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Abstract 
Land subsidence (LS) is a significant environmental issue affecting more than 50% of Iranian plains, 
particularly Karaj Plain located on the southern slopes of the Central Alborz, Iran. This study applied 
the Analytical Hierarchy Process (AHP) to create a LS hazard susceptibility map, considering factors 
such as groundwater drawdown, soil texture, alluvium thickness, distance between fault lines, and 
permeability. The resulting map was then compared with the Differential Interferometric Synthetic 
Aperture Radar method. The sensitivity mapping analysis revealed that 33.2% of the northwest-
southeast direction in the studied area is classified as high- to very-high-risk. Moreover, analysis of 
Sentinel-1A images spanning eight years and three months (from October, 2014, to January, 2023) 
indicated that the maximum LS rate (158 mm/year) occurred in the central and northwestern parts of the 
study area, particularly within 200 to 300-meter thick layers containing significant clay layers. Over the 
past three decades, the Karaj plain has experienced groundwater depletion at an average annual decline 
of 0.9 meters. The five LS control points exhibited a strong negative correlation ranging from 66% to 
88% with groundwater decline. Notably, this correlation suggests that maximum soil consolidation 
occurs with a two-year lag. Plus groundwater decline, a comparative study of two methods demonstrated 
that soil texture and alluvium thickness play a significantly influential role in asymmetric LS, especially 
considering the young age of the sediments and the presence of clay lenses. The accuracy of the 
generated LS hazard maps was validated using the ROC curve, achieving a high AUC of 0.773. 
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Introduction 
 
Land subsidence (LS) refers to the sudden sinking or gradual settling of the ground surface, 
which happens due to the consolidation of sediment caused by an increase in effective stress. 
Several factors cause LS including the melting of ice, vibrations, the natural compaction of 
deposits, mining activities, and the extraction of groundwater. A staggering 6.3 million square 
kilometers of land worldwide is vulnerable to subsidence, Roughly 231,000 square kilometers 
of this vulnerable land are urban centers, housing nearly 2 billion people (Davydzenka et al., 
2024).  Studies have indicated that natural factors account for 23.08% of LS occurrences 
worldwide, while human-induced factors contribute to 76.92% (Bagheri-Gavkosh et al., 2021). 
LS is a significant geoenvironmental hazard that can cause a decrease in sediment void ratio, land 
settling, ground fissuring, and damage to infrastructure like buildings, pipelines, roads, railways, 
subways and permanent reduction in aquifers' storage capacity. Numerous researchers have 
extensively investigated various aspects of LS, and their valuable works have enhanced our 
understanding of this intricate phenomenon.In recent decades, the extreme employment of 
groundwater for urban and agricultural objectives is a major cause of LS in many areas around 
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the world (e.g. Salehi Moteahd et al., 2019; Jahangir et al., 2020; Ty et al., 2021; Ghahfarokhi et 
al., 2023; Chen et al., 2023; hatterjee et al., 2023; Hussain et al., 2024).  Ozdemir (2016a, b) 
investigated the distribution of LS in Turkey and showed that the rate of subsidence is directly 
related to the sediment thickness, distance to the river and the fault. The InSAR technique is well-
suited for monitoring how aquifer systems respond both elastically and inelastically to 
fluctuations in groundwater levels. Moreover, it offers fresh perspectives on the influence of 
lithological characteristics and geological structures in aquifers  (e.g. Hoffmann et al., 2001; Li 
and Li., 2023; Motagh et al., 2008; Zuccarini et al., 2023). Studies executed by Ciampalini et al. 
(2014) and Zhou et al. (2020) demonstrated the capability of these methods to achieve accuracy 
within the mm to cm range in unsurpassed spatial sampling density. InSAR analysis reveals 
significant spatial variability in LS rates across the southwestern region of Bangladesh. These 
rates range from 3 to 20 millimeters per year, with higher rates observed in specific locations. 
This spatial variation highlights the influence of various factors on subsidence, including the 
weight of overlying sediments, natural consolidation processes, compaction of existing 
sediments, regional tectonic movements, and human activities (Shahoriar Sarker et al., 2024). 
    There are several methods available for the analysis, prediction, and monitoring of LS. 
Accurately quantifying LS presents a significant challenge due to the multifaceted nature of the 
phenomenon and the complex interplay of various influencing factors. To address this 
challenge, researchers have increasingly embraced the application of machine learning 
techniques. These methods leverage existing local subsidence measurements alongside 
geospatial data to identify areas susceptible to subsidence. This data-driven approach has been 
demonstrably successful in various locations around the globe, including Iran (Mohammady et 
al., 2019), the United Arab Emirates (Elmahdy et al., 2022), Greece (Ilia et al., 2018), Indonesia 
(Hakim et al., 2020) and the United States (Smith & Majumdar, 2020). Notably, these studies 
incorporated relevant predictor maps encompassing climate, topography, geological 
characteristics, soil properties, and hydrological conditions specific to the investigated area. 
Faryabi et al. (2023) introduced a fuzzy logic-based method to map the susceptibility of LS in 
the Jiroft plain located in the southern part of Iran. The proposed model incorporated various 
hydrogeological factors including groundwater pumping rate, geology, saturated and 
unsaturated media, groundwater drawdown, soil and aquifer type, transmissivity, aquifer 
thickness, and distance to faults. Their findings revealed that areas exhibiting the greatest 
susceptibility to LS are characterized by low-permeability soils, thick aquifers, high rates of 
groundwater pumping, and close proximity to faults. Numerous models were developed to 
assess the risk of LS, such as (DSC-ADTree), Artificial Neural Network (ANN), DL models 
(e.g., CNN and LSTM), and receiver operating characteristic (ROC), (Zhao et al., 2024; Riseh 
et al., 2023;Rahmani et al., 2024; Zhang et al., 2023). 
    In Iran, LS poses a significant challenge in the central and northeastern parts of the country 
due to excessive groundwater extraction. Evaluating the rate and factors influencing this 
phenomenon is crucial. Within a 10-kilometer radius to the west and south of the Karaj Plain, 
has experienced extensive ground cracks caused by LS, resulting in severe damage to 
infrastructure and agricultural land (Mahmoudpour et al., 2016; Mehrnoor et al., 2023).  Several 
researchers have therefore investigated this phenomenon in the Karaj Plain. safari et al. (2016) 
used the Interferometric Synthetic Aperture Radar (InSAR) technique to assess the rate of LS 
in the Karaj-Shahriar Plain. The study period was from 2003 to 2010. Time series analysis with 
short baselines was employed in DORIS software to obtain the average annual subsidence rate, 
which reached a maximum of 136 mm/year.  Results showed that the amount of ground surface 
elevation change in the Karaj metropolis ranged from -145 to 15+ millimeters. The most 
significant subsidence occurred in Mehrshahr, with subsidence ranging from 100 to 145 
millimeters. This subsidence was primarily attributed to increased groundwater withdrawal and 
decreased precipitation (Ranjbar & Fathollahzadeh, 2022). 
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    Previous studies in the Karaj Plain have not utilized the AHP methodology to create LS 
hazard maps. Given the lack of a comprehensive study in the Karaj Plain that considers crucial 
parameters beyond groundwater depletion in relation to land subsidence, it is imperative to 
conduct research in this area. It is crucial to comprehend the factors contributing to LS and to 
devise effective strategies for its mitigation. This study evaluated the impacts of fault distance, 
groundwater level decrease, permeability, alluvium thickness, and soil grain size on ground 
subsidence in the Karaj Plain. A flowchart outlining the overall research process is presented 
in Figure 1. In the first step, the effects of these parameters on subsidence were evaluated by 
AHP. In the second step, the actual subsidence of the plain was estimated by the differential 
interferometric synthetic aperture radar (DInSAR) approach. In the third step, the results of 
AHP were validated by comparing them with the results of DInSAR. 
 
