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Abstract  

The focus of many researchers in the operations research field has been on supply chain 

design problems during past decades. Previous works have widely investigated 

production-inventory planning, vehicle routing, and location-allocation problems. This 

paper aims to consider these problems simultaneously and present a new integrated 

production planning-location-routing problem for a three-echelon supply chain, 

considering several real-world assumptions. The studied supply chain includes multiple 

production centers, distribution centers, and customers. The distribution centers use a set 

of non-homogeneous vehicles to deliver the products to the customers. Several features, 

such as regular and overtime production, production reliability, time-window constraints, 

and capacity constraints, are incorporated to provide a more realistic problem. The bi-

objective model aims to determine the optimal location, allocation, production, and 

routing decisions to optimize the total cost and servicing time objective functions. 

Concerning problem's complexity, the non-dominated sorting genetic algorithm-II 

(NSGA-II) is designed and implemented as a solution approach. The results reveal that 

this algorithm can solve the model in an acceptable time interval. In addition, the results 

demonstrate that the NSGA-II algorithm is reliable in finding solutions, and there is no 

significant difference between the average solution and the best solution of the algorithm 

in several runs. 
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Introduction 

 

The manufacturing supply chain is a network consisting of different echelons, including raw 

material procurement, processing, and delivery of the final item to the buyer. In the past 

decades, managers believed that independent planning of supply chain components was 

feasible. However, over time, it was realized that decentralized approaches weaken the 

performance of supply chains (Pritsker & O'Reilly, 1999). As a result, due to the need for supply 

chain managers to employ operations management techniques to improve their entire supply 

chain performance, supply chain planning problems have become one of the most important 

issues in production and service management that have attracted the attention of many 
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operations researchers in recent years. Decision-making in supply chains occurs at three levels: 

strategic, tactical, and operational. Problems such as facility location, production-inventory 

planning, vehicle routing, etc., are some examples of the problems that are studied in the three 

mentioned decision-making levels (Iranmanesh & Kazemi, 2017). Various types of supply 

chain planning problems in different manufacturing and service sectors have attracted 

researchers' attention. 

For example, Taleizadeh et al. (2011) studied a two-echelon supply chain comprising various 

suppliers, products, and customers. In this study, the dependency of delivery time on the 

quantity of products ordered was considered. They used a harmony search algorithm as the 

solution methodology of the problem. Pasandideh et al. (2015) provided a multiobjective model 

for optimizing a supply chain's location, flow, and production decisions. However, attention 

was not paid to distribution and routing decisions. The authors solved the model using 

metaheuristic algorithms. Sarrafha et al. (2015) suggested a multiobjective planning problem 

for a four-echelon supply chain including supplier, manufacturer, distributor, and customer. 

Three metaheuristic algorithms were proposed to minimize objective functions. Supply chain 

planning problems in non-manufacturing sectors, such as healthcare, energy, and agriculture, 

have also been studied. For instance, Amani Bani et al. (2022) formulated a mathematical model 

for managing COIVD-19 vaccine waste flow in a reverse network under stochastic conditions. 

They used a robust method to manage the uncertainty and proposed the Lagrangian relaxation 

algorithm as a solution method. Fathollahi-Fard et al. (2019) introduced a multiobjective 

problem for location-routing decisions optimization in a green homecare network. The authors 

proposed the epsilon constraint method and multiple metaheuristics as the solution approach. 

Fallahi, Mousavian Anaraki, et al. (2024) modeled a new plasma supply chain planning problem 

to respond to the needs of COVID-19 patients. The proposed model simultaneously minimized 

the economic and environmental impacts of the blood plasma logistic network.  

Neiro et al. (2022) presented a three-objective optimization problem for optimizing 

simultaneous production and distribution decisions in a gas logistic network. They specifically 

considered an argon supply chain, including multiple production sites and customers, where 

liquid argon is distributed via refrigerated trucks. Jaigirdar et al. (2023) proposed another 

multiobjective model for a multi-product perishable fruit and vegetable supply chain. The 

objectives of this problem were cost, waste, and pollution minimization, which were turned into 

a single objective using weighted sum method. In another research, Ala et al. (2024) 

investigated a sustainable stochastic supply chain planning problem for mobile charging 

stations. They employed a two-stage stochastic programming approach to address uncertainty. 

Kochakkashani et al. (2023) developed a new mathematical model for planning a COVID-19 

four-echelon pharmaceutical supply chain. The uncertainty was taken into account and 

addressed by the wait-and-see approach. The authors also utilized an unsupervised machine 

learning approach to cluster pharmaceuticals. Nikoubin et al. (2023) studied a multiobjective 

vaccine supply chain design problem. They simultaneously formulated economical and social 

objective functions in their problem. Also, the booster dose injection and mix-and-match 

strategies were assumed in this research. Fallahi, Pourghazi, et al. (2024) focused on designing 

a humanitarian supply chain problem considering different types of items. In particular, they 

assumed the presence of blood, perishable, and non-perishable items in the studied logistic 

network. Sadeghi and Niaki (2024) addressed a green three-echelon supply chain planning 

problem under VMI contract. To incorporate the green dimension of sustainability, they 

considered several aspects such as tax regulation, energy management, water and waste control. 

Also, ergonomic indicators were used in this problem to establish a more comprehensive 

framework. 

