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Abstract 

The paper introduces an innovative approach utilizing hybrid Adaptive Neuro Fuzzy Inference 

System (ANFIS) models for the reliability-based design of structural beams. While structural 

reliability analysis with hybrid ANFIS models remains largely unexplored, existing studies 

primarily rely on rudimentary simulation models. To address this gap, our study employs 

Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) to enhance the performance 

of the ANFIS model. The ML models are validated on three Monte-Carlo datasets of size 

1000, 2500, and 5000 respectively. The study findings demonstrate satisfactory 

performance across all machine learning (ML) models, with the hybrid ANFIS models 

exhibiting superior predictive capabilities compared to traditional methods. Among the 

hybrid ANFIS models, ANFIS-PSO emerges as the most robust. The reliability indices and 

Probability of Failure (POF) values are calculated for the predicted values and compared 

with actual values. It is concluded that the ANFIS-PSO-based methodology is the most 

robust model and outperforms the other models. It is noteworthy that while the ANFIS-

PSO model demonstrates exceptional performance, all models presented in this study serve 

as valuable tools for reliability-based structural design, offering robust alternatives to 

conventional methodologies. 
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1. Introduction 

Reliability analysis is a crucial aspect of structural engineering that ensures the safety, 

durability, and cost-effectiveness of engineered structures and contributes to the sustainable 

development and prosperity of societies. It helps in identifying potential failures, optimizing 

design, managing risks, ensuring compliance with standards and regulations, optimizing life 

cycle costs, and maintaining public confidence and trust (Haldar & Mahadevan, 2000; Harr, 

1987). Reliability analysis helps engineers identify potential failure modes and take preventive 

measures to mitigate risks. Traditional deterministic methods in structural engineering, such as 

deterministic structural analysis, limit state design, elastic analysis, a factor of safety, and code-

based design methods, rely on fixed parameters and do not account for uncertainties in material 

properties or loading conditions (Naess et al., 2012; Strauss et al., 2009; Toratti et al., 2007). 

Deterministic Structural Analysis solves structural mechanics equations using fixed input 

parameters, while Limit State Design ensures structures remain within predefined safety limits 

under all loading conditions (Acito et al., 2011; Singh et al., 2020). Elastic Analysis assumes 

structural materials behave linearly and elastically, but does not account for nonlinearities or 

uncertainties in material behavior. The factor of Safety divides the maximum expected load or 

stress a structure can withstand by a predetermined factor of safety, based on engineering 

judgment, historical data, and conservative assumptions about uncertainties in material 

properties and loading conditions (Ching & Phoon, 2011; Haldar & Mahadevan, 2000). Code-

Based Design Methods provide guidelines for calculating loads, selecting materials, and sizing 

structural members to ensure compliance with safety and performance requirements. However, 

However, traditional deterministic methods may not fully capture the complexities and 

uncertainties inherent in real-world applications, leading to a growing recognition of the 

importance of probabilistic approaches like Monte Carlo Simulation and Reliability analysis 

for comprehensive assessments of structural safety and performance. Reliability analysis 

methods, like Monte Carlo Simulation, overcome the limitations of traditional deterministic 

methods in structural engineering (Cardoso et al., 2008; Li et al., 2013; Naess et al., 2012; 

Papadrakakis et al., 1996). They consider uncertainties, incorporate conservative design 

assumptions, and offer a comprehensive risk management framework. They also offer greater 

flexibility and adaptability, allowing engineers to modify input parameters and incorporate new 

data to refine design decisions. Additionally, it aids in design optimisation by facilitating an 

agreement between performance, affordability, and safety. Conventional wisdom holds that the 

Factor of Safety method is the most prudent, however this overly conservative approach is 

unavoidably economically unsound. The probability of failure too remains high (Sivakumar 

Babu & Srivastava, 2007). fore, the odds of failing are considerable (Sivakumar Babu & 

Srivastava, 2007). These methods produce conservative, inefficient designs by exaggerating 

the impact of uncertainty. The optimisation process in reliability-based design (RBD) takes the 

structural failure probability with uncertainties into consideration as a probability constraint. 

RBD offers a system with profound trust and cost-effective structural design outcomes. 

 FORM is a highly efficient method for finite element model-based reliability analysis, 

which has been extensively studied in different engineering problems (Ayyub & Haldar, 1984; 
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Kar & Roy, 2022; Lee & Mosalam, 2005; Samui et al., 2016). FORM approximates the limit 

state function near its most probable point of failure. However, it has limitations such as 

assuming linearity, limited accuracy for nonlinear problems, and inability to capture higher-

order effects(Hao et al., 2019). Liu et al. (Liu et al., 2022) proposed multi-objective reliability-

based design optimization while Hao et al.  (Hao et al., 2021) proposed Nested Stochastic 

Kriging (NSK) model. Machine learning (ML) based reliability analysis is an emerging 

approach that leverages the capabilities of ML algorithms to analyze the reliability of structural 

systems (Zargari et al., 2024). ML has been successfully used in many engineering applications 

(D. R. Kumar, Wipulanusat, Kumar, et al., 2024; D. R. Kumar, Wipulanusat, Sunkpho, et al., 

2024; M. Kumar, Fathima, et al., 2024; M. Kumar, Samui, et al., 2024; M. Kumar & T.N., 

2023; N. Kumar & Kumari, 2024; S. Kumar, Kumar, et al., 2024; V. Kumar et al., 2023). ML-

based reliability analysis overcomes these limitations by nonlinear handling, flexibility, 

adaptability, and improved prediction accuracy (Cardoso et al., 2008; M. Kumar, Kumar, et al., 

