- Kumar, L., & Mutanga, O. (2017). Remote sensing of above-ground biomass. Remote Sensing, 9(9), 1–8.
- Marvie Mojadjer, M.R. (2011). Silviculture. University of Tehran Press, Tehran. 410 p. (In Persian)
- Brown S. (1997). Estimating biomass and biomass change of tropical forests: a Primer. FAO Forestry Paper, 134, 13-33.
- Tian, L., Wu, X., Tao, Y., Li, M., Qian, C., Liao, L., & Fu, W. (2023). Review of Remote Sensing-Based Methods for Forest Aboveground Biomass Estimation: Progress, Challenges, and Prospects. Forests Journal, 14(6), 1-31.
- Mateos, E. (2019). Study on the Potential of Forest Biomass Residues for Bio-Energy. Proceedings Journal, 2(23), 1420.
- Kabiri Koupaei, K., Marvie Mohadjer, M.R., Zahedi Amiri, Gh., Namiranian, M., & Etemad, V. (2009). A comparison on the quantitative and qualitative morphological characteristics of beech (Fagus orientalis Lipsky) in a pure and mixed stand (Gorazbon district, North of Iran). Iranian Journal of Forest and Poplar Research, 17(3), 422-435 (In Persian).
- Azizi, Z., Hosseini, A., & Iranmanesh, Y. (2018). Estimating Biomass of Single Oak Trees Using Terrestrial Photogrammetry. Journal of Environmental Science and Technology, 75(19), 81-93.
- Ronoud, Gh., Darvishseft, AA., & Namiranian, M., (2018). Estimation of aboveground woody biomass of Fagus orientalis stand in Hircanian forest of Iran using OLI data (Case study: Gorazbon and Namkhaneh Districts, kheyrud Forest). Journal of Forest and Wood Products (Iranian Journal of Natural Resources), 70(4), 559-568. (In Persian)
- Fatehi, P., Damm, A., Schaepman, M. E., & Kneubühler, M. (2015). Estimation of alpine forest structural variables from imaging spectrometer data. Remote Sensing, 7(12), 16315-16338.
- Sinha, S. K., Padalia, H., Dasgupta, A., Verrelst, J., & Rivera, J.P. (2020). Estimation of leaf area index using PROSAIL based LUT inversion, MLRA-GPR and empirical models: Case study of tropical deciduous forest plantation, North India. International Journal of Applied Earth Observation and Geoinformation, 86,102027.
- Aronoff, S., Darvishseft, A. A., Pir Bavaghar, M., Rajabpoor Rahmati, M. (2012) Remote sensing for GIS managers, University of Tehran Press, Tehran. 720 p. (In Persian)
- Pir Bavaghar, M. (2011). “Evaluation of capability of IRS-P6 satellite data for predicting quantitative attributes of forests (case study: Northern Zagros forests). Iranian Journal of Forest, 3(4), 277-289.
- Moradi, F., Darvishsefat, A., Namiranian, M., & Ronoud, Gh. (2018). Investigating the capability of Landsat 8 OLI data for estimation of aboveground woody biomass of common hornbeam (Carpinus betulus L.) stand in Khyroud Forest. Iranian Journal of Forest and Poplar Research, 26(3), 406-420. (In Persian)
- Vafaei, S., Soosani, J., Adeli, K., Fadaei, H. and Naghavi, H., (2017). Estimation of aboveground biomass using optical and radar images (Case study: Nav-e Asalem forests, Gilan). Iranian Journal of Forest and Poplar Research, 25(2), 320-331.
- Ghanbari Motlagh, M., & Babaie Kafaky, S. (2019). Estimation of Forest Above Ground Biomass in Hyrcanian Forests Using Satellite Imagery. Environmental Science and Technology, 22(5), 1-13.
- Fazelian, M., Attarchi, S., Etemad, V., & Lisenberg, V. (2019). Forest biomass estimation using optical and microwave imagery (Case study: Garazbon Series, Kheirud Forest). Iranian Journal of Forest, 12(3), 391-405.
- Su, H., Shen, W., Wang, J., Ali, A., & Li, M. (2020). Machine learning and geostatistical approaches for estimating aboveground biomass in Chinese subtropical forests. In Forest Ecosystems, 7(64), 1-20.
- Zhao, P., Lu, D., Wang, G., Liu, L., Li, D., Zhu, J., & Yu, S. (2016). Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data. International Journal of Applied Earth Observation and Geoinformation, 53, 1-15.
- Ghosh, S. M., & Behera, M.D. (2018). Aboveground biomass estimation using multi-sensor data synergy and machine learning algorithms in a dense tropical forest. Applied Geography, 96, 29-40.
- Mauya, E. W., & Madundo, S. (2021). Modelling and Mapping Above-Ground Biomass Using Sentinel 2 and Planet Scope Remotely Sensed Data in West Usambara Tropical Rainforests, Tanzania, Research Square Journal, 3(1), 1-32.
- Bayat, M., Namiranian, M., Zobeiri, M,. & Fathi, J. (2013). Determining growth increment and density of tree in forest using premanent sample plot (Case study: Gorazbon district of Kheyrud Forest), Iranian Journal of Forest and Poplar Research, 21(3), 424-438.
- (1997). Estimating Biomass and Biomass Change of Tropical Forests: A Primer, FAO Forestry, 134 p.
- Enayati, A.A., 2011. Wood Physics. University of Tehran Press, Tehran, 265p (In Persian).
- Bihamta, M., & Chahooki, MA. (2015) Principles of statistics in natural resource sciences, University of Tehran Press, Tehran. 320 p. (In Persian)
- Verrelst, J., Camps-Valls, G., Mu˜noz-Marí, J., Rivera, J.P., Veroustraete, F., Clevers, J.G.P.W., Moreno, J., 2015. Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties - A review. ISPRS Journal of Photogrammetry and Remote sensing, 108, 273-290.
- Verrelst, J., Malenovský, Z., Van der Tol, C., Camps-Valls, G., Gastellu-Etchegorry, J.P., Lewis, P., North, P., & Moreno, J. (2019). Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods. Surv Geophys, 40, 589-629.
- Upreti, D., Huang, W., Kong, W., Pascucci, S., Pignatti, S., Zhou, X., Ye, H., & Casa, R. (2019). A comparison of hybrid machine learning algorithms for the retrieval of wheat biophysical variables from sentinel-2. Remote Sensing, 11(5), 481.
- Fatehi, P., Damm, A., Schweiger, A. K., Schaepman, M.E., & Kneubühler, M. (2015). Mapping Alpine Aboveground Biomass from Imaging Spectrometer Data: A Comparison of Two Approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), 3123-3139.
- Saedmocheshi, A., Pirbavaghar, M., Shabanian, N., & Fatehi, P. (2019). The possibility of estimating species diversity using Sentinel satellite optical images (Case study: Marivan forests). Forest and wood products. Iranian Natural Resources Journal 72(2), 101-110. (In Persian)
|