Moreover, the performance of supply chain networks is influenced by the distribution 

network due to the high transportation costs in supply chains (Kuo, 2013). In such situations, 
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ignoring distribution planning and routing decisions negatively affects the performance of the 

supply chain. In this regard, Gendreau et al. (1994) designed a tabu search metaheuristic 

algorithm to solve the vehicle routing problem. Various constraints, such as capacity constraint 

and route length, were also taken into account. Vidal et al. (2012) proposed and implemented a 

genetic algorithm-based approach for optimizing three different routing problems. Laganà et al. 

(2021) developed a customer service differentiated routing problem and solved the model using 

an adaptive large neighborhood search algorithm. Moreover, in production planning, efforts are 

made to make optimal production decisions, such as production quantity, inventory holding 

level, or workforce size, considering constraints such as meeting customer demand completely 

(Cheraghalikhani et al., 2019). Production planning problems in the supply chain have long 

been of interest to researchers and scholars. For example, the economic production quantity 

(EPQ) model was proposed by Taft (1918) over a century ago. This model aimed to determine 

the economic quantity of production in a production environment to minimize the total 

production and inventory costs. Taleizadeh et al. (2013) focused on production-inventory 

management in a single-supplier-single-buyer supply chain. Uncertainty in product demand and 

delivery time was formulated using probabilistic and fuzzy uncertainty. Mokhtari et al. (2021) 

modeled the problem of determining optimal production policies in a production-inventory 

system considering operational constraints such as available space and purchasing budget. 

Reworking defective items was another assumption of this study. Taleizadeh et al. (2024) 

investigated a joint pricing and inventory planning problem for an imperfect production-

inventory system. They suggested a rework policy for the imperfect items. Also, the backorder 

shortage was assumed for the system. 

Amini and Kianfar (2022) studied a three-echelon supply chain planning problem. In this 

paper, several types of transportation and production methods with different environmental 

impacts and costs for the supply chain network were considered. Fatemi Ghomi et al. (2021) 

introduced a bi-objective model aiming to coordinate production and distribution activities 

across multiple products and time periods within a green supply chain. They also proposed a 

multiobjective particle swarm optimization algorithm as the solution methodology. Asadkhani 

et al. (2022) examined the inventory management problem between a buyer and a vendor in a 

two-echelon network. They also considered the assumption of producing defective items and 

developed the problem model under the vendor-managed inventory agreement. More details on 

previous papers in this field are available in review studies (Braekers et al., 2016; Farahani et 

al., 2014).  

Unlike previous studies that have separately addressed production-inventory planning, 

vehicle routing, and location-allocation problems, our research integrates these aspects into a 

single, comprehensive model for a three-echelon supply chain. This model encompasses 

multiple production centers, distribution centers, and customers, and accounts for several real-

world constraints such as regular and overtime production, production reliability, time-window 

constraints, and vehicle capacity. We propose a bi-objective mathematical model to optimize 

both total cost and servicing time. From the problem definition point of view, the novelty of our 

work lies in the simultaneous consideration of these elements in a multi-objective optimization 

framework, which has not been extensively explored in the literature. From the methodological 

point of view, we design and implement the well-known and powerful non-dominated sorting 

genetic algorithm-II (NSGA-II) as an effective solution approach. The algorithm is tailored to 

the features of the studied problem. This study not only advances the theoretical framework of 

integrated supply chain planning but also provides practical insights by evaluating the model 

through various numerical examples. In summary, the novelties of the current paper can be 

expressed as follows: 

• Developing a bi-objective model for planning a three-echelon supply chain comprising 

multiple production centers, multiple distribution centers, and multiple customer. 
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• Addressing production planning, vehicle routing, and facility location decisions 

simultaneously. 

• Considering various real-world assumptions such as regular and overtime production, 

production reliability, time window constraints, vehicle capacity, etc.  

• Designing the NSGA-II multiobjective metaheuristic algorithm to solve the model. 

• Evaluating the performance of the model and methodology through solving numerical 

examples. 

Finally, Table 1 shows the innovations of the present paper compared to previous research 

in the literature. 

  
Table 1: A comparison between the current study's contributions and the previous studies in the literature 
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Gendreau et al. (1994) 1994 Service 2 ✓   ✓    ✓ 

Vidal et al. (2012) 2012 Service 2 ✓   ✓    ✓ 

Taleizadeh et al. (2013) 2013 Manufacturing 2 ✓  ✓     ✓ 

Pasandideh et al. (2015) 2015 Manufacturing 3  ✓ ✓  ✓ ✓  ✓ 

Sarrafha et al. (2015) 2015 Manufacturing 4  ✓ ✓   ✓  ✓ 

Fathollahi-Fard et al. (2019) 2019 Homecare 3  ✓  ✓ ✓ ✓ ✓ ✓ 

Fatemi Ghomi et al. (2021) 2021 Manufacturing 4  ✓ ✓   ✓ ✓ ✓ 

Mokhtari et al. (2021) 2021 Manufacturing 1 ✓  ✓    ✓  

Laganà et al. (2021) 2021 Service 2 ✓   ✓    ✓ 

Asadkhani et al. (2022) 2022 Manufacturing 2 ✓  ✓    ✓  

Amani Bani et al. (2022) 2022 Vaccine waste 6  ✓   ✓ ✓ ✓  

Amini and Kianfar (2022) 2022 Manufacturing 3 ✓  ✓   ✓ ✓ ✓ 

Fallahi, Mousavian Anaraki, et 

al. (2024) 
2022 Blood 4  ✓ ✓  ✓ ✓ ✓  

Nikoubin et al. (2023) 2023 Vaccine 4  ✓ ✓  ✓ ✓ ✓ ✓ 

Kochakkashani et al. (2023) 2023 Pharmacy 4 ✓  ✓   ✓ ✓  

Ala et al. (2024) 2023 Charging stations 2 ✓    ✓ ✓ ✓ ✓ 

Fallahi, Pourghazi, et al. (2024) 2024 Humanitarian 5  ✓   ✓ ✓ ✓  

Taleizadeh et al. (2024) 2024 Manufacturing 1 ✓  ✓    ✓  

Sadeghi and Niaki (2024) 2024 Manufacturing 3 ✓  ✓   ✓ ✓ ✓ 

Current study 2024 Manufacturing 3  ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
 