Study area 
 
The Karaj Plain is situated 20 km west of Tehran, in the Alborz Province, in the north of Iran. 
It is bounded by mountains on two sides, the north and the south (Figure 2a and b). The plain 
covers an area of approximately 468 km² and is home to several cities, including Karaj, Kamal 
Shahr, Mohammad Shahr, Mehr Shahr, and Mahdasht, with a total population of over one 
million people in 2021 (The Statistical Center of Iran, 2021). Besides residential zones in both 
urban and rural areas, the plain is also home to several industrial areas, plants, roads, railways, 
and thousands of groundwater withdrawal wells. The main river in the plain is the Karaj River, 
which flows through the center of the plain. The plain is subjected to the ground subsidence 
which caused several significant disasters including damage to buildings and linear structures 
(roads), as well as ground surface cracking in the center of the plain (Figure 2c and d).  The 
tension cracks are oriented north-south and are several meters long and deeper than 0.1 meters. 
 

 
Figure 1. Flowchart of the Study Process 
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Figure 2. a: Sampling points in Iran map, b: Karaj Plain and the InSAR satellite image analysis area, c: 
Crack development due to the subsidence, and d: Damage to the buildings 
 
Geological and hydrogeological conditions in Karaj Plain 
 
Geology of the area 
 
The tectonic features of this region generally follow the conditions of the central Alborz. From 
a geological perspective, the Karaj tectonics are primarily composed of sedimentary rocks and 
detrimental (or clastic) sediments (Abdolali, 1991).  The Karaj Plain deposits are situated in the 
foothills of the southern part of the Alborz Mountain Range, which is characterized by tectonic 
activity due to the convergence of the Arabian and Eurasian plates. The northern heights of the 
study area are composed of green tuff massif, while the southern heights are composed of 
andesite and Miocene rocks. The Karaj Formation was formed in the Eocene as a result of the 
Pyrenees phase. It has a thickness of more than 3,300 meters. The Red Formation is considered 
to be the bedrock in the south and west of the Karaj site (Figure 3). 
    The most recent major tectonic movements in the Alborz region took place during the late 
Pliocene to early Pleistocene period, resulting in faulting and moderate thrusting in the 
mountains. This geological activity led to the formation of the Hezardareh Formation (also 
known as Formation A) (Rieben 1995). This division Rieben, Was the basis for further studies 
and since then have not been major changes in this classification  .The Karaj and Kordan rivers, 
along with other rivers and seasonal floods, have caused erosion in the Alborz Mountains. This 
erosion has resulted in the deposition of Quaternary alluvial sediments on the southern slopes 
of the mountains. The city of Karaj is situated on these relatively soft and young deposits. 
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Rieben (1955) conducted a study on the stratigraphy, lithology, and age of these Quaternary 
alluvial deposits, dividing them into four formations: 
     Hezardareh Formation (A= Q1) 
     Kahrizak Formation (B= Q2) 
     Alluvial sediments of Tehran Formation (C= Q3) 
     Recent Sediments Formation (D= Qal) 
 