2024; Saraygord Afshari et al., 2022a; T. et al., 2024). However, most of the studies are focused 

on basic ML models e.g. Artificial Neural Networks (ANN), Support Vector Machines (SVMs), 

and Kriging methods (Saraygord Afshari et al., 2022b). ANN-based reliability analysis faces 

ace challenges in reliability analysis due to their inherent complexity. These include capturing 

complex performance functions, calculating partial derivatives of implicit functions, and slow 

convergence rates. ANNs' non-linear transformations make derivative computation less 

straightforward than traditional methods. Slow convergence can hinder the efficiency of 

reliability analysis. Overfitting occurs when a model learns noise or random fluctuations in 

training data, leading to poor performance on unseen data. (R. Kumar et al., 2023). Burges 

(Burges, 1998) highlights that Support Vector Machines (SVMs) are powerful classification 

and regression tools due to their generalization capabilities. However, their application is 

limited due to high algorithmic complexity, significant memory demands, and challenges in 

kernel selection. These factors make training computationally expensive and time-consuming, 

especially for large datasets or high-dimensional spaces. Choosing the right kernel function 

and parameters can significantly affect the model's performance. While ANN and fuzzy logic 

(FL) offer various advantages, they also possess certain limitations. The advantages of both 

ANN and Fuzzy Logic (FL) are realized through Neuro-Fuzzy models. The Adaptive Neuro 

Fuzzy Inference System (ANFIS) is a system that integrates neural network (NN) and AI-based 

fuzzy logic. It functions like a neural network during the learning phase and like fuzzy logic 

during the execution phase. ANFIS has been demonstrated to outperform ANN and fuzzy logic 

(FL) when used individually (Atsalakis et al., 2018; Godil et al., 2011; Pezeshki & Mazinani, 

2019; Pradeep et al., 2021). In their study, Kumar et al. (Mohammadizadeh et al., 2023) 

determined that ANFIS demonstrates higher reliability compared to ANN, Gene Expression 

Programming (GEP) and other traditional models.  

 The study presents a hybrid neuro-fuzzy ML models-based reliability analysis of 

structural beams using Monte Carlo simulation. Sener et al. (Şener et al., 2024) applied hybrid 

ANFIS models for the characteristics of air bearings concluded to outperform traditional ANN 

and ANFIS models. Particle Swarm Optimization (PSO)-ANFIS and Genetic Algorithm (GA)-

ANFIS models have successful applications in many fields of structural engineering (Achouri 

et al., 2023; Karimi Sharafshadeh et al., 2023; Ly et al., 2021; Mishra et al., 2021), however, 
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hybrid ANFIS models-based reliability analysis of structural beams has not been performed till 

now. To address the literature gap, the authors propose a state-of-the-art reliability-based design 

of structural beams using MCS. Computers have revolutionized various sectors, with ML 

accelerating research and improving system efficiency. Traditionally, experiments were crucial 

for solving engineering problems, but high resource and equipment costs led to a surge in ML 

models for estimating the deflection of beams. Thus, the research presented in the study 

presents a good novelty for future research in the field.  

1.1 Disadvantages of Existing Methods 

The observational method does not permit design modifications during construction based on 

observed behavior. Traditionally, the factor of safety (FS) approach has been used to manage 

uncertainties and variability in design. However, this method relies on experience and often 

leads to overly conservative analyses and a significant probability of failure, lacking a rational 

problem-solving basis. The First Order Second Moment (FOSM) method is effective for 

reliability analysis of pile bearing capacity but is time-consuming and challenging for 

multivariable relationships, often yielding flawed results for non-normal distributions. 

Methods like the multi-tangent-plane surface method, Response Surface Method (RSM), and 

multi-plane surfaces method improve accuracy but are limited to nonlinear convex or concave 

limit state surfaces. ANNs are successful but struggle with explicit performance functions and 

complex partial derivatives, leading to slow convergence and overfitting. Support Vector 

Machines (SVMs) offer good generalization but suffer from high algorithmic complexity and 

memory requirements, along with kernel selection challenges. Fuzzy-based reliability analysis 

is effective but demands extensive data, expertise, and the tedious development of rules and 

membership functions. 

1.2 Motivation of the work 

ML-based FORM provides a novel and robust alternative to traditional methodologies for the 

reliable design of structures, however, most of the studies in the literature are simulated on 

scares dataset or utilises primitive soft-computive models. Hybrid neuro-fuzzy simulation 

models have got very limited applications in structural engineering and have not been utlised 

so far for the reliability analysis of structural beams. A unique hybrid learning algorithm that 

optimizes the ANFIS parameters more efficiently than traditional methods. Moreover, 

Combining FORM with Monte Carlo simulation provides a way to verify and correct the 

reliability estimates. By performing a large number of random simulations, the true failure 

probability can be estimated, and the error in the FORM approximation can be assessed and 

adjusted accordingly. By  harnessing  the  capabilities  of PSO-ANFIS and GA-ANFIS,  the 

study  aims  to improve  the  accuracy  and  efficiency  of  predicting  deflection of structural 

beams  and  utilize it to propose  a state-of-the-art  new  methodology  for  the reliability-based 

design of the structures. 

2. Research Methodology 
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The following subsections describe the theoretical background of the ML models, dataset 

preparation, and reliability analysis. 

