تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,123,759 |
تعداد دریافت فایل اصل مقاله | 97,231,905 |
Respirable Dust in Ceramic Industries (Iran) and its Health Risk Assessment using Deterministic and Probabilistic Approaches | ||
Pollution | ||
دوره 10، شماره 4، آذر 2024، صفحه 1206-1226 اصل مقاله (2.29 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2024.376043.2360 | ||
نویسندگان | ||
Saeed Shojaee Barjoee* ؛ Vladimir Rodionov Alekseevich | ||
Department of Industrial Safety, Faculty of Mining, St. Petersburg Mining University of Empress Catherine II, St. Petersburg, Russia | ||
چکیده | ||
This study used both deterministic and probabilistic methods to evaluate the risks associated with non-cancer health outcomes for workers in the ceramic industry. In this study, the Similar Exposure Groups (SEGs) method was used to determine the sampling volume. The NIOSH 0600 technique was followed in the collection of breathing zone air samples. Next, the Latin hypercube simulation and the EPA-developed inhalation risk assessment model were used to evaluate the health risks associated with respirable dust. To ascertain how input parameters contributed to the health risks, a sensitivity analysis was also performed. The average exposure to respirable dust in occupational groups ranged from 0.28 to 20.13 mg/m3. The average respirable dust in all occupational groups, except furnace, glazing line, and packaging, was higher than the values presented according to the ACGIH standard (3 mg/m3). It was anticipated that the HQ values acquired for all occupational groups using the deterministic approach would be less than 1. However, the probabilistic approach's results indicated that the value of HQ is higher than permissible values in some occupational groups. The findings of the sensitivity analysis showed that the concentration of respirable dust was the most sensitive factor contributing to non-carcinogenic (67.08%) risks. These results can help managers better understand the risks of respirable dust that workers in the ceramic industry confront and how engineering controls and respirators protect workers' health. | ||
کلیدواژهها | ||
Dust؛ Similar exposure groups (SEGs)؛ Latin hypercube sampling (LHs)؛ Sensitivity analysis؛ Hazard quotient (HQ) | ||
مراجع | ||
Abaya, S. W., Bråtveit, M., Deressa, W., Kumie, A., & Moen, B. E. (2018). Personal dust exposure and its determinants among workers in primary coffee processing in Ethiopia. Ann. Work. Exposures. Health., 62(9), 1087-1095. Ambastha, S. K., & Haritash, A. K. (2021). Emission of respirable dust from stone quarrying, potential health effects, and its management. Environ. Sci. Pollut. Res., 29(6670–6677), 1-8. Anlimah, F., Gopaldasani, V., MacPhail, C., & Davies, B. (2023). A systematic review of the effectiveness of dust control measures adopted to reduce workplace exposure. Environ. Sci. Pollut. Res., 30(19), 54407-54428. Barone, T. L., Lee, T., Cauda, E. G., Mazzella, A. L., Stach, R., & Mizaikoff, B. (2021). Segregation of respirable dust for chemical and toxicological analyses. Arch. Environ. Occup. Health., 76(3), 134-144. Bazaluk, O., Tsopa, V., Okrasa, M., Pavlychenko, A., Cheberiachko, S., Yavorska, O., Deryugin, O., & Lozynskyi, V. (2024). Improvement of the occupational risk management process in the work safety system of the enterprise. Front. Public Health., 11, 1330430. Carey, J. P. C., & Carey, A. G. (1975). Industrial growth and development planning in Iran. Middle. East. J., 29(1), 1-15. Čargonja, M., Mekterović, D., Žurga, P., Ravlić-Gulan, J., Radović, I. B., & Žauhar, G. (2023). Deposition of heavy metals in biological tissues of workers in metal workshops. Environ. Sci. Pollut. Res., 30(13), 36794-36806. Chamdimba, G., Vunain, E., & Maoni, M. (2023). Assessment of particulate matter exposure on ambient air and its impact on workers at two granite quarry mines at Njuli, Southern Malawi. Environ. Monit. Assess., 195(9), 1069. Che Huei, L., Ya-Wen, L., Chiu Ming, Y., Li Chen, H., Jong Yi, W., & Ming Hung, L. (2020). Occupational health and safety hazards faced by healthcare professionals in Taiwan: A systematic review of risk factors and control strategies. SAGE. Open. Medicine., 8, 2050312120918999. Gendler, S. G., Kopachev, V. F., & Kovshov, S. V. (2022). Monitoring of compressed air losses in branched air flow networks of mining enterprises. J. Min. Inst., 253, 3-11. George, J., Shafqat, N., Verma, R., & Patidar, A. B. (2023). Factors influencing compliance with personal protective equipment (PPE) use among healthcare workers. Cureus, 