تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,123,743 |
تعداد دریافت فایل اصل مقاله | 97,231,824 |
Evaluation of antidiabetic and antioxidant properties of selected soybean varieties and their suitability to incorporate into wheat bread | ||
Journal of Food and Bioprocess Engineering | ||
دوره 7، شماره 1، آبان 2024، صفحه 1-8 اصل مقاله (1.5 M) | ||
نوع مقاله: Original research | ||
شناسه دیجیتال (DOI): 10.22059/jfabe.2024.362006.1144 | ||
نویسندگان | ||
W.S. Jeewanthi1؛ Y. L. N. Mathota Arachchige1؛ KDPP Gunathilake* 2 | ||
1Department of Chemistry, University of Kelaniya, Kelaniya, Sri Lanka. 11600 | ||
2DFST, FLFN Wayamba University of Sri Lanka | ||
چکیده | ||
This study evaluates the antioxidant and antidiabetic activities of selected soybean varieties, Sri Lankan P.B 1 and Indian MACS-330. The methanolic extracts of soybean were in-vitro evaluated for their antioxidant, α–amylase, and amyloglucosidase inhibitory activities. Mixed flours with different proportions of soy flour (3%, 5%, and 8%), in wheat flour were investigated for their bread quality. Sensory properties of the bread were evaluated by trained panelists and the proximate composition of bread was assessed according to AOAC procedures. The research results show that the inhibition activity of α-amylase and amyloglucosidase did not differ significantly (P<0.05) from each variety. However, the total phenolic and flavonoid content of the Sri Lankan P.B 1 variety was not significantly difference (p > 0.05) than the Indian MACS-330 variety. The methanolic extracts from soybean may inhibit key-enzymes associated with type 2 diabetes, and thus may explain part of the mechanism by which soybeans exerts this health-promoting effect. As soy flour content increased, all the macro-nutrient parameters increased except carbohydrate content. The highest overall sensory score was the bread with 5% added soybean from Sri Lankan P.B 1. In conclusion, the functional and nutritional properties of the bread can be improved by the addition of soy flour. | ||
کلیدواژهها | ||
Soybean؛ α- amylase activity؛ Amyloglucosidase activity؛ anti-oxidant activity؛ Type 2 diabetic | ||
مراجع | ||
AOAC, 2000. Approved Methods of the American Association of Cereal Chemists, 10th Ed. Methods 54-21 and 10-10B. AACC International, St. Paul, M.N. AOAC, 1995. Approved Methods of the American Association of Cereal Chemists, 10th Ed. Methods 54-21 and 10-10B. AACC International, St. Paul, M.N. Ademiluyi, A.O. and Oboh, G., 2013. Soybean phenolic-rich extracts inhibit key enzymes linked to type 2 diabetes (α-amylase and α- glucosidase) and hypertension (angiotensin I converting enzyme) in vitro. Experimental and toxicologic pathology, 65(3), pp.305- 309. https://doi.org/10.1016/j.etp.2011.09.005 Bakris, G.L., Williams, M., Dworkin, L., Elliott, W.J., Epstein, M., Toto, R., Tuttle, K., Douglas, J., Hsueh, W. and Sowers, J., 2000. Preserving renal function in adults with hypertension and diabetes: a consensus approach. American Journal of kidney diseases, 36(3), pp.646-661. https://doi.org/10.1053/ajkd.2000.16225 Barber, E., Houghton, M.J. and Williamson, G., 2021. Flavonoids as human intestinal α-glucosidase inhibitors. Foods, 10(8), p.1939. https://doi.org/10.3390/foods10081939 Chandrasekara, A. and Joseph Kumar, T., 2016. Roots and tuber crops as functional