2.1 ML models used in the study 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) is a hybrid computational model that 

merges the adaptive learning features of neural networks with the intuitive decision-making 

processes of fuzzy logic. It was proposed by Jang in 1993 (Jang, 1993) as a method for 

approximating or modeling systems that are difficult to describe mathematically. ANFIS 

models consist of four main components: fuzzy logic, fuzzy inference systems (FIS), neural 

networks, and hybrid systems. Fuzzy logic is a mathematical framework for dealing with 

uncertainty and imprecision, while FIS models model relationships between inputs and outputs 

based on fuzzy logic principles. Neural networks are computational models inspired by the 

structure and function of the human brain, consisting of interconnected nodes organized into 

layers. ANFIS models have a structure resembling a neural network, with layers for input, fuzzy 

inference, and output. The parameters of the ANFIS model are learned from data using 

techniques such as gradient descent or least squares estimation. During training, the model 

adjusts its parameters to minimize the difference between actual and predicted outputs. ANFIS 

models have been applied to various applications, including system identification, prediction, 

control, and pattern recognition, due to their ability to handle complex, nonlinear relationships 

and uncertainty in data. 

 The hybridization of ANFIS and optimization algorithms (OAs) combines the learning 

and adaptive capabilities of ANFIS with the global search and optimization abilities of OAs. 

The goal is to improve the performance of ANFIS by optimizing its parameters using OAs. The 

utilization of optimization techniques in regression ML algorithms is witnessing an increasing 

inclination and interest. Particle Swarm Optimization (PSO) is a population-based optimization 

algorithm that iteratively improves candidate solutions by simulating the movement of particles 

in a search space. It was first proposed by Kennedy and Eberhart in 1995 (Kennedy & Eberhart, 

1995) and is based on the principles of swarm intelligence and optimization algorithms. Swarm 

intelligence refers to the collective behavior of decentralized, self-organized systems, where 

groups of simple agents can exhibit complex, intelligent behavior when interacting with each 

other and their environment. PSO is based on the metaphor of a swarm of particles moving 

through a multidimensional search space, with each particle representing a potential solution. 

Optimization algorithms are methods for finding the best solution among feasible solutions 

within a defined search space. These solutions are evaluated based on an objective function 

that quantifies their quality or fitness. Key components of PSO include the particle, position, 

velocity, fitness, personal best, global best, inertia weight, and acceleration coefficients. The 

algorithm steps include initializing the swarm with random positions and velocities, evaluating 

the fitness of each particle, updating their positions, velocity, and position, and repeating the 

process until a termination condition is met. Termination criteria for PSO iterations can be met 

based on various criteria, such as reaching a maximum number of iterations, achieving a target 

fitness value, or stagnation of the swarm. Overall, PSO is widely used for solving optimization 
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problems in various domains due to its simplicity, efficiency, and ability to handle nonlinear 

and multimodal optimization problems. 

 Genetic Algorithms (GAs) are evolutionary algorithms derived from natural selection 

and genetics, used for optimization and search problems. They are inspired by the process of 

natural selection, where organisms with favorable traits are more likely to survive and 

reproduce, leading to the evolution of populations better adapted to their environments. GAs 

represent potential solutions to optimization problems as chromosomes, with each 

chromosome representing a candidate solution. The algorithm starts with an initial population 

of chromosomes, which is influenced by the population size. Each chromosome is evaluated 

based on its fitness, indicating the quality of each solution. The selection process determines 

which chromosomes will reproduce and form the next generation, with higher fitness values 

being more likely to be selected. The process of recombination, also referred to as crossover, 

involves the exchange of genetic material between selected sets of parent chromosomes, 

resulting in the formation of novel sets of chromosomes. The process of mutation involves the 

introduction of random alterations to the genetic material of offspring chromosomes. This 

mechanism serves to maintain genetic diversity and prolong the time it takes for the population 

to reach suboptimal solutions. By implementing a replacement strategy, it can be ensured that 

the population will exhibit improvement with the progression of each subsequent generation. 

Genetic algorithms (GAs) undergo iterative processes until they reach a specific threshold, such 

as the maximum number of generations, or until they discover a solution that satisfies their 

criteria. The effectiveness of genetic algorithms depends on appropriate parameter settings, 

representation, and problem characteristics. 

2.2 Hybridization of the ANFIS model 

Optimizing ANFIS parameters using OAs like GAs or PSO can significantly improve the 

performance of ANFIS models. The model has been shown to improve accuracy and 

convergence speed, handle high-dimensional and complex problems more efficiently, and 

reduce search space. However, the hybrid ANFIS models may suffer from overfitting if the 

training data size is small and the number of parameters to be optimized is large. However, 

hyperparameter tuning for the best-performing model using the hit and trial method and 

regularization techniques like early stopping are utilized to avoid overfitting.  

The hybridization of ANFIS and PSO combines the learning and adaptive capabilities 

of ANFIS with the global search and optimization abilities of PSO. The model uses PSO to 

optimize fuzzy sets and weights in ANFIS, searching the parameter space to find the optimal 

combination that minimizes the cost function. The process involves initializing the population 

of particles in PSO, evaluating their fitness using ANFIS, and updating their personal best, 

global best, and ANFIS parameters. The performance and robustness of ANFIS models by 

optimizing their parameters using the evolutionary principles of GAs. The process involves 

encoding, initialization, evaluation, selection, crossover, mutation, replacement, and 

termination. The encoding process involves a chromosome representation of the parameters of 

the ANFIS model. The encoding scheme represents the fuzzy sets, membership function 

parameters, and neural network weights. After the initialization of random individuals, the next 
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phase is training and validating the ANFIS model using the parameters encoded in each 

chromosome and measuring its performance on a dataset. The selection, mutation, and 

crossover are repeated till termination criteria are met. The best individual (chromosome) 

represents the optimized parameters for the ANFIS model. The optimum hyperparameter of 

hybrid model of ANFIS-GA and ANFIS-PSO model are mentioned as follows: Number of 

fuzzy rules is fixed 8 for all models, number of epochs are 500 for ANFIS, ANFIS-GA and 

ANFIS-PSO model, initial step size is 0.02, step size increase and decrease rate are 1.0 and 0.5 

respectively, Congnitive acceleration and social acceleration both are taken as 2 for all the 

proposed models. 

