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Abstract

Information regarding rainfall can be obtained from global data, namely the global
climate model that can be accessed through the statistical downscaling approach. Linear
spline quantile regression with principal component is a statistical method that can be
employed in statistical downscaling to address multicollinearity and outliers in data by
using nonparametric estimators. This method is applied to rainfall data in Pangkep
Regency from January 2008 to December 2022 as the response variable and global
climate model data as the predictor variable. The aim of this research is to obtain the
best regression model used for predicting rainfall data. The results obtained indicate that
statistical downscaling with two principal components at the 0.50 quantile with
respective knot points of -10.20 and -0.30 is the best model with the lowest generalized
cross-validation value. The forecasted rainfall data using this model shows a high level
of accuracy with a correlation of 89%.
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Introduction

Rainfall is one of the climate elements that
significantly influences the natural ecosystem
framework. The intensity of rainfall determines the
availability of water on Earth and plays a key role in
sustaining human life (1). The intensity and timing of
rainfall events that deviate from normal or extreme
conditions are caused by global climate change (2).
Extreme rainfall events have often been highlighted as
they can have a significant impact on various aspects of
life (1). Changes in the intensity of low or high rainfall
can lead to droughts or floods. In certain conditions, it is
crucial to have information about rainfall to mitigate the
adverse effects (3).
Information about rainfall can be obtained from

global climate models that contain information about
atmospheric circulation to depict various climate
subsystems on Earth (4). Statistical downscaling is a
statistical approach used to understand the functional
relationship between globally impacting climate
variables, such as those from global climate models, and
locally impacting climate variables, such as rainfall (5).
One of the important aspects of statistical downscaling
is the presence of a strong correlation between the two
variables (6). Therefore, a time lag is applied in
statistical downscaling (7). The time lag is applied to the
global circulation model data so that the resulting
patterns match those of the rainfall (8). The use of
rainfall data in statistical downscaling has been applied
in various conditions, including seasonal rainfall data,
monthly rainfall, daily rainfall, and hourly rainfall (9–
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12).
The functional relationship between rainfall and

global climate models in statistical downscaling can be
established by applying a regression model, which has
the potential to simulate past climate, current climate,
and predict future climate (4). Quantile regression is a
statistical method used to assess extreme changes in
rainfall, providing flexibility across various quantile
values (13). Quantile regression has been employed in
extreme rainfall conditions in countries such as India,
Bangladesh, Rwanda, and Taiwan (3,14–16). The
extreme changes in rainfall result in irregular rainfall
patterns (17), leading to the development of estimators
for rainfall data in statistical downscaling. Among these
estimators, nonparametric regression methods such as
artificial neural networks (18), splines (19), kernels (5),
and wavelets have been utilized (20). Spline is one of
the estimators with better flexibility in estimating
regression functions than other nonparametric
estimators (21). Therefore, this research utilizes quantile
regression with the nonparametric spline estimator to
assess extreme changes in rainfall.

A high multicollinearity issue among predictor
variables was identified in rainfall research using a
global climate model. This issue was addressed by
employing a penalized spline estimator, which
incorporates a penalty function to tackle
multicollinearity problems (22, 23). The penalized
spline has estimation criteria consisting of a goodness of
fit function and a penalty function (24). In addition to
the penalized spline estimator, another estimator, such
as the truncated spline, was utilized. The capability of
the truncated spline lies in its ability to identify knot
points that indicate changes in the data behavior patterns
within different intervals (21). The application of
truncated spline has been extended by incorporating
principal component analysis to address
multicollinearity issues in the data (23). Principal
component analysis has been employed in statistical
downscaling for daily rainfall and monthly rainfall
conditions (25,26). Therefore, this study adopts a linear
truncated spline approach to highlight changes in
rainfall patterns in statistical downscaling, and principal
component analysis is employed to address
multicollinearity issues.