foods: a review on phytochemical constituents and their potential health benefits. International Journal of food science, 2016. https://doi.org/10.1155/2016/3631647 Chauhan, G.S., Zillman, R.R., Eskin, N.A.M., 1992. Dough mixing and breadmaking properties of quinoa-wheat flour blends. Int. J. Food. Sci. Tech. 27, 701–705. https://doi.org/10.1111/j.1365- 2621.1992.tb01241.x Chiranthika, N.N.G., Gunathilake, K.D.P.P. and Chandrasekara, A., 2020. Potential Applications of Cereals and Yams as Functional Foods to Reduce the Risk of Chronic Non-Communicable Diseases. Asian Journal of Research in Biochemistry, 7(4), pp.53- 69. DOI:10.9734/AJRB/2020/v7i430148 Chiranthika, N.N.G., Chandrasekara, A. and Gunathilake, K.D.P.P., 2021. In vitro α amylase and amyloglucosidase inhibitory activities of selected underutilized cereals, yams, and root crops. Journal of Medicinal Plants, 9(3), pp.105-110. https://doi.org/10.22271/plants.2021.v9.i3b.1271 Chiranthika, N.N.G., Chandrasekara, A. and Gunathilake, K.D.P.P., 2022. Physicochemical characterization of flours and starches derived from selected underutilized roots and tuber crops grown in Sri Lanka. Food Hydrocolloids, 124, p.107272. https://doi.org/10.1016/j.foodhyd.2021.107272 Epstein, M. and Sowers, J.R., 1992. Diabetes mellitus and hypertension. Hypertension, 19(5), pp.403-418. https://doi.org/10.1161/01.HYP.19.5.403 Farzana, T. and Mohajan, S., 2015. Effect of incorporation of soy flour to wheat flour on nutritional and sensory quality of biscuits fortified with mushroom. Food science & nutrition, 3(5), pp.363- 369. https://doi.org/10.1002/fsn3.228 Georgetti, S.R., Casagrande, R., Vicentini, F.T.M.D.C., Verri Jr, W.A. and Fonseca, M.J.V., 2006. Evaluation of the antioxidant activity of soybean extract by different in vitro methods and investigation of this activity after its incorporation in topical formulations. European Journal of Pharmaceutics and Biopharmaceutics, 64(1), pp.99-106. https://doi.org/10.1016/j.ejpb.2006.04.003 Hettiarachchi, H. A. C. O., Gunathilake, K. D. P. P., & Jayatilake, S. (2021). Effect of In-vitro Gastrointestinal Digestion and Dialysis Process on Phenolic Compounds and Antioxidant Capacity of Selected Underutilized Fruits in Sri Lanka. Tropical Agricultural Research, 32(2), 212. https://doi.org/10.4038/tar.v32i2.8468 Huang, S.M., Wu, C.H. and Yen, G.C., 2006. Effects of flavonoids on the expression of the pro‐inflammatory response in human monocytes induced by ligation of the receptor for AGEs. Molecular nutrition & food research, 50(12), pp.1129-1139. https://doi.org/10.1002/mnfr.200600075 Janghorbani, M., Van Dam, R.M., Willett, W.C. and Hu, F.B., 2007. A systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. American Journal of Epidemiology, 166(5), pp.495- 505. https://doi.org/10.1093/aje/kwm106 Julianti, E., Rusmarilin, H. and Yusraini, E., 2017. Functional and rheological properties of composite flour from sweet potato, maize, soybean and xanthan gum. Journal of the Saudi Society of Agricultural Sciences, 16(2), pp.171-177. https://doi.org/10.1016/j.jssas.2015.05.005 Kisambira, A., Muyonga, J.H., Byaruhanga, Y.B., Tukamuhabwa, P., Tumwegamire, S. and Gruneberg, W.J., 2015. Composition and functional properties of yam bean (Pachyrhizus spp.) seed flour. https://dx.doi.org/10.4236/fns.2015.68076 Liu, J., Chang, S.K. and