تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,116,409 |
تعداد دریافت فایل اصل مقاله | 97,220,923 |
Spatial Modeling of Land Use Changes in Qazvin City until 2025 | ||
Pollution | ||
دوره 11، شماره 1، بهمن 2024، صفحه 39-50 اصل مقاله (6.6 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2024.374310.2306 | ||
نویسندگان | ||
Amir Sadeghi1؛ Roxana Moogouei* 2؛ Saeed Malmasi1؛ Alireza Gharagozlu3 | ||
1Department of the Environment, North Tehran Branch, Islamic Azad University, Tehran, Iran | ||
2Department of the Environmental Planning, Management and Education, North Tehran Branch, Islamic Azad University, Tehran, Iran | ||
3Faculty of civil water and environmental engineering, Shahid Beheshi University, Tehran, Iran | ||
چکیده | ||
Predicting the future development of the city has an essential role in achieving sustainable development. There is a direct relationship between land use changes and emission of pollutants. The present study used satellite images, remote sensing models, and geographic information systems to predict land use changes in Qazvin City. In the first step, the Principle Component Analysis was used to summarize the data and highlight the similarities and differences between the different bands. Then, the land use map for each of the studied years (1990, 2000, 2010, and 2020) was drawn using the Land Change Modeler analysis, and the land use changes between 1990 and 2020 were calculated. The findings show a severe decline in agricultural land and green space as a result of their conversion into constructed land. 735.66 hectares of these lands were destroyed during the study period and turned into constructed lands. If this trend continues until 2025, another 69 hectares will be destroyed. Converting agricultural lands and green spaces to residential, commercial, and industrial greatly increases the potential for pollutant emissions. These changes are associated with an increase in greenhouse gases in urban areas. This development should be based on green infrastructure especially the use of renewable energies and the management of freshwater. | ||
کلیدواژهها | ||
CA Markove؛ Land use changes, Emission of pollutants؛ Qazvin | ||
مراجع | ||
Abd EL-kawy, O. R., Ismail, H. A., Yehia, H. M., & Allam, M. A. (2019). Temporal detection and prediction of agricultural land consumption by urbanization using remote sensing. Egypt. J. Remote. Sens. Space Sci., 22; 237-246. Abdu, H. A. (2019). Classification accuracy and trend assessments of land cover-land use changes from principal components of land satellite images. Int. J. Remote Sens., 40; 1275-1300. Abousaeidi, M., & Hakimian, P. (2020). Developing a checklist for assessing urban design qualities of residential complexes in new peripheral parts of Iranian cities: A case study of Kerman, Iran. Sustain. Cities Soc., 60; 102251. Acheampong, M., Yu, Q., Enomah, L. D., Anchang, J. & Eduful, M. (2018). Land use/cover change in Ghana’s oil city: Assessing the impact of neoliberal economic policies and implications for sustainable development goal number one–A remote sensing and GIS approach. Land Use Policy, 73; 373-384. Aliabad, F. A., Shojaei, S., Zare, M. & Ekhtesasi, M. R. (2019). Assessment of the fuzzy art map neural network method performance in geological mapping using satellite images and Boolean logic. Int J Environ Sci Technol (Tehran), 16; 3829-3838. Aliani, H., Malmir, M., Sourodi, M. & Kafaky, S. B. (2019). Change detection and prediction of urban land use changes by CA–Markov model (case study: Talesh County). Environ. Earth Sci., 78; 546. Anitha, K., Naresh, K. & Devi, D. R. (2020). A framework to reduce category proliferation in fuzzy ARTMAP classifiers adopted for image retrieval using differential evolution algorithm. Multimed. Tools Appl., 79 (5); 4217-4238. Ansari, A. & Golabi, M. H. (2019). Prediction of spatial land use changes based on LCM in a GIS environment for Desert Wetlands–A case study: Meighan Wetland, Iran. Int. Soil Water Conserv. Res., 7; 64-70. Asabere, S. B., Acheampong, R. A., Ashiagbor, G., Beckers, S. C., Keck, M., Erasmi, S. & Sauer, D. (2020). Urbanization, land use transformation and spatio-environmental impacts: Analyses of trends and implications in major metropolitan regions of Ghana. Land Use Policy, 96; 104707. Belal, A. A. & Moghanm, F. S. (2011). Detecting urban growth using remote sensing and GIS techniques in Al Gharbiya governorate, Egypt. Egypt. J. Remote. Sens. Space Sci., 14; 73-79. Chotchaiwong, P. & Wijitkosum, S. (2019). Predicting urban expansion and urban land use changes in Nakhon Ratchasima City