The continuation of this paper is organized as follows. In Section 2, problem definition and 

mathematical modeling are presented. In Section 3, the proposed NSGA-II algorithm is 

explained. In Section 4, the effectiveness of the proposed framework is evaluated through 

solving numerical examples. In Section 5, the conclusions of the paper are drawn, and 

suggestions for future research are provided. 

 

Problem description and mathematical formulation 

  First, a description of the newly investigated problem is provided in this section. Then, the 

mathematical model is developed by defining notations, parameters, variables, objective 

functions, and constraints. 

 

Problem description  

The problem involves a three-echelon supply chain network consisting of multiple 
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production centers, distributor centers, and customers. At the first level, a set of production 

centers is responsible for manufacturing products. Each production center has its own 

production capacity, and production is possible for them during regular and overtime hours. 

Production during overtime hours incurs additional production costs per unit. Various factors, 

such as operator fatigue and continuous equipment operation may affect the production capacity 

of production centers. Therefore, the production reliability coefficient is considered for each 

production center and for regular and overtime hours. Production centers send the produced 

goods for distribution to a set of distribution centers. The location of distribution centers should 

be determined from a set of available candidate locations. Upon receiving the goods, 

distribution centers utilize vehicles to deliver the goods to customers. These vehicles should be 

rented based on a predetermined cost. These customers are located in the last layer of the supply 

chain network. Routing decisions for these vehicles are incorporated into the system. In this 

study, we assume that vehicles have different transportation costs, speeds, and capacities. One 

of the constraints in this problem is the presence of a hard time window for delivering goods to 

customers. More specifically, goods must be delivered to customers before the specified 

deadline. Two objective functions are considered for the problem to address the needs of 

managers and customers simultaneously. Total system cost and the total service time to 

customers minimization are the objective functions. The optimal location, allocation, routing, 

and production decisions should be determined so that these objectives are optimized. In 

general, the assumptions can be summarized as follows: 

• The investigated supply chain is a three-echelon network consisting of production centers, 

distribution centers, and customers. 

• Product manufacturing by production centers occurs in two timeframes: regular hours and 

overtime hours. 

• There is a reliability level for production centers that impacts the production capacity. 

• Optimal distributor locations must be selected from among a set of candidate points. 

• Vehicles should be rented by distribution centers for delivering goods to customers. 

• Vehicle routing is conducted for delivering goods to customers. 

• Vehicles are different in load capacity and speed. 

• There is a time window constraint for delivering goods to customers. 

• Minimizing the total cost and the total service time to customers are the objectives. 

Figure 1 illustrates a schematic view of the examined network. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. The structure of studied supply chain network 
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Mathematical formulation 

The following notations are used in the modeling of the problem. 

 

Sets  

 
𝑃 The set of production centers 

𝐷 The set of distribution centers 

𝐶 The set of customers 

𝐾 The set of vehicles 

 

Parameters 

   
𝑃𝐶𝑅𝑝 The unit production cost for production center 𝑝 during regular hours 

𝑃𝐶𝑂𝑝 The unit production cost for production center 𝑝 during overtime hours 

𝛼𝑝 The reliability level for production center 𝑝 during regular hours 

𝛽𝑝 The reliability level for production center 𝑝 during overtime hours 

𝐶𝑃𝑅𝑝 The production capacity of production center 𝑝 during regular hours 

𝐶𝑃𝑂𝑝 The production capacity of production center 𝑝 during overtime hours 

𝐿𝐶𝐷𝑑 The location cost for distribution center 𝑑 

𝐶𝑃𝐷𝑑  The capacity of distribution center 𝑑 

𝑅𝐶𝑉𝑘 The rental cost for vehicle 𝑘 

𝑇𝐶𝐶𝑖𝑗𝑘 The transportation cost between customer 𝑖 and customer 𝑗 for vehicle 𝑘 

𝑆𝑃𝑉𝑘 The speed of vehicle 𝑘 

𝐶𝑃𝑉𝑘 The capacity for vehicle 𝑘 

𝐷𝐼𝑆𝑖𝑗  The distance between customer 𝑖 and customer 𝑗 

𝐿𝑆𝑇𝑖  The latest possible service time for customer 𝑖 
𝐷𝐸𝑀𝑖  The demand of customer 𝑖 
𝑀 A very big number 

 

Decision variables 

 
𝑡𝑝𝑟𝑝 The total production of production center 𝑝 

𝑝𝑓𝑙𝑝 The total flow for production center 𝑝 

𝑑𝑓𝑙𝑑  The total flow for distribution center 𝑑 

𝑣𝑙𝑜𝑘  The total load of vehicle 𝑘 after leaving distribution center 

𝑠𝑡𝑠𝑖  The service starting time of customer 𝑖 
𝑙𝑎𝑓𝑖 The total load of vehicle after servicing customer 𝑖 