2.3 Monte-Carlo Simulation 

Monte Carlo simulation (MCS) is a valuable tool for analyzing and understanding complex 

systems and processes in the presence of uncertainty. It is a computational technique that 

approximates the behavior of complex systems or processes by performing repeated random 

sampling. It originated during the Manhattan Project, where scientists faced mathematical 

problems related to neutron diffusion in nuclear materials. The name "Monte Carlo" refers to 

the famous Monte Carlo Casino in Monaco, known for its games of chance, reflecting the 

randomness inherent in the method. MCS involves several key steps, including problem 

formulation, probability distributions, random sampling, and simulation runs. The basic idea is 

to generate random variables for uncertain parameters in the model and use these to compute 

the outcomes. The simulation is typically repeated thousands or even millions of times to create 

a distribution of possible outcomes. The Probability density function of the samples are the 

same as those of the population. The mechanism involves define the problem, develop a 

mathematical model, specify probability distributions for the uncertain variables, generate 

random samples using a random number generator, run simulations for each set of random 

inputs, and analyze the results to understand the range, mean, variance, and other statistical 

properties of the outcomes. The fundamental concept underlying a Monte Carlo simulation is 

to assign a range of values to an uncertain variable in order to observe the resulting outcomes, 

and subsequently calculate an average of these outcomes to obtain an approximate estimate. 

The primary focus of the method is the iterative selection of random samples. In the case that 

the variable is uncertain, the procedure will assign it a random value. Subsequently, the model 

is executed and the resulting outcomes are recorded. Multiple iterations or simulations are 

conducted to generate paths, and the result is derived through accurate mathematical 

operations.  

 

2.4 Dataset Preparation 

For the generation of the dataset, a simply supported beam of span (L) 5000 mm is taken, and 

applied to a uniformly distributed load of ‘w’ N/mm (figure 1). The beam span, the distance 

between two supports of a beam, is a crucial geometrical parameter that influences its structural 

behavior and deflection. The input parameters are load applied and the modulus of elasticity 

(E) of the beam. The modulus of elasticity, also known as Young's modulus, measures a 

material's stiffness by comparing stress to strain in the linear elastic region of its stress-strain 

curve. The uncertainty in E can arise from several factors, including material inhomogeneity, 
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variations in manufacturing processes, and measurement errors during testing. The output 

parameter, deflection of the beam () is calculated from equation 1. 

 =  
𝐿

325
−

5𝑊𝐿4

384𝐸𝐼
 

(1) 

The dataset for the study is generated in MATLAB environment using the ‘randn’ command 

while keeping L and moment of inertia (I) constant. According to IS 800:1984, the prescribed 

maximum deflection of the beam (max) is set at L/325, which translates to 15.385 mm for a 

span of 5000 mm. First, a dataset of size 800 is generated, which is randomly divided into 

training and testing datasets after normalization of the datasets, which corresponds to 70% and 

30% of the total datasets respectively.  

 Keeping the same input variables and their probability distribution, random datasets of 

sizes 1000, 2500, and 5000 are generated in a MATLAB environment. Once the model is 

trained and tested on the training and testing datasets respectively, the simulated model is tested 

on the MC datasets, keeping the same training dataset.   

 

 
Fig.  1 The simply supported beam taken for the study 

Descriptive statistics provide a summary of the main aspects and characteristics of the input 

and output parameters of the used dataset. Descriptive statistics are fundamental for gaining 

insights into the distribution and characteristics of a dataset, aiding in the initial exploration 

and understanding of the data. In this study, the minimum, maximum, mean standard error, 

median, standard deviation, kurtosis, and skewness of the input and output variables are 

calculated and summarized in Table 1. From the presented result, it can be observed that the 

kurtosis for all variables is negative and skewness is almost negligible for all parameters used 

in this study. The minimum value of modulus of elasticity is 25000 N/mm2, and applied load 

varies from 10 N/mm to 255 N/mm and the corresponding deflection varies from 0.477 mm to 

15.37 mm. 

 

  

Load (w) / mm 

length 
b 

d 

Length 

(L) 
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Table 1 Descriptive statistics of the input and output dataset 

Descriptive Statistic 
Modulus of 

Elasticity (E) 

Applied 

Load (W) 

Deflection of 

Beam (d) 

Minimum 25000 10 0.477 

Maximum 31622.7 255 15.37 

Mean 28397.33 132.50 7.09 

Standard Error 87.32 2.55 0.14 

Median 28483.26 132.50 7.03 

Standard Deviation 2469.72 72.20 3.93 

Kurtosis -1.35 -1.20 -1.08 

Skewness -0.08 0.00 0.08 

2.5 Performance evaluation 

Assessing the performance of machine learning (ML) models is crucial for understanding how 

well they predict the deflection of a simply supported beam. The choice of performance metrics 

depends on the type of problem being addressed (regression, classification) and the nature of 

the data. Interpretability and relevance of metrics are important in engineering problems like 

beam deflection, guiding better decision-making in structural design. Comparative analysis 

helps select the most appropriate model for the specific task. Overfitting concerns can be 

addressed by evaluating model performance on both training and testing datasets. In this study, 

some common performance metrics used to assess the performance of constructed models are 

presented in Table 2. 