using a CA-Markov Model under two different scenarios. Land Use Policy, 8; 140. Ehsani, A. H. & Shakeryari, M. (2019). Determining the optimal method for classification and mapping of land use/land cover through comparison of artificial neural network and support vector machine algorithms using satellite data (Case study: International Hamoun wetland). J. Env. Sci. Tech., 20 (4); 193-208. Dharani, M. & Sreenivasulu, G. (2021). Land use and land cover change detection by using principal component analysis and morphological operations in remote sensing applications. Int. J. Comput. Appl., 43 (5); 462-471. Dutta, I. & Das, A. (2019). Modeling dynamics of peri-urban interface based on principal component analysis (PCA) and cluster analysis (CA): A study of English Bazar Urban Agglomeration, West Bengal. Model. Earth Syst. Environ., 5; 613-626. Hegazy, I. R. & Kaloop, M. R. (2015). Monitoring urban growth and land use change detection with GIS and remote sensing techniques in Daqahlia governorate Egypt. Int. J. Sustain. Built Environ., 4; 117-124. Huang, Z., D.u., X. & Castillo, C. S. Z., (2019). How does urbanization affect farmland protection? Evidence from China. Resour. Conserv. Recycl ., 145; 139-147. Ilyassova. A., Kantakumar, L. N. & Boyd, D. (2021). Urban growth analysis and simulations using cellular automata and geo-informatics: comparison between Almaty and Astana in Kazakhstan. Geocarto Int ., 36 (5); 520-539. Knobel, P., Hwang, I., Castro, E., Sheffield, P., Holaday, L., Shi, L., Amini, H., Schwartz, J. & Sade, M.Y. (2023). Socioeconomic and racial disparities in source-apportioned PM2. 5 levels across urban areas in the contiguous US, 2010. Atmos. Environ., (303); 119753. Kumar, A., Pramanik, M., Chaudhary, S., & Negi, M. S. (2020). Land evaluation for sustainable development of Himalayan agriculture using RS-GIS in conjunction with analytic hierarchy process and frequency ratio. J. Saudi Soc. Agric. Sci., 20; 1-17. Li, D., Lu, D., Li, N., Wu, M. & Shao, X. (2019). Quantifying annual land-cover change and vegetation greenness variation in a coastal ecosystem using dense time-series Landsat data. GIsci Remote Sens ., 56; 769-793. Mansour, S., Al-Belushi, M., & Al-Awadhi, T. (2020). Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modeling techniques. Land Use Policy, 91; 104414. Marzouk, M. & Othman, A. (2020). Planning utility infrastructure requirements for smart cities using the integration between BIM and GIS. Sustain. Cities Soc., 57; 102120. Parsipour, H., Popović, S. G., Behzadfar, M., Skataric, G. & Spalevic, V. (2019). Cities expansion and land use changes of agricultural and garden lands in peri-urban villages (case study: bojnurd). Agric. For., 65; 173-187. Saaty, T. L. (1980). The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill International Book Co, New York. Schaefer, M. & Thinh, N. X. (2019). Evaluation of land cover change and agricultural protection sites: a GIS and remote sensing approach for Ho Chi Minh City, Vietnam. Heliyon, 5; e01773. Skog, K. L. & Steinnes, M. (2016). How do centrality, population growth and urban sprawl impact farmland conversion in Norway? Land use policy, 59; 185-196. Stephone, N., Beaumont, B., Hallot, E., Wolff, E., Poelmans, L. & Baltus, C. (2016). Sustainable and smart city planning using spatial data in Wallonia. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, 1st International Conference on Smart Data and Smart Cities, 30th UDMS, 7–9 September 2016, Split, Croatia. 3-10 Wang, Q., Kang, Q., Zhao, B., Li, H., Lu, H., Liu, J., & Yan, C. (2022). Effect of land-use and land-cover change on mangrove soil carbon fraction and metal pollution risk in Zhangjiang Estuary, China. Science of The Total Environment, 807; 150973. Xiao, X. & Xie, C. (2021). Rational planning and urban governance based on smart cities and big data Environ. Technol. Innov., 21; 101381. Yousefi, S., Avand, M., Yariyan, P., Gojani, H. J., Romulus, C., Tavangar, S., & Tiefenbacher, J. P. (2021). Identification of the most suitable afforestation sites by Juniperus excels specie using machine learning models: Firuzkuh semi-arid region, Iran. Ecol. Inform., 65; 101427. Zhang, X., Qi, Y., Li, H., Wang, X., & Yin, Q. (2024). Assessing the response of non-point source nitrogen pollution to land use change based on SWAT model. Ecol. Indic., 158; 111391. Zhang, Z., Hu, B., Jiang, W., & Qiu, H. (2021). Identification and scenario prediction of degree of wetland damage in Guangxi based on the CA-Markov model. Ecol. Indic., 127; 107764. | ||
آمار تعداد مشاهده مقاله: 172 تعداد دریافت فایل اصل مقاله: 190 |