Materials and Methods
This study used global climate model data as

predictor variables, totaling 64 variables. The response
variable used is the rainfall data for Pangkep Regency
from January 2008 to December 2022, consisting of 180
data points. This rainfall data represents the average

rainfall from three rainfall stations: Bungoro, Ma'rang,
and Labakkang, obtained from the Meteorology,
Climatology, and Geophysics Agency Station Region
IV Makassar.
Suppose given data (y, x), i = 1,2,… , n; j =

1,2, … , p where  is the response variable and  is the
predictor variable. Global circulation model data, which
serve as predictor variables, were time-lagged to obtain
the highest correlation values with rainfall data using
the cross-correlation function (8). The regression model
formed from the response and predictor variables is
written as follows (26):

 = () +  (1)

Multicollinearity testing is conducted based on the
variance inflation factor (VIF) values. To address this
issue, principal component analysis is employed. The
data obtained from the principal component analysis is
represented as ( ,),  = 1, 2, … , and  =
1, 2,… ,  for  <  with  representing the principal
component scores. Furthermore, outlier testing is
conducted based on the Mahalanobis distance test. In
addressing outliers, quantile regression is employed
with a quantile value  ∈ (0,1). When Eq. (1) is
expressed in the form of a quantile regression model
with principal component analysis, it is obtained as
follows:

() = () + () +⋯() + () (2)

The relationship pattern between rainfall and the
main irregularly formed components in the regression
function is modeled using a linear truncated
nonparametric spline. The spline has an order of 1 and
knot points, denoted as , as follows:

() = () + () +
∑ ()()( − )


 (3)
() = () + ()

+ ()()( − )




 = () + ()

+ ()() − 





The function ( − ) in Eq. (3) is a truncated
linear function described as follows:

( − ) = 
( − ),  ≥ 

0,  < 
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If Eq. (3) is expanded, the result is as follows:

() = () + () + ()()( −
) +⋯+ ()()( − ) (4)

() = () + ()
+ ()()( − ) +⋯
+ ()()( − )

 = () + ()

+ ()() −  +⋯

+ ()() − 

Next, Eq. (4) is substituted into Eq. (2), then it is
obtained

() = () + () + ()()( − ) +
⋯ + ()()( − ) + () + () +
()()( − ) +⋯+ ()()( − ) +
⋯+ () + () + ()() −  +⋯+

()() −  + () (5)

So, Eq. (5), which is the principal component linear
spline quantile regression model, when expressed in
matrix form, is as follows:

() = []() + ()
The parameter estimation in the principal component

linear spline quantile regression is obtained by
minimizing the sum of absolute errors. In quantile
regression, errors are assigned different weights, where
a weight of  is given to non-negative errors, while a
weight of (1 − ) is given to negative errors, ensuring
that the quantile obtained matches the specified .
Therefore, the parameter estimation  is obtained by
minimizing the following estimation criteria:

() = min


 | − 
[]()| + (1



,

− ) | − 
[]()|



,


Finding a solution for parameter estimation  can be
done both analytically and numerically. One commonly
used numerical method to solve it is the simplex
method. The best linear spline quantile regression model
depends on the optimal knot point. The method often
used to find the optimal knot point is the Generalized
Cross-Validation (GCV). The GCV value that provides
the optimal knot point is the minimum GCV value. The
formula for GCV used is as follows:

() =
()

([ − ()])

with () =  ∑ ( − ())

 , [] =

[]([]′[])[]′ and  is the identity matrix.

Results and Discussion
The average rainfall in Pangkep Regency from 2008

to 2022 is 311.22 mm/month. The highest rainfall
occurred in January at 1540.50 mm/month, and the
lowest rainfall was 0.00 mm/month in July, August,
September, and October. Based on the standard
deviation, the rainy season with the highest value is in
January, and the lowest standard deviation occurs at the
peak of the dry season in August. A high standard
deviation in January indicates that rainfall in January
from 2008 to 2022 is very variable. Based on the
average rainfall values, January and December have the
highest rainfall compared to other months.
Figure 1 shows that the rainfall in Pangkep Regency