Table 2 Mathematical expression and the ideal value of performance metrics 

Performance metrics Mathematical expression Ideal value 

Root Mean Square Error 

(RMSE) 
𝑅𝑀𝑆𝐸 = √

1

𝑛
∑(𝑑𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 0 

Mean Absolute Error 

(MAE) 
𝑀𝐴𝐸 =

1

𝑛
∑|(𝑦𝑖 − 𝑑𝑖)|

𝑛

𝑖=1

 0 

Weighted Mean Absolute 

Percentage Error 

(WMAPE) 
𝑊𝑀𝐴𝑃𝐸 =

∑ |
𝑑𝑖 − 𝑦𝑖

𝑑𝑖
| × 𝑑𝑖

𝑛
𝑖=1

∑ 𝑑𝑖
𝑛
𝑖=1

 
0 

Coefficient of 

determination (R2) 
𝑅2 =

∑ (𝑑𝑖 − 𝑑𝑎𝑣𝑔)
2

−𝑛
𝑖=1 ∑ (𝑑𝑖 − 𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑑𝑖 − 𝑑𝑎𝑣𝑔)
2𝑛

𝑖=1

 1 

Willmott’s Index of 

Agreement 
𝑊𝐼 = 1 − [

∑ (𝑑𝑖 − 𝑦𝑖)2𝑛
𝑖=1

∑ {|𝑦𝑖 − 𝑑𝑎𝑣𝑔| + |𝑑𝑖 − 𝑑𝑎𝑣𝑔|}
2𝑛

𝑖=1

] 1 

Nash-Sutcliffe Efficiency 

(NS) 
𝑁𝑆 = 1 −

∑ (𝑑𝑖 − 𝑦𝑖)
2𝑛

𝑖=1

∑ (𝑑𝑖 − 𝑑𝑎𝑣𝑔)
2𝑛

𝑖=1

 1 

Variance Account Factor 

(VAF) 
𝑉𝐴𝐹 = (1 −

𝑣𝑎𝑟(𝑑𝑖 − 𝑦𝑖)

𝑣𝑎𝑟(𝑑𝑖)
) × 100 100 

Performance Index (PI) 𝑃𝐼 = 𝑎𝑑𝑗. 𝑅2 + (0.01 × 𝑉𝐴𝐹) − 𝑅𝑀𝑆𝐸 2 
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Expanded uncertainty 

(U95) 𝑈95 = 1.96(𝑆𝐷2 + 𝑅𝑀𝑆𝐸2)
1
2 0 

Global Performance 

Indicator (GPI) 
𝐺𝑃𝐼 = 𝑀𝐵𝐸 × 𝑅𝑀𝑆𝐸 × 𝑈95 × 𝑡𝑠𝑡𝑎𝑡 × (1 − 𝑅2) 0 

where 𝑑𝑖 and 𝑦𝑖 denotes the actual and model-predicted ith value of deflection of the simply 

supported beam, 𝑑𝑎𝑣𝑔 denotes the average of the actual deflection of a simply supported beam 

and 𝑛 represents the total number of samples. For an ideal model, the value of these 

performance metrics should be equal to their ideal value as presented in Table 2. The overall 

methodology flowchart of the present study is presented in Fig. 2. 
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Fig. 2 Methodology flowchart of the present study 

2.6 Reliability analysis 

The First Order Reliability Method (FORM) is a prevalent technique in reliability analysis 

across engineering and other disciplines. It operates on the principle of identifying the most 

probable point of failure within the domain of the limit state function, which delineates the 

boundary between failure and non-failure regions in the space of random variables. In FORM, 

reliability is measured and expressed through the Reliability Index (β). Consider that the 

demand, denoted as E, represents the expected deflections of an engineering system, while the 

capacity, denoted as Lm, represents the limiting deflection. Both E and Lm are typically 

uncertain variables. The system's margin of safety is captured by the limit state function, also 

known as the performance function, which is a mathematical expression of the failure criterion. 

This function defines the relationship between random variables and the occurrence of failure.  

The Performance function (p) is given by:  

 

𝑝 =  𝑔(𝐸, 𝐿𝑚)  = 𝐸 − 𝐿𝑚  {
> 𝑜 , 𝑆𝑎𝑓𝑒

 = 0, 𝐿𝑖𝑚𝑖𝑡 𝑠𝑡𝑎𝑡𝑒
< 0, 𝐹𝑎𝑖𝑙𝑢𝑟𝑒

 
                                                                

(2) 

 

 

 

Procedure for Calculating the Reliability Index (Babu et al., 2011): 

1) Express the basic variables (R, D) in the standard non-dimensional form: 

       𝑝𝐸 =
𝐸−𝜇𝐸

𝜎𝐸
 , and  𝑍𝐿𝑚

=
𝑄−𝜇𝐿𝑚

𝜎𝐿𝑚

   (3)                                                               

 

2) Transform the limit state function into reduced variables, resulting in a representation 

as a straight line 

𝑔(𝐸, 𝐿𝑚) = 𝐸 − 𝐿𝑚  (4)                                         

 

3) The FORM algorithm operates on the principle of finding the most probable failure 

point (MPFP), which is the point on the limit state surface where the failure probability 

is maximized. The reliability index (β) is determined by the shortest distance from the 

origin to the function f (E, Lm) as depicted in Fig. 1. The comprehensive methodology 

for the reliability analysis is detailed in Fig. 2. 