Wiesenborn, D., 2005. Antioxidant properties of soybean isoflavone extract and tofu in vitro and in vivo. Journal of Agricultural and Food Chemistry, 53(6), pp.2333-2340. https://doi.org/10.1021/jf048552e Table 7. The independent t- test results on color changes of different levels of incorporated Soybean flour for Wheat Bread. Values represent the mean ± standard deviation of triplicate readings. Values with the same superscript on the same row are not significantly different (P > 0.05). *L value represents lightness a* value indicates redness b* indicates yellowness. Variety Crumb color Crust Color a* b* L* a* b* L* Control 64.27a±1.05 0.35f±0.2 0.21d±0.55 46.55a±0.26 5.86d±0.45 0.44e±0.12 S. L variety 3% 56.40bc±1.54 1.02d±0.35 0.32cd±0.12 43.54b±1.57 8.86b±0.61 0.37e±0.14 S. L variety 5% 47.95e±0.55 1.82b±0.15 0.34c±0.38 42.06b±0.70 9.35b±0.28 0.42e±0.65 S. L variety 8% 48.06f±0.81 2.66a±0.19 0.51a±0.15 38.10c±1.64 12.50a±0.16 0.67cd±0.86 Indian variety 3% 56.20c±0.65 0.57e±0.95 0.16e±0.25 45.49ab±1.07 7.35c±0.15 0.55d±0.25 Indian variety 5% 54.70cd±0.52 1.00d±0.49 0.36bc±0.17 43.40b±0.97 9.25b±0.15 0.96a±0.01 Indian variety 8% 52.17e±0.72 1.44c±0.15 0.48b±0.13 47.10a±0.68 12.99a±0.44 0.85bc±0.02 Table 8. The independent t-test results on baking losses (%) and the specific volume (g/cm3) of the different incorporation levels of the bread. Values represent the mean ± standard deviation of triplicate readings. Values with the same superscript on the same row are not significantly different (P > 0.05). Result Control Sri Lankan Soybean flour Variety Indian Soybean Flour 3% 5% 8% 3% 5% 8%% Baking Loses (%) 15.12a±0.12 14.2a±0.05 14.1a±0.08 12.8a±0.04 13.2a±0.05 13.5a±0.02 12.7a±0.07 Specific volume(g/cm3) 2.70a±0.13 2.64a±0.66 2.50ab±0.06 1.06d±0.10 2.56a±0.11 2.24b±0.09 1.72c±0.23 Jeewanthi et al. JFBE 7(1): 1-8,2024 8 Malenčić, D., Maksimović, Z., Popović, M. and Miladinović, J., 2008. Polyphenol contents and antioxidant activity of soybean seed extracts. Bioresource Technology, 99(14), pp.6688-6691. https://doi.org/10.1016/j.biortech.2007.11.040 Ma, K.K., Greis, M., Lu, J., Nolden, A.A., McClements, D.J. and Kinchla, A.J., 2022. Functional performance of plant proteins. Foods, 11(4), p.594. https://doi.org/10.3390/foods11040594 Mesa, M.D., Silván, J.M., Olza, J., Gil, Á. and del Castillo, M.D., 2008. Antioxidant properties of soy protein–fructooligosaccharide glycation systems and its hydrolyzates. Food research international, 41(6), pp.606-615. https://doi.org/10.1016/j.foodres.2008.03.010 Mugabi, R., Byakika, S. and Mukisa, I.M., 2022. Effects of Feed Moisture Content, Soybean Ratio, and Barrel Temperature on Physical and Functional Properties of Extruded Maize-Soybean Flour Blends. Tanzania Journal of Science, 48(2), pp.447-459. DOI: 10.4314/tjs.v48i2.19 Muttakin, S., Kim, M.S. and Lee, D.U., 2015. Tailoring physicochemical and sensorial properties of defatted soybean flour using jet-milling technology. Food Chemistry, 187, pp.106-111. DOIhttps://doi.org/10.1016/j.foodchem.2015.04.104 Prabakaran, M., Lee, K.J., An, Y., Kwon, C., Kim, S., Yang, Y., Ahmad, A., Kim, S.H. and Chung, I.M., 2018. Changes in soybean (Glycine max L.) flour fatty-acid content based on storage temperature and duration. Molecules, 23(10), p.2713. https://doi.org/10.3390/molecules23102713 Prakash