is concave, resembling a U-pattern. This pattern is one

Figure 1. Plot of rainfall in Pangkep Regency 2008 to 2022
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of Indonesia's three types of rainfall patterns. The
monsoon rainfall type is the pattern observed in
Pangkep Regency, characterized by a single peak rainy
season typically occurring from October to March and a
dry season from April to September. The peak of the
rainy season in January has an average of 829.60
mm/month, which decreases in the following months,
reaching the lowest average rainfall in August at 26.46
mm/month. Then, in the subsequent months, it increases
again, peaking in December with an average of 636.00
mm/month.
The predictor variables exhibit a strong correlation

among themselves, as indicated by the VIF values
ranging from 28.02 to 4612.10. Additionally, the
response variable contains outliers, constituting 25% of
the utilized data. Therefore, quantile regression with
principal components will be employed to analyze the
data due to the presence of multicollinearity and
outliers. To determine the main components to be used
in the analysis stage is done by selecting the main
components with a cumulative diversity proportion of at
least 85%. Table 1 shows that the first eigenvalue has
explained 83.24% of the sample variance, and the
second eigenvalue is 5.15%. Thus, utilizing two main
components has explained more than 85% of the total
diversity.
A scatter plot visualizes the relationship between the

variables under investigation. Through a scatter plot, we
can initially discern the nature of the relationship
between rainfall data and the two main components.
The visualization of this plot serves as the foundation
for regression model development. If the relationship
between the data does not follow common patterns like
linear, quadratic, or cubic, nonparametric methods can
be employed. Estimating the linear spline quantile
model with principal components involves determining
the appropriate number of knot points. The approach
begins with one-knot point, then two-knot points, and
three-knot points. The addition of knot points is done to
enhance the quality of estimation. If the optimal knot
point can be identified, it will result in an optimal
model. The most suitable knot point is selected by

considering the GCV value for each knot point on the
selected component.
The regression curve for the linear spline quantile

regression model with the principal component is shown
in Figure 2. Each component used is approximated with
several knot points, one-knot point, two-knot points, and
three-knot points. Each component also uses three
quantile values: 0.25, 0.50, and 0.75. The blue line
represents the 0.25 quantile value, the green line
represents the 0.50 quantile value, and the red line
represents the 0.75 quantile value. The first and second
components with a single knot point indicate two data
change patterns for each quantile value. The first pattern
of change occurs before the first component reaches -
10.20 points, experiencing a decrease in rainfall. After
the first component reaches -10.20 points, a second
pattern change occurs, which is also a decrease in
rainfall. As for the second component, the first pattern
of change occurs before the second component reaches -
0.30 points, experiencing an increase in rainfall. After
the second component reaches -0.30 points, a second
pattern change occurs a decrease in rainfall.
The first component and the second component with

two knot points indicate three data change patterns for
each quantile value. The first pattern of change occurs
before the first component reaches -6.90 points,
experiencing a decrease in rainfall. After the first
component reaches -6.90 points, a second pattern
change occurs, which is also a decrease in rainfall. After
the first component reaches 0.10 points, a third pattern
change occurs, which is also a decrease in rainfall. As
for the second component, the first pattern of change
occurs before the second component reaches -1.60
points, experiencing a decline in rainfall. After the
second component reaches -1.60 points, a second
pattern change occurs, an increase in rainfall. After the
second component reaches -0.10 points, a third pattern
change occurs a decrease in rainfall.
The first component and the second component with

three knot points indicate that there are four patterns of
data change for each quantile value. The first pattern
change occurs before the first component reaches -8.30

Table 1. Eigenvalues and cumulative variance proportions
Principal component Eigenvalues Variance proportions Cumulative variance proportions