𝛽 =
𝜇𝐸 − 𝜇𝐿𝑚

√(𝜎𝐸
2 + 𝜎𝐿𝑚

2 )

 
(5) 
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3. Results and Discussion 

3.1 Performance evaluation of developed models 

The performance comparison of developed ML models depends on various factors, including 

the quality and quantity of data, feature engineering, hyperparameter tuning, and the specific 

characteristics of the algorithms. In this study, the most widely used ten performance metrics 

were evaluated and analyzed to compare the performance of developed ML models. Table 3 

shows the comparison of developed models in quantitative in both the training and testing 

phase. From the presented result, it can be observed that the developed ANFIS-PSO model 

obtained the R2 value of 1.00 for both training and testing followed by ANFIS-GA (R2 = 0.996 

for both training and testing) and ANFIS (R2 = 0.979 for training and 0.978 for testing). Thus, 

the performance of the proposed ANFIS-PSO model is excellent among the other proposed 

models.  

Table 3 Performance comparison of ANFIS, ANFIS-GA and ANFIS-PSO 

 ANFIS ANFIS-GA ANFIS-PSO 

R2 0.979 0.978 0.996 0.996 1.000 1.000 

WMAPE 0.071 0.073 0.029 0.031 0.006 0.007 

NS 0.976 0.974 0.996 0.995 1.000 1.000 

RMSE 0.041 0.040 0.018 0.018 0.005 0.005 

VAF 97.672 97.531 99.570 99.513 99.968 99.962 

PI 1.915 1.913 1.974 1.973 1.994 1.994 

WI 0.994 0.993 0.999 0.999 1.000 1.000 

MAE 0.032 0.032 0.013 0.013 0.003 0.003 

U95 0.255 0.240 0.274 0.257 0.268 0.250 

GPI 0.000 0.000 0.000 0.000 0.000 0.000 

Tables 4, 5, and 6 show the comparative study of performance parameters of the Monte Carlo 

simulation of the proposed models. Higher values of accuracy parameters such as R2, NS, VAF, 

PI, and WI confirm the excellent performance of the developed models, similarly, lower values 

of error parameters such as RMSE, WMAPE, MAE, and GPI exhibit the excellent model’s 

performance in predicting the deflection of SS beam. From the results presented in Tables 4, 5, 

and 6, it can be observed that the obtained value of performance metrics is considerable and 

excellent for all the proposed models. However, the performance metrics for 5000 simulation 

datasets are more excellent for all proposed models.  

Table 4 Performance comparison of MC simulation of ANFIS model 

Parameters 
Number of MC simulations 

1000 2500 5000 

R2 0.983134 0.988298 0.988653 

WMAPE 0.111658 0.08258 0.14495 

NS 0.936297 0.954645 0.907558 

RMSE 0.039626 0.032952 0.061134 

VAF 97.65969 97.60643 97.17235 

PI 1.920099 1.931401 1.899219 

WI 0.983324 0.98731 0.97408 

MAE 0.033551 0.024708 0.054569 
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U95 0.146565 0.140616 0.184207 

GPI -0.00029 -5.8E-05 -0.00031 

 

Table 5 Performance comparison of MC simulation of ANFIS-GA model 

Parameters 
Number of MC simulations 

1000 2500 5000 

R2 0.989759 0.990091 0.99086 

WMAPE 0.070654 0.078838 0.107482 

NS 0.962309 0.959592 0.934483 

RMSE 0.030481 0.031103 0.051467 

VAF 97.75297 97.91371 97.34815 

PI 1.936804 1.938117 1.912856 

WI 0.989679 0.988769 0.981447 

MAE 0.02123 0.023588 0.040463 

U95 0.140366 0.141227 0.181112 

GPI -5.2E-05 -4.6E-05 -0.00013 

 

 

Table 6 Performance comparison of MC simulation of ANFIS-PSO model 

Parameters 
Number of MC simulations 

1000 2500 5000 

R2 0.987791 0.989815 0.991043 

WMAPE 0.093538 0.094255 0.110237 

NS 0.950969 0.953495 0.934309 

RMSE 0.034765 0.033367 0.051535 

VAF 97.15216 97.71313 97.62601 

PI 1.924543 1.933571 1.91575 

WI 0.986397 0.986986 0.981623 

MAE 0.028107 0.028201 0.0415 

U95 0.138663 0.140525 0.183124 

GPI -8.4E-05 -5.8E-05 -0.00015 

A scatter plot is a graphical representation of data points in a two-dimensional space, where 

each point represents the values of SS beam deflection. In the context of ML models, scatter 

plots are often used to visualize the relationship between the predicted and actual values of 

deflection of the SS beam. Ideally, the ML models is performing well, the points on the scatter 

plot should align along a diagonal line (45-degree angle) from the bottom-left to the top-right, 

indicating that the predicted values are close to the actual values. Deviations from this diagonal 

line suggest discrepancies between the actual and predicted values. The scatter plot for the 

developed models is presented in Fig. 3 for the training and testing phase, and Fig. 4 shows the 

scatter plot of MC simulation plots for 1000, 2500, and 5000 MC simulations respectively. 