𝑎𝑟𝑝𝑝 
1 if production center 𝑝 is activated during regular hours, 0 otherwise (A binary decision 

variable) 

𝑎𝑜𝑝𝑝 
1 if production center 𝑝 is activated during overtime hours, 0 otherwise (A binary decision 

variable) 

𝑑𝑙𝑐𝑑  1 if distribution center 𝑑 is located, 0 otherwise (A binary decision variable) 

𝑎𝑝𝑑𝑑𝑝 
1 if distribution center 𝑑 is allocated to production center 𝑝, 0 otherwise (A binary decision 

variable) 

𝑣𝑑𝑐𝑖𝑗𝑘𝑑  
1 if rented vehicle 𝑘 by distribution center 𝑑 has a trip from customer 𝑖 to customer 𝑗, 0 

otherwise (A binary decision variable) 

 

Objective functions 

The objective functions are as follows: 

 

𝑀𝑖𝑛 𝑍1 = ∑ 𝑑𝑙𝑐𝑑

𝑑∈𝐷

× 𝐿𝐶𝐷𝑑 + ∑ ∑ ∑ 𝑣𝑑𝑐𝑖𝑗𝑘𝑑 × 𝑅𝐶𝑉𝑘

𝑑∈𝐷𝑖∈𝐶𝑘∈𝐾

+ ∑ ∑ ∑ 𝑣𝑑𝑐𝑖𝑗𝑘𝑑 × 𝑇𝐶𝐶𝑖𝑗𝑘 +

𝑗∈𝐶∪𝐷𝑖∈𝐶∪𝐷𝑘∈𝐾

∑ 𝑎𝑟𝑝𝑝

𝑝∈𝑃

× 𝑃𝐶𝑅𝑝 + ∑ 𝑎𝑜𝑝𝑝

𝑝∈𝑃

× 𝑃𝐶𝑂𝑝 
(1) 
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𝑀𝑖𝑛 𝑍2 = ∑ 𝑠𝑡𝑠𝑖

𝑖∈𝐶

 (2) 

 

The objective function (1) minimizes the total cost, including the location cost of distribution 

centers, the renting cost of vehicles, the transportation cost of vehicles, the production cost of 

regular working hours, and the production cost of overtime working hours. In addition, the 

objective function (2) minimizes the service start time of customers. 

 

Constraints 

The objective functions are subjected to the following constraints: 

 

∑ ∑ ∑ 𝑣𝑑𝑐𝑖𝑗𝑘𝑑 = 1

𝑖∈𝐶∪𝐷𝑘∈𝐾𝑑∈𝐷

 ∀𝑗 ∈ 𝐶 (3) 

∑ 𝑣𝑑𝑐𝑑𝑗𝑘𝑑

𝑗∈𝐶

= ∑ 𝑣𝑑𝑐𝑗𝑑𝑘𝑑

𝑗∈𝐶

 ∀𝑑 ∈ 𝐷, 𝑘 ∈ 𝐾 (4) 

𝑣𝑑𝑐𝑖𝑖𝑘𝑑 = 0 ∀𝑑 ∈ 𝐷, 𝑘 ∈ 𝐾, 𝑖 ∈ 𝐶 ∪ 𝐷 (5) 

∑ 𝑣𝑑𝑐𝑖ℎ𝑘𝑑

𝑖∈𝐷∪𝐶

= ∑ 𝑣𝑑𝑐ℎ𝑗𝑘𝑑

𝑗∈𝐷∪𝐶

 ∀𝑑 ∈ 𝐷, 𝑘 ∈ 𝐾, ℎ ∈ 𝐶 (6) 

∑ ∑ 𝑣𝑑𝑐𝑑′𝑖𝑘𝑑

𝑑′∈𝐷𝑖∈𝐶

= 0 ∀𝑑, 𝑑′ ∈ 𝐷, 𝑘 ∈ 𝐾, 𝑑 ≠ 𝑑′ (7) 

𝑠𝑡𝑠𝑖 +
𝐷𝐼𝑆𝑖𝑗

𝑆𝑃𝑉𝑘

− 𝑀(1 − 𝑣𝑑𝑐𝑖𝑗𝑘𝑑) ≤ 𝑠𝑡𝑠𝑗 ∀𝑑 ∈ 𝐷, 𝑘 ∈ 𝐾 (8) 

𝑠𝑡𝑠𝑑 = 0 ∀𝑑 ∈ 𝐷 (9) 

𝑠𝑡𝑠𝑖 ≤ 𝐿𝑆𝑇𝑖 𝑖 ∈ 𝐶 (10) 

𝑣𝑙𝑜𝑘 = ∑ ∑ ∑ 𝑣𝑑𝑐𝑖𝑗𝑘𝑑 × 𝐷𝐸𝑀𝑗

𝑑∈𝐷𝑗∈𝐶∪𝐷𝑖∈𝐶

 ∀𝑘 ∈ 𝐾 (11) 

𝑣𝑙𝑜𝑘 ≤ 𝐶𝑃𝑉𝑘 ∀𝑘 ∈ 𝐾 (12) 

𝑙𝑎𝑓𝑗 ≥ 𝑣𝑙𝑜𝑘 − 𝐷𝐸𝑀𝑗 − 𝑀(1 − 𝑣𝑑𝑐𝑑𝑗𝑘𝑑) ∀𝑑 ∈ 𝐷, 𝑘 ∈ 𝐾, 𝑗 ∈ 𝐶 (13) 