15(2). Gridina, E., & Borovikov, D. (2022). Identification of the causes of injuries based on occupational risk assessment maps at the open-pit coal. MIAB. Mining Inf. Anal. Bull(6-1), 114-128. Hosseinzadeh, M., Hemmatjo, R., Moutab Sahihazar, Z., Galvani, S., & Hajaghazadeh, M. (2023). Probabilistic health risk assessment of occupational exposure to BTEX in a paint manufacturing plant using Monte-Carlo simulation. Hum. Ecol. Risk Assess.: Int. J. , 29(3), 859-880. Huang, J., Shibata, E., Takeuchi, Y., & Okutani, H. (1993). Comprehensive health evaluation of workers in the ceramics industry. J. Occup. Environ. Med., 50(2), 112-116. Iordanis, I., Koukouvinos, C., & Silou, I. (2024). On the efficacy of conditioned and progressive Latin hypercube sampling in supervised machine learning. Appl. Numer. Math., 204, 1-25. Jamali, M.-B., Rasti-Barzoki, M., & Altmann, J. (2023). An evolutionary game-theoretic approach for investigating the long-term behavior of the industry sector for purchasing renewable and non-renewable energy: A case study of Iran. Eng., 285, 129245. Kabanov, E. I., Tumanov, M. V., Smetanin, V. S., & Romanov, K. V. (2023). An innovative approach to injury prevention in mining companies through human factor management. J. Min. Inst.(263 (eng)), 774-784. Kabir, E., Islam, A., & Taufikuzzaman, M. (2018). An investigation into respiratory health problems of workers at stone crushing industries in Bangladesh. J. Health. Res. , 32(2), 172-178. Kalantary, S., Golbabaei, F., Yazdanirad, S., & Farhang Dehghan, S. (2019). Review of literature on occupational exposure to the dusts in Iran over the past 14 years [Research]. J. Health. Saf. Work., 9(1), 1-12. Kar, A., Chattopadhyay, H., & Banerjee, R. (2023). Health and safety issues in ceramic manufacturing processes. Compr. Mater. Process., 26-39. Kayembe-Kitenge, T., Kabange Umba, I., Musa Obadia, P., Mbuyi-Musanzayi, S., Nkulu Banza, P., Katoto, P. D., Katshiez Nawej, C., Kalenga Ilunga, G., Haufroid, V., & Banza Lubaba Nkulu, C. (2020). Respiratory health and urinary trace metals among artisanal stone-crushers: a cross-sectional study in Lubumbashi, DR Congo. Int. J. Environ. Res. Public. Health., 17(24), 9384. Khodadadi, N., Amini, A., & Dehbandi, R. (2022). Contamination, probabilistic health risk assessment and quantitative source apportionment of potentially toxic metals (PTMs) in street dust of a highly developed city in north of Iran. Environ. Res., 210, 112962. Koivisto, A. J., Spinazzè, A., Verdonck, F., Borghi, F., Löndahl, J., Koponen, I. K., Verpaele, S., Jayjock, M., Hussein, T., & de Ipiña, J. L. (2021). Assessment of exposure determinants and exposure levels by using stationary concentration measurements and a probabilistic near-field/far-field exposure model. Open. Res. Europe., 1, 72. Kolvakh K. A., K. A. V., Tumanov M. V., Lyubimova A. L., Rodionov V. A. (2023). Study of resistance to dusting of filtering face pieces used by coal mines workers. MIAB. Mining Inf. Anal. Bull., 164-179. Kornev, A., Ledyaev, N., Kabanov, E., & Korneva, M. (2022). Estimation of predictive dust content in the faces of coal mines taking into account the peculiarities of the wettability of coal dust. MIAB. Mining Inf. Anal. Bull.(6-2), 115-134. Korshunov, G., Karimov, A., Magamedov, G., & Tyulkin, S. (2023). Reduction of respirable dust-induced impact on open pit mine personnel in large-scale blasting. MIAB. Mining Inf. Anal. Bull.(7), 132-144. Kung, H.-C., Lin, W.-C., Huang, B.-W., Mutuku, J. K., & Chang-Chien, G.-P. (2023). Techniques for Suppressing Mineral Dust Aerosol from Raw Material Stockpiles and Open Pit Mines: A Review. Aerosol. Air. Qual. Res., 24, 230166. Liu, W., Salmond, J., Allen, K., & Tadaki, M. (2024). Managing emerging environmental risks when we do not know enough about them: The case of respirable mineral dust. Environ. Sci. Policy., 155, 103715. Monfort, E., Mezquita, A., Vaquer, E., Celades, I., Sanfelix, V., & Escrig, A. (2014). 