From the presented result, it can be observed that the developed ANFIS-PSO model obtained 

a denser pattern along the diagonal line in both the training and testing phases. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 3 Scatter plot for developed models of training and testing phase 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

Fig. 4 Scatter plot for all models for different MC simulations 

 

3.2 Accuracy matrix 

The accuracy matrix is a heat map matrix of the performance metrics value which is used to 

assess the accuracy level of proposed models. Without having to look at the values of the 

performance metrics, researchers are able to quickly evaluate the amount of accuracy obtained 

by the proposed models against the corresponding performance metrics. It was stated earlier 

that various performance metrics need to be determined in order to assess the performance of 

developed models from several standpoints. As a consequence, a heat map matrix has been 

shown to assess the quick review of the developed model’s accuracy. The accuracy matrix of 

the constructed ANFIS and hybrid model of ANFIS are shown in Fig. 5 and the accuracy matrix 

for the different Monte Carlo simulations for all constructed models is presented in Fig. 6. 

Herein, the overall performance of constructed models can be observed from the presented 

figure, the ANFIS-PSO is the best-performing model in predicting the deflection of simply 

supported beam followed by ANFIS-GA, and ANFIS model in the training and testing sets. As 

per the result of the accuracy matrix, the constructed ANFIS-PSO model attained the best 

accuracy corresponding to each performance metric. 
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Train Test Train Test Train Test

R
2 97.93% 97.77% 99.61% 99.56% 99.97% 99.96% 100%

WMAPE 92.89% 92.70% 97.10% 96.90% 99.35% 99.27%

NS 97.64% 97.43% 99.57% 99.51% 99.97% 99.96%

RMSE 95.87% 95.97% 98.24% 98.24% 99.51% 99.51%

VAF 97.67% 97.53% 99.57% 99.51% 99.97% 99.96% 96.19%

PI 95.73% 95.63% 98.71% 98.65% 99.72% 99.72%

WI 99.37% 99.31% 99.89% 99.88% 99.99% 99.99%

MAE 96.81% 96.84% 98.70% 98.66% 99.71% 99.68%

U95 74.46% 76.03% 72.57% 74.34% 73.23% 75.00%

GPI 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 72.57%
 

1000 2500 5000 1000 2500 5000 1000 2500 5000

R
2 98.31% 98.83% 98.87% 98.98% 99.01% 99.09% 98.78% 98.98% 99.10%

WMAPE 88.83% 91.74% 85.50% 92.93% 92.12% 89.25% 90.65% 90.57% 88.98%

NS 93.63% 95.46% 90.76% 96.23% 95.96% 93.45% 95.10% 95.35% 93.43%

RMSE 96.04% 96.70% 93.89% 96.95% 96.89% 94.85% 96.52% 96.66% 94.85%

VAF 97.66% 97.61% 97.17% 97.75% 97.91% 97.35% 97.15% 97.71% 97.63%

PI 96.00% 96.57% 94.96% 96.84% 96.91% 95.64% 96.23% 96.68% 95.79%

WI 98.33% 98.73% 97.41% 98.97% 98.88% 98.14% 98.64% 98.70% 98.16%

MAE 96.64% 97.53% 94.54% 97.88% 97.64% 95.95% 97.19% 97.18% 95.85%

U95 85.34% 85.94% 81.58% 85.96% 85.88% 81.89% 86.13% 85.95% 81.69%

GPI 100% 100% 100% 100% 100% 100% 100% 100% 100% 81.58%

Parameters
ANFIS ANFIS-GA ANFIS-PSO

100%

95.26%

 

Fig. 6 Accuracy matrix for Monte Carlo simulations of all models 

 

3.2 Taylor diagrams 

A Taylor diagram is a graphical representation used to assess the skill of proposed models or 

forecasts compared to observations. It was introduced by Taylor in 2001 as a tool for visually 

summarizing multiple performance metrics in a single plot. The Taylor diagram provides 

insights into how well a model or simulation reproduces key statistical characteristics of 

observed data. The main components of the Taylor diagram are: (i) Correlation Coefficient 

Axis (X-axis): The correlation coefficient between the model and observed data is typically 

represented on the X-axis. This axis shows how well the model reproduces the variability of 
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the observations. A perfect model would lie on the rightmost edge with a correlation coefficient 

of 1. (ii) Standard Deviation Ratio Axis (Y-axis): The ratio of the standard deviation of the 

model to the standard deviation of the observations is represented on the Y-axis. This axis 

accounts for the spread of data points around the mean. Ideally, a model that perfectly replicates 

the observed variability would lie on the top of the plot with a standard deviation ratio of 1. 

(iii) Reference Point (Origin): The origin of the Taylor diagram (0,1) represents a model that 

perfectly reproduces the standard deviation of the observations but has no correlation with 

them. Points on the diagram are plotted relative to this reference point. (iv) Radial Lines: Radial 

lines extending from the origin represent constant values of the correlation coefficient. Each 

concentric circle corresponds to a specific correlation coefficient, with the outermost circle 

typically representing perfect correlation (1.0). and (v) Distance from Origin: The distance of 

a point from the origin indicates how well the model reproduces both the correlation coefficient 

and standard deviation ratio. Points closer to the reference point have lower skill, while points 

farther away indicate better performance. The Taylor diagram for all proposed models for the 

training and testing phase is presented in Figs. 7(a) and 7 (b) respectively. The Taylor diagram 

for Monte Carlo simulation is presented in Figs. 7 (a), 7 (b) and 7 (c). From the presented figure 

it can be observed that the ANFIS-PSO model achieved the highest accuracy and correlation 

coefficient in both the training and testing phase. However, for 1000 and 2500 Monte Carlo 

simulations all models achieved almost similar accuracy and for 5000 simulations ANFIS-PSO 

model attained the best accuracy among the other proposed models. 