    The Hezardareh Formation, a deposit of old alluvial material located on the margins of the 
highlands, consists primarily of rubble, gravel, and weak silty-clay cement. This formation is 
characterized by low porosity and permeability, hindering the lateral flow of groundwater 
within the aquifer. The Hezardareh Formation is distributed throughout the northwestern region 
of Karaj Plain.  The Kahrizak Formation comprises younger alluvial deposits and elevated 
riverside terraces. Granulometry reveals a composition of sand, gravel, and slate fragments. 
Notably, this formation exhibits higher permeability compared to the Hezardareh Formation. 
The Kahrizak Formation underlies the majority of the plain, encompassing the central, eastern, 
southern, and southwestern regions.  The Tehran Alluvial Formation is formed through the 
erosion of older formations and consists of alluvial fan and floodplain deposits. This formation 
covers a significant portion of the low-lying areas of the plain. Its considerable thickness and 
high permeability make it the main aquifer of the plain.  The Recent Sediments Formation 
represents the youngest Quaternary deposit found in the Karaj Plain. 
 
Hydrogeology of the area 
 
The aquifer within the Karaj Plain spans approximately 376.9 km² in area. Karaj County 
experiences an average annual precipitation of 247.3 millimeters and an average annual 
temperature of 14.4 degrees Celsius. Emerging from the mountains, the Karaj River has given 
rise to the Karaj alluvial fan. Over time, sedimentation and compaction of sediments on the 
surface of the alluvial fan by the Karaj River have caused its surface to rise and facilitated the 
movement of channels towards the southeast. These repeated channel shifts have ultimately led 
to the formation of the large and present-day Karaj alluvial fan. The primary aquifer in the plain 
is the Tehran Alluvial Formation, which is characterized by its extensive coverage, considerable 
thickness, and high permeability. It consists of Quaternary alluvium, with coarser sediments near 
the highlands and finer sediments in the central plain. The thickest layer of alluvium, around 300 
meters, is situated in the central part of the plain, running in a northwest-southeast direction. In 
the western and southwestern regions of the plain, the aquifer exhibits a layered structure, with 
coarse-grained layers separated by aquitard layers, forming confined aquifers. In the rest of the 
plain, the aquifer is unconfined. The bedrock underlying the Karaj Plain follows a northwest-
southeast orientation, gently sloping towards the southeast, resulting in a distinctive horseshoe 
shape for the plain. The depth of the bedrock varies across the plain, with shallower depths in the 
two branches of the horseshoe and deeper depths in the central section. The medium storativity 
coefficient in the study area is estimated to be around 5%. The maximum coefficient of 
transmissivity ranges from 3,000 to 5,000 m²/day in the center-south region of the plain, while 
the minimum is 400 m²/day in the southwest. For more than 30 years, from 1992 to 2022, 
excessive extraction of groundwater from the Karaj Plain has led to a significant decline in water 
levels, reaching a total drop of 27.15 meters. On average, this corresponds to a yearly decrease of 
0.9 meters. As shown in Figure 3, water inflow fronts pass through the northern, western, and 
northeastern boundaries, while water outflow fronts pass through the eastern and southwestern 
boundaries. This information is based on data provided by the Geological Survey of Iran (2020), 
the Alborz Regional Water Company (2022), and the Alborz Water and Wastewater Company 
(2019). This makes the central plain more susceptible to subsidence. 
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Figure 3. Geological map of the study area and locations of geoelectric profiles C and F (Khezri et al., 
2022; Geological Survey and Mineral Exploration of Iran, 2020) 
  
Materials and methods 
 
Materials 
 
The hazard susceptibility maps for LS were created by utilizing remote sensing images and 
additional data, such as groundwater level drop, soil texture, alluvium thickness, distance from 
the fault, and permeability, collected from a variety of sources. In this research, the European 
Space Agency's state-of-the-art high-resolution satellite Sentinel-1A was used to collect the 
data. This C-band SAR satellite utilizes a new terrain observation with progressive scan SAR 
(TOPSAR) imaging mode to achieve a 12-day return period and has a wide observation range 
of 250 km × 250 km at medium resolution. Fortunately, the obtained observations from 
Sentinel-1A are complimentary.  
    Additionally, SAR images were captured in a descending orbit using an Interferometric Wide 
swath (IW) TOPS mode with VV polarization. Then, the GMTSAR software was executed for 
the processing. 
 
Methodology 
 
The LS hazard sensitivity maps were developed by AHP technique. The Analytic Hierarchy 
Process (AHP) was employed to develop LS hazard sensitivity maps. AHP is a multi-criteria 
decision-making technique that facilitates the prioritization of factors influencing LS 
susceptibility. In this study, the AHP hierarchy was structured with the main criterion being LS 
hazard, followed by sub-criteria representing various some physical parameters.   Various Geo-
environmental parameters contribute the production of LS hazard sensitivity mapping using 
GIS tools. Several studies have looked at geomorphic features in LS hazard studies, with 
parameters such as groundwater drawdown, soil texture, alluvium thickness, distance between 
fault lines, and permeability (e.g. Mohammady et al., 2019; Abdollahi., 2019; Rezaeia, M et 
al., 2020; Smith & Majumdar, 2020; Hakim et al., 2020; Elmahdy et al., 2022).  
    The selection of factors for the AHP model in the Karaj region was based on a comprehensive 
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understanding of LS processes, the availability of relevant data, and the specific geological and 
environmental characteristics of the study area.  After identifying the key factors influencing 
LS, the AHP method utilizes a two-step process to determine their relative importance. First, 
factors are compared pairwise based on their influence on LS susceptibility, using a scale 
reflecting one factor's dominance over another. These comparisons are then compiled into a 
comparison matrix, which captures the overall relative importance of each factor compared to 
all others. Finally, mathematical calculations are applied to this matrix to derive weights for 
each factor, effectively translating expert judgment and pairwise comparisons into quantitative 
values that reflect the relative contribution of each factor to LS susceptibility.  Also, ground 
deformations were produced by the DInSAR method.   
 