𝑙𝑎𝑓𝑗 ≥ 𝑙𝑎𝑓𝑖 − 𝐷𝐸𝑀𝑗 − 𝑀(1 − 𝑣𝑑𝑐𝑖𝑗𝑘𝑑) ∀𝑑 ∈ 𝐷, 𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈ 𝐶 (14) 

∑ 𝑎𝑝𝑑𝑑𝑝

𝑝∈𝑃

= 1 ∀𝑑 ∈ 𝐷 (15) 

𝑑𝑓𝑙𝑑 = ∑ ∑ ∑ 𝑣𝑑𝑐𝑖𝑗𝑘𝑑 × 𝐷𝐸𝑀𝑖

𝑘∈𝐾𝑗∈𝐶∪𝐷𝑖∈𝐶

 ∀𝑑 ∈ 𝐷 (16) 

𝑑𝑓𝑙𝑑 ≤ 𝐶𝑃𝐷𝑑  ∀𝑑 ∈ 𝐷 (17) 

𝑝𝑓𝑙𝑝 = ∑ 𝑑𝑓𝑙𝑑 × 𝑎𝑝𝑑𝑑𝑝

𝑑∈𝐷

 ∀𝑝 ∈ 𝑃 (18) 

𝑡𝑝𝑟𝑝 = 𝑎𝑟𝑝𝑝 × 𝐶𝑃𝑅𝑝(1 − 𝛼𝑝) + 𝑎𝑜𝑝𝑝 × 𝐶𝑃𝑂𝑝(1 − 𝛽𝑝) ∀𝑝 ∈ 𝑃 (19) 

𝑎𝑝𝑑𝑑𝑝 , 𝑣𝑑𝑐𝑖𝑗𝑑𝑘 , 𝑎𝑟𝑝𝑝 , 𝑎𝑜𝑝𝑝 ∈ {0,1} ∀𝑑 ∈ 𝐷, 𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈ 𝐶, 𝑝 ∈ 𝑃 (20) 

𝑡𝑝𝑟𝑝 , 𝑣𝑙𝑜𝑘 , 𝑙𝑎𝑓𝑗 ≥ 0 ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐶, 𝑝 ∈ 𝑃 (21) 

 

Constraints (3) guarantees that each customer is serviced by only one vehicle. Additionally, 

each vehicle that departs from a distributor must return to the same distributor after servicing, 

as ensured by constraints (4). Constraints (5) ensures no route from any node back to itself. 

Constraints (6) stipulates that each vehicle that visits a customer must exit from the customer 

node after servicing. Constraints (7) guarantees the allocation of each vehicle to each distributor 

and prevents a vehicle from one distributor exiting to another distributor. Constraints (8) 

calculates the service time for each customer. Constraints (9) sets the departure time of the 

vehicle from the distributor to zero. Constraints (10) represents the strict time window limitation 

of the problem, ensuring delivery to the customer within the specified timeframe. Constraints 

(11) calculates the load carried by each vehicle. Constraints (12) accounts for the capacity of 

vehicles for cargo transportation. Constraints (13) and (14) determine the load of vehicles after 
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leaving the first customer and other customers, respectively. Constraints (15) ensures the 

allocation of each located distribution center to production centers. Constraints (16) calculates 

the flow for each distributor. Constraints (17) ensures compliance with the demand of each 

distributor. Constraints (18) calculates the total flow for each production center. Additionally, 

Constraints (19) determines the level of product production by each production center during 

regular and overtime hours considering the reliability level. Finally, Constraints (20) and (21) 

represent the type of decision variables in the problem. 

 

Linearization 

The presence of nonlinear components in the model significantly increases the complexity 

of solving the problem using standard solvers. Nonlinear models often require more 

computational resources and time, making them less practical for large-scale instances or real-

time applications. To address this issue and enhance the tractability of our model, we linearize 

the nonlinear constraints (18) in this section. This linearization process simplifies the problem 

structure, allowing for more efficient and effective solutions using conventional optimization 

techniques. To this end, 𝑧𝑎𝑥𝑑 is defined as an auxiliary variable. Using this variable, we can 

rewrite the constraints (18) as follows: 

  

𝑝𝑓𝑙𝑝 = ∑ 𝑧𝑎𝑥𝑑

𝑑∈𝐷

 ∀𝑝 ∈ 𝑃 (22) 

 

Also, the following complementary constraints should be considered in the linear 

counterpart model: 

 
𝑧𝑎𝑥𝑑 ≤ 𝑎𝑝𝑑𝑑𝑝 ∀𝑝 ∈ 𝑃, 𝑑 ∈ 𝐷 (23) 

𝑧𝑎𝑥𝑑 ≤ 𝑑𝑓𝑙𝑑𝑀 ∀𝑑 ∈ 𝐷 (24) 

𝑧𝑎𝑥𝑑 ≥ 𝑎𝑝𝑑𝑑𝑝 − 𝑀(1 − 𝑑𝑓𝑙𝑑) ∀𝑝 ∈ 𝑃, 𝑑 ∈ 𝐷 (25) 

 

The solution approach 

  

The supply chain network design problem, which generally encompasses two types of 

decisions: facility location and flow allocation, is NP-Hard complex (Gourdin et al., 2000). In 

such circumstances, the solution time exponentially increases with the problem size, making it 

impractical to solve the problem exactly for large dimensions within a reasonable time frame. 