8.05-ceramic manufacturing processes: energy, environmental, and occupational health issues. Omidianidost, A., Gharavandi, S., Azari, M. R., Hashemian, A. H., Ghasemkhani, M., Rajati, F., & Jabari, M. (2019). Occupational exposure to respirable dust, crystalline silica and its pulmonary effects among workers of a cement factory in Kermanshah, Iran. Tanaffos, 18(2), 157. Otgonnasan, A., Yundendorj, G., Tsogtbayar, O., Erdenechimeg, Z., Ganbold, T., Namsrai, T., Damiran, N., & Erdenebayar, E. (2022). Respirable dust and respirable crystalline silica concentration in workers of copper mine, Mongolia. Occup. Dis. Environ. Med., 10(3), 167-179. Paluchamy, B., & Mishra, D. P. (2022). Dust pollution hazard and harmful airborne dust exposure assessment for remote LHD operator in underground lead–zinc ore mine open stope. Environ. Sci. Pollut. Res., 29(59), 89585-89596. Pervukhin, D., Davardoost, H., Kotov, D., Ilyukhina, Y., & Hasanov, K. (2023). A sustainable development goals-based mathematical model for selecting oil and gas investment projects under uncertainty and limited resources. Advanced Mathematical Models & Applications, 8(3), 502-528. Petit, P., Bicout, D. J., Persoons, R., Bonneterre, V., Barbeau, D., & Maître, A. (2017). Constructing a database of similar exposure groups: the application of the exporisq-HAP database from 1995 to 2015. Ann. Work. Exposures. Health., 61(4), 440-456. Rudakov, M., Babkin, R., & Medova, E. (2021). Improvement of working conditions of mining workers by reducing nitrogen oxide emissions during blasting operations. Appl. Sci., 11(21), 9969. Saldaña-Villanueva, K., Méndez-Rodríguez, K. B., Zamora-Mendoza, B. N., Gómez-Gómez, A., Díaz-Barriga, F., & Pérez-Vázquez, F. J. (2023). Health effects of informal precarious workers in occupational environments with high exposure to pollutants. Environ. Sci. Pollut. Res., 30, 76818–76828. Saleiro, S., Rocha, L., Bento, J., Antunes, L., & Costa, J. T. d. (2019). Occupational exposure to dust: an underestimated health risk? J. Bras. Pneumol., 45(4), e20170396. Saramak, D. (2021). Challenges in Raw Material Treatment at the Mechanical Processing Stage. Miner., 11(9), 940. Seneviratne, M., Shankar, K., Cantrell, P., & Nand, A. (2024). Respirable silica dust exposure of migrant workers informing regulatory intervention in engineered stone fabrication. Saf. Health. Work., 15(1), 96-101. Seregin, A., Fazylov, I., & Prokhorova, E. (2022). Justification of safe operating conditions for mining transportation machines powered by internal combustion engines using air pollutant emission criterion. Min. Inf. Anal. Bull., 11, 37-51. Sfez, R., De-Botton, S., Avnir, D., & Wakshlak, R. (2022). Sol–gel glazes-a safe glass and ceramics coloring approach. J. Sol-Gel Sci. Technol. , 102(3), 562-573. Shestakova, I., & Morgunov, V. (2023). Structuring the post-COVID-19 process of digital transformation of engineering education in the russian federation. Educ. Sci., 13(2), 135. Shojaee Barjoee, S., Azizi, M., Khaledi, A., Kouhkan, M., Soltani, M., & Farokhi, H. (2023). Street dust-bound metal (loid) s in industrial areas of Iran: Moran’s spatial autocorrelation distribution, eco-toxicological risk assessment, uncertainty and sensitivity analysis. Int. J. Environ. Sci. Technol., 20(8), 8509-8536. Sifanu, M., Taylor, T. K., Kalebaila, K. K., Hayumbu, P., Nabiwa, L., & Linde, S. J. (2023). Knowledge, Attitude, Behavior Practices and Compliance of Workers Exposed to Respirable Dust in a Zambian Copper Mine. Int. J. Environ. Res. Public. Health., 20(18), 6785. Smirnyakov, V. V., Rodionov, V. A., Smirnyakova, V. V., & Orlov, F. A. (2022). The influence of the shape and size of dust fractions on their distribution and accumulation in mine workings when changing the structure of air flow. J. Min. Inst., 253, 71-81. Sukhanova, K. G. (2024). Trace elements in the silicate minerals of the Borodino Meteorite (Н5). J. Min. Inst., 265, 16-33. Taheri, E., Amin, M. M., Daniali, S. S., Abdollahpour, I., Fatehizadeh, A., & Kelishadi, R. (2022). Health risk assessment of exposure to chlorpyrifos in pregnant women using deterministic and probabilistic approaches. PLoS. One., 17(1), e0262127. Thai, T., Bernatik, A., & Kučera, P. (2021). Air pollution associated with total suspended particulate and particulate matter in cement grinding plant in Vietnam. Atmos., 12(12), 1707. van der Mensbrugghe, D. (2023). A Summary Guide to the Latin Hypercube Sampling (LHS) Utility. Viana, M., Fonseca, A. S., Querol, X., López-Lilao, A., Carpio, P., Salmatonidis, A., & Monfort, E. (2017). Workplace exposure and release of ultrafine particles during atmospheric plasma spraying in the ceramic industry. Sci. Total. Environ., 599, 2065-2073. Wang, Y.-F., Kuo, Y.-C., Lin, M.-Y., & Tsai, P.-J. (2021). Assessing Lung and Skin Cancer Risks for Steel and Iron Manufacturing Industry Workers Exposed to Polycyclic Aromatic Hydrocarbons. Aerosol. Air. Qual. Res., 21(11), 210160. Wippich, C., Rissler, J., Koppisch, D., & Breuer, D. (2020). Estimating respirable dust exposure from inhalable dust exposure. Ann. Work. Exposures. Health., 64(4), 430-444. | ||
آمار تعداد مشاهده مقاله: 554 تعداد دریافت فایل اصل مقاله: 450 |