Analytic Hierarchy Process (AHP) 
 
Saaty (1977) introduced an analytical method called AHP. This semi-quantitative method is 
employed to address intricate problems by dividing them into a hierarchical structure of factors 
and subsequently comparing these factors pairwise. The AHP assigns a scale ranging from 1 to 
9 to express the relative importance of each factor (Saaty, 1980a, b). Table 1 demonstrates a 
standard scale for conducting pairwise comparisons. 
    In the matrix, the elements aij represent the values obtained from the paired comparisons 
between factor i and factor j. Meanwhile, the diagonal elements represent the fact that each 
factor is considered equally important to itself, resulting in a value of one. The matrix contains 
the evaluation results provided by the expert decision-makers, as indicated by Eq. 1. 
 

𝐀 = ተ

1 1/a12 ⋯ 1/𝑎1𝑛
𝑎21 𝐵௬ ⋯ 1/𝑎2𝑛

⋮ ⋮ ⋯ ⋮
an1 an2 ⋯ 1

ተ = ተ

1 a12 ⋯ a1n
𝑎/21 1 ⋯ 𝑎2𝑛

⋮ ⋮ ⋯ ⋮
1/a1n 1/a2n ⋯ 1

ተ                                        (1) 

 
    Once the comparison matrix was constructed, the consistency of the matrix was assessed 
using the eigenvalue method, and the consistency ratio (CR) was calculated accordingly, as 
depicted in Eq. 2. Saaty (1980a, b) has indicated that for a randomly generated comparison, the 
CR tends to approach 1, and as the CR approaches 0, greater consistency is achieved. In general, 
a CR value of ≤ 0.1 is considered accepTable. 
 

Table. 1 Pair-wise comparisons based on a standard scale (Saaty, 1980a, b) 

Importance Definition Description 

1 
Equal 

important 
Two parameters hold equal significance 

3 
Moderate 
important 

One parameter is slightly favored over the other. 
 

5 
Strong 

important 
One parameter is Strongly favored over the other 

7 
Very strong 
important 

One parameter is very strongly favored over the other 

9 
Extreme 

important 
Evidence favoring one element over another is the highest 

possible order of affirmation 

(2,4,6,8) 
Intermediate 

values 
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𝐶. 𝑅 =
C. I

R. I
                                                                                                                                             (2) 

As seen in (Eq. 3), CI represents the consistency index, which is computed using a specific 
formula. On the other hand, random index (RI) refers to the random index derived from the 
comparison matrix. 

C. I =
𝛌max − n

R. I
                                                                                                                                     (3) 

    In the given equation, n represents the order or size of the matrix, RI is a measure of the 
consistency of the pairwise matrix produced randomly, and λmax denotes the principal value 
of the matrix. The value of RI depends on the size of the matrix and can be categorized into 10 
classes from RI=0 to 1.49 
 
AHP analysis based on selected physical parameters 
 
This study utilized previous research to select and prepare a spatial database consisting of five 
physical parameters: Groundwater level drop, soil texture, alluvium thickness, distance from 
the fault and permeability (Figure 6). Moreover, weights derived using the AHP method were 
employed to rate the relative importance of both classified raster layers and parametric maps 
(Tables 2 and 3). A concise overview of all parameter which affect LS have presented in the 
following sections. 
 

Table 2. AHP pairwise comparison matrix 
Parameters Classes Pair wise comparison matrices Eigen values CR 

Distance from 
Fault line (m) 

0-250 1   
 

1 

 
 
 

1 

 
 
 
 
1 

 
 

0.5128 
0.2615 
0.1290 
0.0634 
0.0333 

0.05 
250-500 0.33 1 
500-750 0.5 0.33 
750-1000 0.14 0.5 0.33 

>1000 0.11 0.14 0.5 0.33 

Groundwater 
Level Decline 

during the years 
2014-2022 (m) 

32-25 1      0.2916 
0.00 25 – 19 0.33 1     0.2081 

19-13 0.33 1 1    0.2081 
13-7 0.5 0.33 0.33 1   0.1252 

 7-2 0.5 0.33 0.33 1 1  0.1252 
<2 0.14 0.5 0.5 0.33 0.33 1 0.0417 

Alluvium 
Thickness(m) 

>300 
250-300 
200-250 
100-200 
50-100 

1 
0.33 
0.33 
0.5 

0.14 

 
1 
1 

0.33 
0.5 

 
 

1 
0.33 
0.5 

 
 
 

1 
0.33 

 
 
 
 
1 

 

0.4691 
0.2010 
0.2010 
0.0862 
0.0427 

0.03 

Permeability 

Qft1 1      0.5239 

0.00 
Qft2 0.33 1     0.2707 

Upper red Fm (Mur) 0.5 0.5 1    0.1354 

KARAJ FM (Ek) 0.14 0.14 0.14 1   0.0700 

Soil texture 
 

Silt- lean Clay 1  
1 

 
 

1 

 
 
 

1 

 
 
 
 

 