Since the current problem is a generalization of the supply chain network design problem, exact 

methods and commercial solvers are inefficient in solving the problem for large dimensions. 

Therefore, the NSGA-II algorithm, as one of the most efficient and well-known multiobjective 

metaheuristics, is proposed as the solution approach. The multi-objective version of the genetic 

algorithm, known as non-dominated sorting genetic algorithm (NSGA), was provided by 

Srinivas and Deb (1994). However, some weaknesses of this algorithm, such as the need for 

high computational power, led to the proposal of the NSGA-II metaheuristic by Deb et al. 

(2002) as an enhanced version of the previous algorithm. 

Similar to other metaheuristic algorithms, determining a set of input parameters is required 

to execute this algorithm. These parameters include the maximum iteration number, population 

size, mutation, and crossover probability. After determining the parameters, a population of 

solutions is randomly generated in the first generation. This initial population is evaluated based 

on the objective function, serving as a fitness function, and sorted into non-dominated tiers. In 

this procedure, each solution is compared with all existing solutions in the population to 

determine whether it is dominated or non-dominated. All non-dominated solutions are placed 

on the first tier. In the next step, the identified set of solutions for the first tier is temporarily 

removed from the population, and the aforementioned process is repeated. This process 
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continues until all members of the population are assigned to a single tier. 

In subsequent generations, these steps are iteratively repeated. Initially, a set of parents is 

selected using a tier rank-based selection method and crowding distance. The crowding distance 

in NSGA-II is an indicator of the density in the space. It quantifies how close a solution is to 

its neighbors, aiding in maintaining diversity in the population by favoring solutions that are 

located in less crowded regions of the objective space. Two members of the population are 

randomly chosen, and if one member has a superior rank, it is selected as the superior member. 

If both members have equal ranks, the one with the lower crowding distance is chosen. After 

that, the combination of solutions is performed using the crossover operator, considering the 

crossover probability parameter. Additionally, the mutation operator is applied according to the 

mutation probability parameter and a specified number of times. The population resulting from 

these operators, along with the population from the previous generation, forms a combined 

population, and the algorithm must select the required number of solutions from this combined 

population for the next generation. Solution selection is based on their placement in non-

dominated tiers and the distribution of solutions along the border. Various criteria, such as 

iteration number, solution time, number of objective function evaluations, etc., have been 

considered as stopping criteria in the literature. In this study, the maximum number of iterations 

is considered as the termination condition for the algorithm. Finally, after the last iteration, the 

solutions available at the first tier are reported as non-dominated solutions of the algorithm. 

Figure 2 illustrates the flowchart of the NSGA-II algorithm. 

The implementation of metaheuristic algorithms for each particular problem requires a 

solution encoding scheme. Proper solution encoding has an significant role in the performance 

of metaheuristic algorithms. In the designed NSGA-II algorithm, each solution consists of three 

vectors. A random permutation of numbers is assigned to each vector. The first vector includes 

𝑛 + 𝑘 − 1 cells, where 𝑛 is the number of customers, and 𝑘 is the number of vehicles. In this 

vector, numbers 1 to 𝑛 represent customer numbers, and numbers greater than 𝑛 specify vehicle 

numbers. Specifically, cell 𝑛 + 1 represents the first vehicle, and cell 𝑛 + 𝑖 represents the 𝑖𝑡ℎ 

vehicle. In this case, the numbers that appear before cell 𝑛 + 𝑖 are the customers served by the 

𝑖𝑡ℎ vehicle, and their order indicates the sequence in which they are served. All customer 

numbers that appear after the last number greater than 𝑛 are assigned to the last vehicle. If there 

is no customer number before 𝑛 + 𝑖, it means that the vehicle is not used. The second vector 

includes 𝑑 + 𝑘 − 1 cells, where numbers 1 to 𝑘 represent vehicle numbers, and number 𝑘 + 𝑖 
represents the 𝑖𝑡ℎ distribution center. The vehicle numbers before cell 𝑘 + 𝑖 are the vehicles 

assigned to the 𝑖𝑡ℎ distribution center. Vehicles after the last number greater than 𝑘 are served 

by the last distribution center. If there is no vehicle number before 𝑘 + 𝑖, it means that the 

distributor is not used. The third vector includes 𝑝 + 𝑑 − 1 cells, where numbers 1 to 𝑑 

represent distribution center numbers, and number 𝑑 + 𝑖 represents the 𝑖𝑡ℎ production center. 

The distribution center numbers before cell 𝑑 + 𝑖 are the distribution center assigned to the 𝑖𝑡ℎ 

manufacturer. Distribution centers after the last number greater than 𝑑 are served by the last 

production center. If there is no distribution center number before 𝑑 + 𝑖, it means that the 

production center is not used. 