 
(a) Taylor diagram for the training phase 

 
(b) Taylor diagram for testing phase 

Fig. 7 Taylor diagram for (a) Training phase (b) Testing phase 
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(a) Taylor diagram for 1000 MC simulation 

 
(b) Taylor diagram for 2500 MC 

simulation 

 
(c) Taylor diagram for 5000 MC simulation 

Fig. 8 Taylor diagram for (a) 1000 MC simulation (b) 2500 MC simulation (c) 5000 MC 

simulation 

 

3.3 Reliability Indices 

The reliability indices of the performances of the ML models are calculated from the predicted 

values and compared with the reliability indices calculated from the actual values and termed 

as predicted reliability index and actual reliability index respectively. The corresponding 

probability of failure (POF) is also calculated and compared with the actual POF values. The 

capacity of the system or limiting deflection (L) is taken as L/325 i.e., 15.385 mm for the span 

of 5000 mm, as per IS 800:1984. The reliability indices and POF are reported in Figs. 9 and 10 

respectively, calculated as per the methodology given in section 2.5.  

 The β values for the ANFIS-PSO (2.066 and 2.275) (Fig. 9) model are close to the 

actual values (2.055 and 2.2611) in both the training and testing phases. The reliability indices 
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predicted by the ANFIS and ANFIS-GA models also predict the reliability index satisfactorily, 

however, while ANFIS (2.169 and 2.37) overpredicted the values, ANFIS-GA (2.016 and 

2.214) underpredicts it. The performances of the ML models reduce slightly in the MC 

simulation phase, however, ANFIS-PSO is the best-performing model. Corresponding to the 

actual reliability indices of 2.11, 2.2, and 2.154 in the MC simulation of 1000, 2500, and 5000 

datasets respectively, the values calculated from the ANFIS-PSO model predictions are 2.655, 

2.636, and 2.658 respectively, compared to 2.74, 2.665 and 2.59 of ANFIS and 2.678, 2.676 

and 2.58 of 1000, 2500 and 5000 MC datasets respectively. The POF values (Fig. 10) of the 

ANFIS-PSO model are close to the actual values, compared to the other two models. Thus, 

ANFIS-PSO is the most reliable model, however, the performances of the other two models 

are also satisfactory.    

 

 

Fig. 9 Comparison of reliability indices of the proposed models 

Actual ANFIS ANFIS-GA ANFIS-PSO

Training 2.055 2.169 2.016 2.066

Testing 2.2611 2.37 2.214 2.275

1000 2.11 2.74 2.678 2.655

2500 2.2 2.665 2.676 2.636

5000 2.154 2.59 2.67 2.58
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Fig. 10 POF values of the ML models 

4. Conclusion 

The study proposed hybrid neuro-fuzzy ML models based on the reliability-based design of 

structural beams using Monte Carlo simulation. For this purpose, 800 random datasets are 

generated, with modulus of elasticity and applied load as input parameters and beam deflection 

as output parameters. The models are simulated and tested on the dataset, and the corresponding 

reliability indices are calculated. To check the reliability of the models, MC simulation is 

performed, and corresponding reliability indices are calculated and compared to the actual 

reliability index. The important conclusions of the study are: 

1. ANFIS-PSO (R2 =1, RMSE = 0.007) is the most robust model in the training and testing 

phase, followed by ANFIS-GA (R2 =0.996, RMSE = 0.018) and ANFIS (R2 =0.978, 

RMSE = 0.04). The hybridization improves the performance of the ANFIS model. 

2. The performance of the models is robust in the MC simulation datasets; however, the 

performance of the hybrid ANFIS models reduces slightly, which highlights the 

importance of checking the model performance in the MC simulation. Another 

significant takeaway is the enhancement in the performance of the hybrid ANFIS 

models as the number of datasets increases, which confirms the robust simulation of 

the models. 

3. ANFIS-PSO (β = 2.275, POF = 0.0115) is concluded to be the most robust model, 

having the reliability index and POF close to the actual value β = 2.261, POF = 0.0118). 

The other two models also give satisfactory performance and are concluded to be robust 

as well.  

To enhance future investigations, it is crucial to broaden the scope by simulating more hybrid 

ANFIS models for comprehensive reliability analyses and comparing them with the ANFIS- 

PSO framework. Subjecting ML models to rigorous training and evaluation across varied and 

diverse datasets is essential to validate their effectiveness as robust methodologies for practical 

Actual ANFIS ANFIS-GA ANFIS-PSO

5000 0.0156 0.00478 0.0049 0.00393

2500 0.0137 0.00386 0.0042 0.0037

1000 0.017 0.00306 0.0037 0.00397

Testing 0.0118 0.0089 0.0134 0.0115

Training 0.0199 0.015 0.0219 0.0194

0.01

0.02

0.03

0.04

0.05
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0.07

0.08

0.09
P
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F
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designs related to simply supported beams and similar structures. Moreover, it is imperative to 

integrate additional reliability-based analyses for conducting thorough comparisons between 

the outcomes generated by the FORM and the models formulated in this research. Furthermore, 

the ML-driven framework suggested in this study offers possibilities for expanding reliability 

analyses to cover a wider range of civil engineering structures. Expanding these investigations 

will enhance our comprehension and utilization of ML techniques in structural reliability 

assessments, thus progressing the field of civil engineering. It is crucial to acknowledge that 

machine learning, although a potent tool, does not offer a universal solution. The successful 

application of machine learning in the laboratory setting necessitates meticulous examination 

of the particular problem, the accessibility and quality of data, the suitable selection of 

algorithms, and frequent validation and enhancement of models to guarantee accurate and 

reliable outcomes. 
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