0.5650 
0.2622 
0.1175 
0.0553 

0.04 
Clayey Sand 0.33 

Poorly Graded Sand 0.5 0.33 
Poorly Graded 

Gravel 
0.14 0.5 0.33 
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Table 3. Parameters matrix, wise weights and consistency ratio using AHP 
Parameters Pair wise Comparison Matrices Weights CR 

Groundwater Level Decline (m) 1     0.3621 

0.03 
Soil texture 1 1    0.3621 

Alluvium Thickness(m) 0.33 0.33 1   0.1607 
Distance from Fault Line (m) 0.5 0.5 0.33 1  0.0762 

Permeability 0.14 0.14 0.5 0.33 1 0.0389 

 
Groundwater Level Drop 
 
The occurrence of groundwater drawdown will lead to an elevation in effective pressure, a 
decrease in porosity, and an acceleration in subsidence rate, particularly in regions that contain 
clay layers. In this study, thirty piezometric wells were selected to evaluate the effectiveness of 
groundwater level as a parameter in subsidence rate. The variations in groundwater levels 
belong to the period of 2014–2022. Deep water wells, geophysical studies, and upstream and 
downstream piezometers suggest that the water Table. in the second aquifer, which plays a 
major role in land subsidence, is located at a deeper depth. However, the piezometers in the 
center of the plain were likely drilled into a shallow suspended aquifer. 
 
Soil texture                                                                                                                         
 
Soil texture plays a significant role in LS. Clay soils are particularly vulnerable to subsidence 
due to their higher water content and greater susceptibility to compaction when water is drained. 
To obtain a more detailed understanding of the subsurface, three cross-sectional profiles were 
examined in a northwest-southeast direction in the study area (Figure 9). Figure 4 shows section 
A-A', which is composed of initial alluvial fan deposits that lie along the North Karaj Fault and 
Karaj City located at the center of this section. Examination of borehole logs shows that western 
and eastern sections are mainly composed of coarse-grained deposits. In the center of the 
section, which slopes slightly to the northwest, fine-grained deposits are observed. The bedrock 
of the western and southeastern sections of the section is composed of Miocene marl or clay, 
and the center probably consists of conglomerates of the Hajar Valley or terraces A (late 
Miocene-Pliocene). 
    Figure 4 shows section B-B', taken from the center of the alluvial fan deposits, which have a 
considerable thickness. Approximately 30% of soil in this section composes of fine-grained 
deposits, while the remaining part composes of coarse-grained materials. Moving from the 
northwest to the southeast, coarse-grained deposits with a small percentage of fine-grained 
deposits are first observed. Then, about 60% of fine-grained silt and clay deposits with 
intermittent sand are observed. Finally, from the central section onwards, the deposits again 
become coarse-grained with about 10% fine-grained deposits. None of the seven boreholes in this 
section, even those deeper than 250 meters, have reached bedrock. The bedrock of the western 
and southeastern sections of this section probably consists of Miocene marl or clay, and the center 
probably consists of conglomerates of the Hajar Valley or terraces A (late Miocene-Pliocene). 
    Figure 4 shows section C-C', which shows alluvial deposits with a thickness of over 300 
meters in a northwest-southeast direction (along the axis of the Buin anticline). In the 
southeastern half of the section, coarse-grained deposits with a small percentage of fine-grained 
deposits are the dominant constituent. In the central part of this section, fine-grained and coarse-
grained deposits are alternatively seen, eventually ended to fine-grained soils. The bedrock of 
the northwestern section of C-C' section is likely composed of Miocene marl or clay, and the 
center part of this section to the southeast probably consists of conglomerates of the Hajar 
Valley or terraces A (late Miocene-Pliocene).   
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Figure 4. cross sections (A–A′, B-B′ and C-C′) and Two-dimensional profiles of sections 
 
    The results of the studies, demonstrated in the form of a two-dimensional profile in Figure 3, 
showed that there is a direct relationship between fine-grained deposits and LS in this plain. 
    Based on 19 well logs and geoelectric data, the soil texture of the Karaj Plain has been divided 
into four categories. Sediments with a coarse grain size have accumulated in the vicinity of the 
hills, whereas sediments with a finer grain size have settled further away from the hills.    
 
Alluvium Thickness 
 
There is a positive correlation between the thickness of the compressible layer and the 
magnitude of LS. This implies that the increasing in the thickness of compressible layer will 
develop the LS rate (Li et al. 2017). The Karaj geoelectric profiles are in the northeast-
southwest direction (Figure 3). From these profiles, profiles C and F were selected for the study 
of the Karaj plain (Figure 5). Profile C, borehole number 29M.45D, was drilled to a depth of 
120 meters near electrical sounding number 152. Soils in this borehole is composed of clay, 
sand, and gravel up to a depth of 47 meters, and then sand, gravel, and clay up to a depth of 120 
meters. According to geophysical results, the bedrock of the region has a resistivity of 30 ohm-
meters and is located at a depth of 300 meters. 
    Profile F, along the axis of the existing anticline, has sedimentary layers with a maximum 
thickness of about 300 meters overlying a horizon of A terrace deposits. From the center to the 
southwest, alluvial deposits become finer-grained, and the thickness of the deposits in the 
southwest reaches about 50 meters, decreasing to a minimum value on igneous rocks. Borehole 
number 32R.1D, located in the southwestern part of the plain, was drilled to a total depth of 
91.5 meters. The electrical resistivity of the ground in this region ranges from 20 to 30 ohm-
meters up to a depth of 62 meters, and then changes to 100 ohm-meters from 62 to 90 meters. 
After this depth, it decreases to a resistivity of 10 ohm-meters to the bedrock of the region. 
    Alluvium thickness map, which is prepared using the geoelectric soundings,  the deep water 
wells (There are 19 deep  water wells with a normal distribution in the plain. The depths of these 
wells range from 132 to 300 meters, with an average depth of 220 meters)  and information of 
the piezometers ( C.G.G Company, 1964-1965; Alborz Regional Water Company, 2022). The 
thickest alluvium in the plain, located in the center of the plain (south of Karaj city), has a 
thickness of more than 300 meters, while the thinnest alluvium layer has a thickness of at least 
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50 meters in the southwest. Significantly thick layers of fine-grained sediment that are prone to 
subsidence are located in the center and west of the plain. 
 