To better understand this problem, a numerical example is provided. Suppose there are ten 

customers, three vehicles, three distribution centers, and three production centers. Figures 3 

shows a solution for this problem based on the explained solution encoding scheme. As shown 

in this figure, vehicle 1 serves customers 1 and 6 in order, vehicle 2 serves customers 9, 3, and 

8 in order, and vehicle 3 serves customers 2, 7, 4, 5, and 10. Additionally, vehicles 1 and 2 are 

assigned to distribution center 1, and vehicle 3 is assigned to distribution center 2, while 

distribution center 3 is not used. Finally, distribution center 1 is assigned to production center 

1, and distribution center 2 is assigned to production center 2 (since distribution center 3 is not 

located). 
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Figure 2. The flowchart of NSGA-II algorithm 
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Figure 3. An example of solution encoding for NSGA-II implementation 

 

Computational experiments 

 

In this section, the proposed model and solution methodology performance is evaluated through 

solving numerical examples. To provide exact solutions, the problem is coded in GAMS 

programming environment and solved using the commercial CPLEX solver (Heidari-Fathian 

& Pasandideh, 2018). To this end, the weighted sum method is employed. The weighted sum 

method is a common approach for managing multiple objective functions in an optimization 

problem. This method converts the problem into a single-objective model by assigning a weight 

to each objective function and summing them up to form a composite objective function. By 

adjusting the weights, different trade-offs among the objectives can be explored, producing a 

set of Pareto optimal solutions. This enables the decision-maker to select the solution that best 

aligns with their preferences and priorities. The generated numerical examples consist of 3 

production centers, 4 distribution centers, 4 vehicles, and 10 customers. Additionally, the 

NSGA-II algorithm is implemented and coded in the MATLAB programming environment. 

Here, the maximum number of iterations, population size, crossover probability, and mutation 

probability are set 50, 100, 0.8, 0.2. The generation of numerical example parameters is done 

randomly from a uniform distribution. The considered ranges for parameters in the numerical 

examples are presented in Table 2. These ranges are determined based on previous studies in 
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the literature and the opinion of experts in the field. 

  
Table 2. The considered intervals for numerical examples generation 

Range Parameter Range Parameter 

(0.40,0.80) 𝛼𝑝 (1,15) 𝐷𝐸𝑀𝑖  

(0.2,0.3) 𝑃𝐶𝑂𝑝 (0.1,0.2) 𝑃𝐶𝑅𝑝 

(0.40,0.80) 𝛽𝑝 (1,10) 𝐷𝐼𝑆𝑖𝑗  

(1,5) 𝑅𝐶𝑉𝑘 (20,40) 𝐶𝑃𝑉𝑘 

(10,30) 𝐿𝐶𝐷𝑑 (5,25) 𝐿𝑆𝑇𝑖  

(10,40) 𝐶𝑃𝐷𝑑  (20,35) 𝐶𝑃𝐷𝑑  

 

All solutions are computed on a personal laptop with 8GB RAM 2.6 GHz intel core i7 CPU.  

Figure 4 illustrates the output network after solving the example with the CPLEX solver. In this 

diagram, green pentagons represent producers, yellow rectangles represent distributors, and 

circles represent customers. The paths taken by the vehicles are depicted by vectors. As 

mentioned, there is possibility of production during regular and overtime hours for production 

centers. Table 3 displays the production costs for each production center during regular and 

overtime hours. 

 In the second echelon, the distribution centers' location should be determined. The location 

status of candidate distribution centers and their associated cost are shown in Table 4. As can 

be seen, three distribution centers should be located for servicing customers. 

After location distribution centers, they should be allocated to customers for servicing. Each 

distribution center rents a vehicle to deliver the products to the customers. The details on the 

optimal distribution centers-customers allocation and routs of vehicles are summarized in 

Tables 5 and 6. 

 

 
Figure 4. A schematic view of the obtained solution 

 
Table 3. The production cost during regular and overtime hours 

Production 

center 

Cost for regular hours (a hundred 

million Rials) 

Cost for overtime hours (a hundred 

million Rials) 

1 7 3 

2 4 0 
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Table 4. The location status of distribution centers 

Distribution center Status Location cost (a hundred million Rials) 

1 Located 20 

2 Located 15 

3 Not located 0 

4 Located 15 

 
Table 5. The optimal allocation and routing decisions for distribution centers and customers 

Distribution center 
Vehicle 

number 
Service route 

4 1 Customer 3-Customer 2-Customer 5 

1 2 Customer 7-Customer 9 

1 3 Customer 6-Customer 1 

3 4 Customer 4-Customer 8-Customer 10 

 
Table 6. The location status of vehicles 

Vehicle Status Rental cost 

1 Rented 4 

2 Rented 3 

3 Rented 3 

4 Rented 2 

 

One of the constraints of the problem is to adhere to the capacity of the vehicles for loading. 

One of the constraints of the problem is the initial loading amount. The initial loading status of 

the vehicles relative to their capacity is depicted in Figure 5. As shown in this figure, all vehicles 

have loaded less than their capacity. 

Figure 6 illustrates the comparison between the maximum possible service time allotted for 

each of the ten customers and the actual service time provided. Adhering to the hard time 

window constraint, the service time for each customer must fall within the specified maximum 

service time. As depicted, the service time for all customers remains below their respective 

maximum service times, ensuring compliance with the imposed constraints. 

 

 
 Figure 5. The comparison between the service time and maximum possible service time of customers 

 

 
Figure 6. The comparison between the service time and maximum possible service time of customers 
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Figure 7 delineates the capacity status of the four distribution centers alongside their current 

load. It is evident that the load at each distribution center remains below its designated capacity. 

Notably, the figure does not depict the load for distribution center 3, denoting its absence in the 

network. 

 In continuing, the sensitivity of the CPLEX solver CPU time with respect to the size of the 

problem is investigated. 10 numerical examples in different sizes are used for this goal, based 

on the presented details in Table 7.  