D., Upadhyay, G., Singh, B.N. and Singh, H.B., 2007. Antioxidant and free radical-scavenging activities of seeds and agri-wastes of some varieties of soybean (Glycine max). Food Chemistry, 104(2), pp.783-790. https://doi.org/10.1016/j.foodchem.2006.12.029 Ragaee, S., Abdel-Aal, E.S.M., 2006. Pasting properties of starch and protein in selected cereals and quality of their products. Food Chem. 95, 9–18. https://doi.org/10.1016/j.foodchem.2004.12.012 Ramdath, D.D., Padhi, E.M., Sarfaraz, S., Renwick, S. and Duncan, A.M., 2017. Beyond the cholesterol-lowering effect of soy protein: a review of the effects of dietary soy and its constituents on risk factors for cardiovascular disease. Nutrients, 9(4), p.324. https://doi.org/10.3390/nu9040324 Rao, H.P., Hemamalini, R., 1991. Effect of incorporating wheat bran on rheological characteristics and bread making the quality of the flour. J. Food Sci. Tech. 28, 92– 97.http://ir.cftri.res.in/id/eprint/8008. Rice-Evans, C.A., Miller, N.J. and Paganga, G., 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free radical biology and medicine, 20(7), pp.933-956. https://doi.org/10.1016/S0891-5849(98)00315-3 Saito, N., Sakai, H., Suzuki, S., Sekihara, H. and Yajima, Y., 1998. Effect of an α-glucosidase inhibitor (voglibose), in combination with sulphonylureas, on glycaemic control in type 2 diabetes patients. Journal of International Medical Research, 26(5), pp.219-232. https://doi.org/10.1177/030006059802600501 Shittu, T.A., Raji, A.O., Sanni, A.O., 2007. Effect of baking time on some physical properties of bread loaf. Food Res Int. 40 (2), 280–290. https://doi.org/10.1016/j.foodres.2006.10.012 Shobana, S., Sreerama, Y.N. and Malleshi, N.G., 2009. Composition and enzyme inhibitory properties of finger millet (Eleusine coracana L.) seed coat phenolics: Mode of inhibition of α-glucosidase and pancreatic amylase. Food Chemistry, 115(4), pp.1268-1273. https://doi.org/10.1016/j.foodchem.2009.01.042 Stobaugh, H.C., Ryan, K.N., Kennedy, J.A., Grise, J.B., Crocker, A.H., Thakwalakwa, C., Litkowski, P.E., Maleta, K.M., Manary, M.J. and Trehan, I., 2016. Including whey protein and whey permeate in ready-to-use supplementary food improves recovery rates in children with moderate acute malnutrition: a randomized, doubleblind clinical trial. The American Journal of clinical nutrition, 103(3), pp.926-933. https://doi.org/10.3945/ajcn.115.124636 Taghdir, M., Mazloomi, S.M., Honar, N., Sepandi, M., Ashourpour, M. and Salehi, M., 2017. Effect of soy flour on nutritional, physicochemical, and sensory characteristics of gluten‐free bread. Food Science & Nutrition, 5(3), pp.439- 445 https://doi.org/10.1002/fsn3.411 Yu, X., Yang, T., Qi, Q., Du, Y., Shi, J., Liu, X., Liu, Y., Zhang, H., Zhang, Z. and Yan, N., 2021. Comparison of the contents of phenolic compounds including flavonoids and antioxidant activity of rice (Oryza sativa) and Chinese wild rice (Zizania latifolia). Food Chemistry, 344, p.128600. https://doi.org/10.1016/j.foodchem.2020.128600 Yusnawan, E., 2018, January. Effects of different extraction methods on total phenolic content and antioxidant activity in soybean cultivars. In IOP Conference Series: Earth and Environmental Science (Vol. 102, p. 012039). IOP Publishing. DOI 10.1088/1755- 1315/102/1/012039 | ||
آمار تعداد مشاهده مقاله: 165 تعداد دریافت فایل اصل مقاله: 135 |