Distance from the fault  
 
The extent of LS induced by a fault is influenced by various factors, including the size, type, 
and rate of movement of the fault, as well as the characteristics of the soil in the region. When 
faults are large and exhibit rapid movement, they can result in significant LS. Fault structures 
create fractures and gaps within the geological layers, which enhance the potential for drainage 
and groundwater infiltration. This, in turn, increases the likelihood of subsidence. In the study 
area, the North Tehran Reverse Fault is situated in the northern part, while the Eshtehard 
Reverse Fault is located in the southern part (Rieben, 1995). 
    In a recent study, Shastri et al. (2023) found that LS in Kolkata, India is a serious problem 
caused by groundwater depletion and increased seismic hazard, according to two decades of 
InSAR and GPS measurements. 
 
Permeability 
 
The amount of LS that occurs depends on the type of soil and rock that is being compacted. 
Soils and rocks with high permeability, such as sand and gravel, are more likely to compact 
than those with low permeability, such as clay. This is because materials with high permeability 
can easily absorb water. When the water Table. drops, these materials lose the support of the 
water. As a result, they compact and sink. In conclusion, soil permeability is a key factor in LS 
(USGS, 2023). 
    The permeability of water in the high-level piedmont fan and valley terrace deposits is 
highest in the Quaternary deposits (Qft1), followed by relatively high permeability in the low-
level piedmont fan and valley terrace deposits (Qft2). However, formations such as red marl, 
sandstone, gypsiferous marl, conglomerate of Miocene age (Upper red Fm (Mur)), and well-
bedded tuffaceous shale and green tuff of Eocene age (KARAJ FM (p)) exhibit low 
permeability. Generally, the formations in the study area can be categorized into two main 
types: soft and hard or cemented formations. Among these, geological factors have the most 
significant impact on land permeability, as they undergo minimal changes compared to climate, 
topography, and vegetation factors in the plain. The permeability of the formations is influenced 
by various factors, including climate, topography, vegetation, and geological characteristics, 
with special emphasis on effective porosity (Ghabadi, 2013).  Generally, an increase in 
permeability decreases the LS rate. 
 

Figure 5. Geoelectric profiles C and F 
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Figure 6. Thematic Map of LS Hazard Sensitivity Parameters: a) Alluvium Thickness, b) permeability, 
c) Soil texture, d) Distance from Fault, e) Groundwater Level Decline 

 
    By adding up the weight of each parameter multiplied by the class weight assigned to that 
parameter, the LS Hazard Sensitivity Index (LHSI) value was calculated for every pixel, as 
shown in Eq. 4. 

HSI = ෍(𝑊𝑖𝑅𝑖)       

௡

௜ୀଵ

                                                                                                                         (4) 

    In the given equation, HSI represents the LS hazard sensitivity index for the specific pixel 
being analyzed. Wi denotes the weight assigned to parameter i, while Ri represents the criteria 
score associated with parameter i 
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DInSAR data and processing 
 
Sentinel-1A SAR images were utilized to generate a ground deformation map of the study area 
by the DInSAR method. DInSAR is a powerful tool for monitoring LS. There are several 
different data processing methods that can be used for DInSAR, each with its advantages and 
disadvantages. The choice of data processing method depends on the specific application and 
the available data (Pepe & Calò, 2017). A study by Zheng et al. (2023) used InSAR data and 
the Peck model to examine surface subsidence disasters in Xuzhou City, China, from 2014 to 
2018. They found that the areas with the most severe subsidence were those with high 
groundwater pumping rates and areas with soft soils. 
    The descending tracks of Sentinel-1A images from the TOPS data sets covering a period of 
9 years from 2014 to 2023 were analyzed using SLC (Single Look Complex) products. Using 
one-month interval master and slave image co-registration, 183 interferograms were developed. 
A sample interferogram superimposed on the DEM is presented in Figure 7.  
    After terrain correction of the final vertical displacement map, the mean value of the 
displacement map was measured for the study area, because the determined vertical 
displacement values are relative. 
 
Results and discussion 
 
LS hazard sensitivity index map 
 
Based on the results, the maximum consistency ratio (CR) is 0.05, indicating good consistency 
within the judgment matrix (below 0.1).  The groundwater level in the west of the Karaj Plain 
has dropped by a maximum of 71 meters, while the easternmost part of the Plain has seen an 
increase of 5 meters. The average decrease in groundwater level in the Karaj Plain is about 0.9 
meters annually, according to studies by the Regional Water Company of Alborz. 
In various geological and hydrogeological conditions, the presence of multi-layered aquifer 
systems, including thick compressible clay layers and deep confined aquifers, can contribute to 
the development of LS (Wang et al., 2019). 
 