Figure 8 illustrates the CPU time the CPLEX solver requires to solve ten numerical 

examples. A discernible trend emerges, indicating an exponential increase in CPU time as the 

size of the examples grows. This observation aligns with expectations, given the NP-hard 

complexity of the problem. 

 

 
Figure 7. The comparison between the load and capacity of distribution centers 

 
Table 7. The size of studied numerical examples for CPU time evaluation of CPLEX 

Example Production centers Distribution centers Vehicles Customers 

1 2 3 2 4 

2 2 3 2 6 

3 3 4 3 8 

4 3 4 3 10 

5 3 5 4 12 

6 4 5 4 14 

7 4 6 5 16 

8 4 6 5 18 

9 5 7 6 20 

10 5 7 6 22 

 

 
Figure 8: The CPU time of commercial solver in different numerical examples 
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Now, we are going to investigate the performance of NSGA-II multiobjective metaheuristic 

algorithm in solving the presented problem. To this end, 5 numerical examples in small and 

large-size are randomly generated. In small-size examples, we compare the performance of 

NSGA-II with respect to the best obtained solution for each objective function. The results are 

presented in Table 8. As obvious, the difference between the solutions are relatively low and 

acceptable. Since the CPLEX solver cannot reach the solution for large-size examples in a 

reasonable time interval, we compare the average and best values for each objective function 

in these examples. The results are summarized in Table 9. Figures 9 and 10 depict the results 

obtained from NSGA-II for large-size examples. As can be seen, the average and best values 

exhibit minimal variance, indicating consistent performance of NSGA-II. Overall, this analysis 

underscores the reliability and stability of NSGA-II across varying problem sizes, validating its 

effectiveness as a robust solution approach for the studied problem. 

 
Table 8. The performance comparison of CPLEX and NSGA-II in small-size examples 
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Production 
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Vehicles Customers 

First objective Second objective 

CPLEX 

N
S

G
A

-I
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Variation 

percentage 
CPLEX 

N
S

G
A

-I
I 

Variation 

percentage 

1 2 2 4 4 59 59.50 0.85 % 34 34.2 0.59 % 

2 3 3 7 7 65.2 65.80 0.92 % 25 25.3 1.20 % 

3 4 4 10 10 74 74.80 1.08 % 20 20.3 1.50 % 

4 5 5 12 12 96 97.30 1.35 % 18 18.3 1.67 % 

5 6 6 15 15 112 113.90 1.70 % 13 13.3 2.31 % 

 
Table 9. The performance comparison of CPLEX and NSGA-II in small-size examples 

E
x
a

m
p

le
 

Production 

centers 

Distribution 

centers 
Vehicles Customers 

First objective Second objective 

Average Best 
Variation 

percentage 
CPLEX 

N
S

G
A

-I
I 

Variation 

percentage 

1 5 5 5 20 352 353 0.28% 252 250 0.80 % 

2 7 7 7 30 452 456 0.88 % 276 273 1.10 % 

3 9 9 9 40 533 539 1.13 % 328 324 1.23 % 

4 11 11 11 50 650 659 1.38 % 413 407 1.47 % 

5 13 13 13 60 739 756 2.30 % 468 460 1.74 % 

 

 
Figure 9. The robustness of NSGA-II algorithm for the first objective function 
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Figure 10. The robustness of NSGA-II algorithm for the second objective function 

 

The performance of NSGA-II and the CPLEX solver in terms of CPU time is compared 

using the first numerical example from Table 7, where the number of customers ranges from 1 

to 8. The results are graphically shown in Figure 11. In the case of CPLEX, a clear exponential 

trend is observed as the number of customers increases, indicative of significantly escalating 

computational costs. Conversely, NSGA-II demonstrates a linear trend, with computational 

costs remaining relatively stable even as the problem size expands. This stark difference 

underscores the superior scalability and efficiency of NSGA-II, particularly for larger examples, 

positioning it as a favorable solution approach for tackling complex integrated production 

planning-location-routing problems within three-echelon supply chains. 

 

 
Figure 11. The sensitivity of CPU time to number of customers 
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Conclusion 

 

The objective of the current paper was to present a location-allocation, routing, and production 

planning problem for a three-echelon supply chain network, including production centers, 

distribution centers, and customers. Several realistic assumptions, such as regular and overtime 

production, reliability, time window constraints, etc., were incorporated into the problem. The 

problem was modeled with two objective functions. The objectives were minimizing the total 

costs and the customer service time. Due to the complexity of the problem, the NSGA-II 

algorithm was designed and implemented as the solution method. Numerical examples of 

various dimensions were analyzed to evaluate the proposed model and the solution 

methodology. The validity of the model was demonstrated by detailing the results of solving a 

problem using the CPLEX commercial solver. The results indicated that as the problem 

dimension increases, the solution time exponentially increases with the commercial solver. 

Additionally, the proposed algorithm exhibited satisfactory stability in solving the problem, and 

the calculated optimal values for each objective function and the average best values do not 

deviate significantly from each other. The current paper can be further developed in future 

research in various ways. The current problem modeling was presented assuming certainty in 

parameter values. Considering uncertainty in parameters such as customer demands and using 

appropriate approaches such as stochastic, fuzzy, or robust optimization can be a proposal for 

future research. Also, other important decisions, such as inventory management decisions, can 

be added to the problem. Designing and implementing other heuristic and metaheuristic 

algorithms and comparing the quality of the outputs with the proposed algorithm can be another 

suggestion for future researchers. 
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