challenges in EEG based 
authentication. Computers & Security, 93: p. 101788, 2020. 

[2] Revett, K., Cognitive biometrics: a novel approach to person authentication. International Journal of 
Cognitive Biometrics, 1(1): p. 1-9, 2012. 

[3] Sun, Y., F.P.-W. Lo, and B. Lo, EEG-based user identification system using 1D-convolutional long 
short-term memory neural networks. Expert Systems with Applications, 125: p. 259-267, 2019. 

[4] Das, B.B., et al., A spatio-temporal model for EEG-based person identification. Multimedia Tools and 
Applications, 78(19): p. 28157-28177, 2019. 

[5] Galbally, J., S. Marcel, and J. Fierrez, Image quality assessment for fake biometric detection: 
Application to iris, fingerprint, and face recognition. IEEE transactions on image processing, 23(2): p. 710-
724, 2013. 

[6] Abo-Zahhad, M., S.M. Ahmed, and S.N. Abbas, State-of-the-art methods and future perspectives for 
personal recognition based on electroencephalogram signals. IET Biometrics, 4(3): p. 179-190, 2015. 

[7] Blasco, J., et al., A survey of wearable biometric recognition systems. ACM Computing Surveys 
(CSUR), 49(3): p. 1-35, 2016. 

[8] Maiorana, E., Deep learning for EEG-based biometric recognition. Neurocomputing, 410: p. 374-386, 
2020. 

[9] Gui, Q., et al. Multichannel EEG-based biometric using improved RBF neural networks. in 2015 IEEE 
Signal Processing in Medicine and Biology Symposium (SPMB), IEEE, 2015. 

[10] Marcel, S. and J.d.R. Millán, Person authentication using brainwaves (EEG) and maximum a 
posteriori model adaptation. IEEE transactions on pattern analysis and machine intelligence, 29(4): p. 743-
752, 2007. 



144 T. Khatibi / JAC 56 issue 1, August 2024, PP. 123-145 

 

 
 

[11] Ramzan, Q. and S. Shidlovskiy. Evolution of the Brain Computing Interface (BCI) and Proposed 
Electroencephalography (EEG) Signals Based Authentication Model. in MATEC Web of Conferences, EDP 
Sciences, 2018. 

[12] Lin, C.-T., et al., EEG-based brain-computer interfaces: a novel neurotechnology and computational 
intelligence method. IEEE Systems, Man, and Cybernetics Magazine, 3(4): p. 16-26, 2017. 

[13] Di, Y., et al., Robustness analysis of identification using resting-state eeg signals. IEEE Access, 7: p. 
42113-42122, 2019. 

[14] Kaur, B., D. Singh, and P.P. Roy, A novel framework of EEG-based user identification by analyzing 
music-listening behavior. Multimedia tools and applications, 76(24): p. 25581-25602, 2017. 

[15] Ma, L., et al. Resting state EEG-based biometrics for individual identification using convolutional 
neural networks. in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and 
Biology Society (EMBC), IEEE, 2015. 

[16] Arnau-Gonzalez, P., et al. ES1D: A deep network for EEG-based subject identification. in 2017 IEEE 
17th International Conference on Bioinformatics and Bioengineering (BIBE), IEEE, 2017. 

[17] Mao, Z., W.X. Yao, and Y. Huang. EEG-based biometric identification with deep learning. in 2017 
8th International IEEE/EMBS Conference on Neural Engineering (NER), IEEE, 2017. 

[18] Özdenizci, O., et al., Adversarial deep learning in EEG biometrics. IEEE signal processing letters, 
26(5): p. 710-714, 2019. 

[19] Schons, T., et al. Convolutional network for EEG-based biometric. in Iberoamerican Congress on 
Pattern Recognition, Springer, 2017. 

[20] Wu, Q., et al., An EEG-based person authentication system with open-set capability combining eye 
blinking signals. Sensors, 18(2): p. 335, 2018. 

[21] Zhang, F.-Q., et al., Deep learning models for EEG-based rapid serial visual presentation event 
classification. J. Inf. Hiding Multimedia Sig. Process, 9(1): p. 177-187, 2018. 

[22] Wilaiprasitporn, T., et al., Affective EEG-based person identification using the deep learning 
approach. IEEE Transactions on Cognitive and Developmental Systems, 12(3): p. 486-496, 2019. 

[23] Chorowski, J., et al., Attention-based models for speech recognition. arXiv preprint arXiv:1506.07503, 
2015. 

[24] Goldberger, A.L., et al., PhysioBank, PhysioToolkit, and PhysioNet: components of a new research 
resource for complex physiologic signals. circulation, 101(23): p. e215-e220, 2000. 

[25] Chen, J., et al., EEG-based biometric identification with convolutional neural network. Multimedia 
Tools and Applications, p. 1-21, 2019. 

[26] Sharma, P.K. and A. Vaish, Individual identification based on neuro-signal using motor movement 
and imaginary cognitive process. Optik, 127(4): p. 2143-2148, 2016. 

[27] Maiorana, E., D. La Rocca, and P. Campisi, Eigenbrains and eigentensorbrains: Parsimonious bases 
for EEG biometrics. Neurocomputing, 171: p. 638-648, 2016. 



145 T. Khatibi / JAC 56 issue 1, August 2024, PP. 123-145 

 

 
 

[28] Das, R., et al., Convolutional neural network for finger-vein-based biometric identification. IEEE 
Transactions on Information Forensics and Security, 14(2): p. 360-373, 2018. 

[29] Gui, Q., Z. Jin, and W. Xu. Exploring EEG-based biometrics for user identification and authentication. 
in 2014 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), IEEE, 2014. 

[30] Ruiz-Blondet, M.V., Z. Jin, and S. Laszlo, CEREBRE: A novel method for very high accuracy event-
related potential biometric identification. IEEE Transactions on Information Forensics and Security, 11(7): 
p. 1618-1629, 2016. 

[31] Ruiz-Blondet, M.V., Z. Jin, and S. Laszlo, Permanence of the CEREBRE brain biometric protocol. 
Pattern Recognition Letters, 95: p. 37-43, 2017. 

[32] Das, R., E. Maiorana, and P. Campisi. Motor imagery for EEG biometrics using convolutional neural 
network. in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 
IEEE, 2018. 

[33] Schalk, G., et al., BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE 
Transactions on biomedical engineering, 51(6): p. 1034-1043, 2004. 

[34] Cui, Y., et al., Attention-over-attention neural networks for reading comprehension. arXiv preprint 
arXiv:1607.04423, 2016. 

[35] Bahdanau, D., et al. End-to-end attention-based large vocabulary speech recognition. in 2016 IEEE 
international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2016. 

[36] Bello, I., et al. Attention augmented convolutional networks. in Proceedings of the IEEE/CVF 
International Conference on Computer Vision. 2019. 

[37] Ortega-Rodriguez, J., Gonzalez, J.F.G., Pereda, E., Selection of the Minimum Number of EEG Sensors 
to Guarantee Biometric Identification of Individuals, Italian National Conference on Sensors, 2023. 

[38] Bak, S. and jeong, J., User Biometric Identification Methodology via EEG-Based Motor Imagery 
Signals, IEEE Access, 11, 41303-41314, 2023. 

[39] Wang, X., Wang, X. and Zhou, B., EEG Artifact Removal Based on Independent Component Analysis 
and Outlier Detection, 2022 14th International Conference on Wireless Communications and Signal 
Processing (WCSP), 2022. 

[40] Aamir, A., Tamosiunaite, M. and Worgotter, F., Interpreting the decisions of CNNs via influence 
functions, Front. Comput. Neurosci., 17, 2023. 