 
Figure 7. Interferometric phase for an ascending track data over the July 20, 2020– August 13, 2020 
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    It is worth noting that the piezometers located in the west and southwest of the plain have a 
low groundwater depth and do not show significant fluctuations. For example, the piezometer 
in Husseinabad Mehrshahr (level 1256 meters) is located at a lower level than the piezometer 
in Tarbiat Moallem (level 1285 meters). However, the water level in September 2003 in the 
Husseinabad piezometer was 1241 meters, and in the Tarbiat Moallem piezometer 1208 meters.  
If these two piezometers are located in a single aquifer, such conditions are not hydraulically 
correct. This is because the southern highlands do not play a role in the aquifer recharge, and 
the Husseinabad Mehrshahr piezometer is probably located in the first layer. Since the depth of 
the Husseinabad Mehrshahr piezometer is less than the surrounding piezometers, there is a 
possibility that the aquifer has two layers. Taking into account that the piezometric pressure in 
the second layer has decreased and the second layer is in a free state, it is expected that 
subsidence in Mehrshahr will be more than in other parts of the plain. In the study area, the soil 
texture is divided into four groups from the heights to the center of the plain, respectively: 
     Poorly-graded gravel and well-graded gravel (GP, GW) 
     Poorly-graded sand and well-graded sand (SP, SW) 
     Silty clayey gravel and silty clayey sand (GC, SC) 
     Silty clayey (CL-CL, ML) 
 
    In areas with no fine-grained soils, such as the southeastern plain (north of Fardis), there is 
no significant subsidence despite the high depth of groundwater and high soil thickness. 
Accordingly, the maximum and the minimum alluvial thickness were 340 meters in east 
Mohammadshahr and 50 meters in Mahdasht, respectively. Distance from the faults has the 
highest susceptibility for distances less than 1 km and the lowest susceptibility for distances 
greater than 10 km. The permeability of the Qft1 formation is excellent, the permeability of the 
Qft2 formation is good, and the permeability of the other alluvial formations of the Karaj Plain 
is medium to low.   
The LS hazard sensitivity index map was created by combining the weighted sum of the five 
mentioned parameters (Figure 8).  
 

 
Figure 8. LS hazard Sensitivity map generated by the Fuzzy- AHP approach 
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    The fuzzy approach in ArcGIS was utilized to categorize the obtained LS hazard sensitivity 
map. The results of the sensitivity mapping indicated that 17.48% of the study area was at very 
low risk, 24.99% at low risk, 23.7% at medium risk, 31.7% at high risk, and 2.13% at very high 
risk. In general, areas with a high to very high risk of LS are located in the NW-SE direction, 
and the northeastern part of the plain has the highest probability of LS. 
 
DInSAR processing result 
 
To eliminate the influence of topography, the SRTM (Shuttle Radar Topography Mission) Digital 
Elevation Model (DEM) was utilized. This process involved removing the topographic effect 
from the interferogram phase. The local coherence in the image has an impact on the attribute of 
the interferogram phase. In DInSAR processing, the coherence was calculated by the 
interferometric SAR pairs to determine the phase noise. A coherence map was generated for the 
entire scene by applying a shifting window over the SAR image. It is worth mentioning that the 
coherence range is between 0 and 1, where a value of 0 indicates that the interferometric phase is 
mostly comprised of noise, while a value of 1 shows that the interferometric phase is free of noise .  
    The wrapped phase information in DInSAR interferogram fringes changes from -π to π. As 
seen in the displacement map, the negative values show areas experiencing subsidence, and 
positive values reveal areas experiencing uplift. Figure 9 shows the vertical annual 
displacement map with a maximum subsidence of 158 mm/year. Based on the vertical 
displacement maps, it can be concluded that the DInSAR approach is effective and suiTable. 
for analysis, especially in regions where the interferogram fringes are clear and distinguishable. 
 
Cross-validation of the two methods using the ROC curve 
 
The evaluation of the LS hazard sensitivity map was performed using Receiver Operating 
Characteristic (ROC) curve analysis. 
 

 
Figure 9. The vertical annual displacement during the years 2014-2023 
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    The analysis of ROC curves is a practical method for evaluating the effectiveness of spatial 
models. The optimal outcome is a curve that has the highest area under the curve (AUC), which 
can range from 0.5 to 1.0. An AUC of 0.5 suggests that the model performs no better than 
chance, while a higher AUC indicates better performance (Fawcett, 2006).   
    In this research, the vertical displacement map was divided into 30 parts by ArcGIS software 
to generate the ROC curve. An inventory dataset was produced by extracting the conditions 
that correspond to zero and larger displacement values. A reference spatial data layer was then 
created, consisting of two active cells representing pixels with high and lower hazard sensitivity 
values.  The percentages of true positive (TP) and false positive (FP) were computed using SPSS 
software. The probability image was generated using an LS hazard sensitivity map index that 
was created through the AHP method. The outcomes of the analysis were stored in a text 
document, and the ROC curve was generated utilizing dedicated software (Figure 10). 
    In the ROC curve, the vertical and horizontal axes demonstrate the true and false positive 
rates, respectively. The true positive rate indicates the proportion of correctly labeled pixels 
based on the model result, while the false positive rate represents the proportion of incorrectly 
labeled pixels. The obtained AUC result of 0.773 shows a reasonable level of performance. To 
validate the accuracy of our method and its percentage, we will examine two similar studies. 
Jakarta's LS risk was mapped using time-series InSAR on Sentinel-1 data. While all models 
(AUC > 0.5) offered valuable insights, machine learning models with AdaBoost performing 
best (AUC: 0.811) were used to analyze the data and create a LS susceptibility map based on 
ROC curve analysis (Hakim et al., 2020).  Mohammady et al. (2019) employed a Random Forest 
machine learning approach to evaluate the likelihood of LS. The analysis revealed that factors 
like proximity to faults, elevation, slope variations, land usage patterns, and water table depth 
significantly influence subsidence. The model's accuracy was evaluated using a receiver 
operating characteristic curve (ROC), and the resulting area under the curve (AUC) of 0.77 
indicated that Random Forest is a suitable method for mapping LS susceptibility in the 
investigated region.  
 