1 53.27 83.24% 83.24%
2 3.30 5.15% 88.39%
3 2.09 3.27% 91.66%
4 1.48 2.31% 93.97%
5 0.87 1.36% 95.33%
⋮ ⋮ ⋮ ⋮
64 0.00 0.00% 100.00%
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points, experiencing a decrease in rainfall. After the first
component reaches -8.30 points, the second pattern
change occurs an increase in rainfall. After the first
component reaches -5.30 points, the third pattern
change occurs a decrease in rain again. After the first
component reaches 3.40 points, the fourth pattern
change occurs, which is also a decrease in rainfall. As

for the second component, the first pattern change
occurs before the second component reaches -2.10
points, experiencing a decline in rainfall. After the
second component reaches -2.10 points, the second
pattern change occurs an increase in rainfall. After the
second component reaches 0.40 points, the third pattern
change occurs a decrease in the rain again. After the

Figure 2. The principal component linear spline quantile regression curve
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second component reaches 2.00 points, the fourth
pattern change occurs an increase in rainfall again.
Table 2 shows the GCV values for each principal

component's linear spline quantile regression model.
The regression model with a one-knot point with the
lowest GCV value is at the 0.50 quantile, 32.33. In the
regression model with two-knot points, the lowest GCV
value is at the 0.50 quantile of 33.78. In the regression
model with three-knot points, the lowest GCV value is
at the 0.50 quantile, which is 33.51. This indicates that
the 0.50 quantile is better for each different use of knot
points. Thus, it is found that the best model is at the
0.50 quantile and one-knot point with the lowest GCV
value compared to other quantiles and knot points. This
result indicates that this model is more effective in
explaining the variation of data and the impact of the
two components used on rainfall in Pangkep Regency.
The following is the best model produced from the
principal component linear spline quantile regression in
statistical downscaling:

(0.50) = −518.89− 105.53
+ 76.37( − (−10.20))
+ 10.91 − 6.79( − (−0.30))

The equation will be used for model validation to

assess how closely the obtained model matches the
actual measurements. The root mean square error of
prediction (RMSEP) and the correlation between the
measured rainfall data and predicted rainfall are used as
evaluation parameters in this validation process.
Rainfall data from 2021 to 2022 is utilized as test data
for validation. The model produced a correlation value
of 0.89, indicating that the actual and estimated rainfall
have a relatively strong linear relationship with a
strength of 0.89. The RMSEP value obtained from the
model is 153.16. This RMSEP value can be seen in
Figure 3, which shows that there are several estimated
rainfalls with significant differences in capturing the
actual rain, such as in March 2021, October 2021,
February 2022, May 2022, June 2022, October 2022,
and November 2022.
Figure 3 shows that in January 2021, January 2022,

March 2022, and April 2022, the principal component
linear spline quantile model in statistical downscaling
estimated the rainfall value to be higher than its actual
value. Whereas in other months, namely February to
December 2021, February 2022, and May to December
2022, the principal component linear spline quantile
model in statistical downscaling estimated the rainfall
value to be lower than its actual value. The model was

Table 2. The GCV value in principal component linear spline quantile regression
Quantile GCV

1 Knot point 2 Knot points 3 Knot points
0.25 47.71 48.74 49.86
0.50 32.33 33.78 33.51
0.75 50.04 46.12 49.58

Figure 3. The actual and estimated rainfall plot for 2021 to 2022
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able to accurately assess actual rainfall in January 2021,
February 2021, April 2021, May 2021, June 2021,
December 2021, January 2022, March 2022, July 2022,
and August 2022 with a smaller difference to the actual
rainfall compared to other months.

Conclusion
The relationship between variables that have a

global impact from global climate model data with
variables that have a local effect from rainfall data in
statistical downscaling cannot be directly used in
regression modeling. This is due to the presence of
multicollinearity problems and outliers in the data.
Quantile regression with principal component analysis
is used to address these issues. The relationship pattern
between response variables and predictors is not
parametric; therefore, a nonparametric approach,
namely truncated linear spline, is utilized. The results of
this modeling provide fairly accurate estimates of
rainfall. Using a single knot point at the 0.50 quantile
produces more effective results in data modeling than
using two or three-knot points at several other quantiles.
This is seen based on the lowest GCV value.
Additionally, this model can accurately forecast actual
rainfall in the years 2021 to 2022 with a correlation
level of 0.89.
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