Discussion  
 
To compare the trends of LS and groundwater level decline in the Karaj plain, five control 
points were divided into four two-year periods between 2015 and 2023.  The locations of the 
five points are shown in Figure 9. Figures 11 and 12 compare aquifer hydrograph levels to 
average annual rainfall and LS levels, respectively.  
 

 
Figure 10. The Roc curve graph for evaluating the performance of the LS hazard sensitivity map 
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Figure 11. Trends in groundwater level and average annual rainfall (Regional Water Company of 
Alborz, 2024) 
 

 
Figure 12. Time series of vertical displacement at control points versus changes in groundwater level 

 
    Despite a direct relationship between precipitation rate and groundwater level, changes in 
groundwater level occur with a lag of several months after an increase or decrease in 
precipitation rate (Regional Water Company of Alborz, 2024).  In general, the rate of LS in the 
Karaj Plain increases as the water Table. decreases, with a lag of about two years.  The highest 
rate of LS in all five points occurred in 2017, due to a decrease in precipitation in 2015 and 
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2016 and an increase in groundwater abstraction. The rate of LS in all five points decreased in 
2019, due to the increase in precipitation from 2017 to 2019, followed by a decrease in 
groundwater abstraction and a relative increase in the water Table However, the highest amount 
of precipitation in 2020 resulted in an increase in groundwater level in 2021, and this effect is 
more noticeable in the reduction of subsidence in points 4 and 5. In 2023, the rate of LS shows 
a slight decrease, likely due to the slight increase in precipitation.  Therefore, points 1 and 2 still 
have a high rate of LS. Control points exhibit a strong positive correlation, ranging from 88% 
to 99%. Additionally, a significant negative correlation of 66% to 88% is observed between 
groundwater decline and control points (Table 4).  LS in this area exhibits linear behavior and 
will continue at the same rate until the soil reaches the secondary consolidation stage. 
    Remote sensing and geographic information systems (GIS) are powerful tools for mapping 
and assessing natural hazard susceptibility in recent years (e.g. Abedini & Tulabi, 2018; 
Goorabi, 2020). The hazard sensitivity maps made by these technologies, provide crucial 
information for comprehending the likelihood of disasters in regions susceptible to LS. This 
paper focuses on the LS hazard disaster assessment in the Karaj Plain, situated in the central 
Alborz region of Iran. The study utilizes an integrated approach combining the DInSAR and 
AHP methods. This research aims to create hazard susceptibility maps by utilizing an integrated 
approach. These maps will provide valuable information for risk management strategies and 
assist in the planning and construction of new infrastructure and settlements in regions prone 
to hazards.  
 

Table 4. Correlation between control points and groundwater drop 

Correlation 
Ground water 

level(m) 
1 2 3 4 5 

Ground water 
level(m) 

1      

1 -0.882 1     

2 -0.863 0.999 1    

3 -0.817 0.977 0.979 1   

4 -0.665 0.879 0.883 0.933 1  

5 -0.775 0.950 0.952 0.951 0.968 1 

 
Conclusion 
 
The objective of this study is to illustrate the application of AHP and DInSAR methods in 
evaluating areas at risk of LS. No prior efforts have been undertaken to create LS hazard 
sensitivity maps by integrated AHP methodologies in the studied area. In this research, LS 
hazard susceptibility maps for the entire study area were created. The AHP-based hazard 
susceptibility map identified that 33.2% of the Karaj Plain falls within the high-to-very-high 
risk category for LS. Based on the results of the presented model, distance from fault and 
permeability have the least impact on LS, while soil texture and groundwater drawdown have 
the most impact on this parameter. The maximum LS has been observed in the central and 
northwestern regions of the plain, particularly in layers with thicknesses ranging from 200 to 
300 meters that contain significant clay layers. In the west of the study area, there is a likelihood 
of the existence of a two-layered aquifer. The water level reported by piezometers is 
significantly lower than the actual water Table. Therefore, piezometers in the central portion of 
the plain were removed from the first aquifer layer (Recent Sediments), because the first layer 
is likely a perched aquifer, and the second aquifer layer (unconfined) is likely to play a major 
role in LS. This factor has negatively impacted the accuracy of the LS Hazard Sensitivity Map 
and, consequently, its ROC curve. 
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    This study demonstrates that geological factors also significantly influence the rate and 
pattern of LS observed in the area. While precipitation rate directly influences groundwater 
level, changes in groundwater level exhibit a time delay of several months following 
fluctuations in precipitation.  The correlation between groundwater depletion and subsidence 
exhibits a two-year time lag.  This suggests that the maximum soil consolidation occurs after a 
two-year lag in response to groundwater level decrease.  The analysis of the control points 
reveals a strong positive correlation of 88% to 99%. Notably, Points 1 and 2, located in the 
central portion of the plain, continue to exhibit a high rate of LS.    
    The accuracy of these maps was assessed using the ROC curve. In light of comparable studies 
and validation percentages considering various parameters, the validation results with an AUC 
of 0.773 demonstrated significant effectiveness. 
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