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A B S T R A C T 

 

This study employs a constrained mixed Lp norm inversion to assess the efficacy of geophysical potential field methods in delineating high-
grade iron mineralization zones within the Gol-e-Gohar No. 2 deposit, located in the Sanandaj-Sirjan zone of southwest Iran. Given the 
considerable density and susceptibility contrast between iron ore, particularly the massive Kiruna-type magnetite ± apatite mineralization, 
and the surrounding metamorphic host rocks, extensive ground-based gravity and magnetic data were collected across a survey area spanning 
1600m × 900m.  To validate the effectiveness of the sparse norm inversion algorithm, two synthetic models were initially evaluated. These 
models included a dipping prism and two vertical prisms. Subsequently, after essential gravity and magnetic data corrections, the algorithm 
was applied to the acquired field data. The accurately recovered models obtained through the iterative inversion process were visually 
presented through four cross-sections covering the primary anomalous region, revealing a robust spatial correlation between high-density 
contrast and high-magnetization zones. Further development of 3D reconstructed models for density contrast and magnetic susceptibility 
demonstrated significant consistency with geological data obtained from exploratory boreholes, effectively delineating three distinct 
mineralization zones with vertical expansions ranging from 100 to 300 meters. These zones were characterized by magnetized regions enclosed 
within the dense rock formations. 
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1. Introduction 

Economic iron deposits in the Earth’s crust, particularly Banded Iron 
Formations (BIFs), Iron Oxide Copper Gold (IOCG) deposits, Iron 
Oxide-Apatite (IOA) deposits, and Kiruna-Type deposits, are critical 
mineral resources that fuel industrialization and meet global demand, 
playing an essential role in modern societies [1]. Fortunately, 
exploration of these ore deposits is facilitated by geophysical potential 
field methods. These techniques capitalize on the pronounced density 
contrast (due to dense iron minerals) and high magnetic susceptibility 
(owing to their ferromagnetic nature) of iron ore bodies, rendering 
them easily detectable through gravity and magnetic surveys. Other 
geophysical methods, such as seismic exploration and geoelectrical 
surveys (e.g., induced polarization and direct current resistivity) are not 
completely suitable for iron exploration due to several factors. Seismic 
methods, while offering high resolution and depth penetration, may 
struggle with the steeply dipping formations commonly found in iron 
ore deposits, as they have traditionally been more tailored to 
hydrocarbon exploration. Geoelectrical methods, while useful for 
lithological and structural mapping, are not as effective in directly 
targeting iron ore mineralization due to their lower sensitivity. 

Common types for modelling iron ore deposits with geophysical 
potential field methods involve three main approaches: joint 
interpretation, cooperative inversion, and joint inversion. Joint 
interpretation [2, 3, 4, 5, 6], the fastest method, involves independently 
inverting gravity and magnetic data to obtain density contrast and 
susceptibility models, and then interpreting them together. Cooperative  

 
 
 
inversion goes a step further - both datasets are inverted simultaneously, 
with model parameters from one influencing the other, leading to a 
model that best fits both datasets [7, 8, 9, 10]. This approach promotes 
stronger data coupling. Finally, joint inversion directly couples the data 
through structural or petrophysical relationships [11, 12, 13, 14, 15, 16], 
allowing them to influence each other during the inversion for 
potentially the most accurate model, but at the cost of increased 
computation time. 

This study employs a joint interpretation approach. Initially, we 
derive independent density and susceptibility models through mixed Lp 
norm inversion of gravity and magnetic data [17, 18]. We utilize a sparse 
norm combination via a mixed norm approach to promote sparsity in 
the inversion results, thereby achieving a recovered model with sharper 
boundaries and avoiding overly smooth models [18, 19]. Subsequently, 
these results undergo comprehensive interpretation, integrating 
available geological information and borehole data for a complete 
analysis.  

Iran encompasses three primary regions renowned for their iron 
mineralization potential [20]. The first region is the Khaf province, 
home to the Sangan mining complex, which holds an estimated 900 
million tons of iron reserves [20, 21]. The second region, Bafq province, 
hosts several prominent deposits, including Choghart, Chadormalou, 
Sechahoon, Chahgaz, Nariganan, and Shavaz, collectively containing 
approximately 2 billion tons of iron reserves [20, 22, 23]. Finally, the 
third region, Sirjan province, is distinguished by the Gol-e-Gohar iron 
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deposit, which contains an estimated 1.2 billion tons of iron reserves [20, 
24]. The Gol-e-Gohar complex, situated in the south of Iran, is the 
largest iron deposit in the Middle East. It encompasses six major mines 
located about 55 kilometers southwest of Sirjan city [24]. Among these, 
Gol-e-Gohar No.3 is the most substantial iron deposit. However, Gol-e-
Gohar No.2 also holds significant iron reserves, contributing 
substantially to the district's overall importance in Iran's mining 
landscape [20]. 

In a review of prior geophysical investigations on the Gol-e-Gohar 
complex, in 2012, Ansari et al. utilized an upward continuation and Euler 
deconvolution method to analyze the observed gravity and magnetic 
anomalies [25]. Subsequently, in 2019, Behnam and Ramazi applied the 
power spectrum analysis and 3D modelling to interpret anomaly No. 8 
[26]. Furthermore, in 2021, Milano et al. conducted a joint 
interpretation of gravity and magnetic data employing a 2D inversion 
process using a damped weighted minimum-length approach [5]. 
Finally, Bizhani et al. (2023) carried out a 2D inversion of magnetic data 
using the same methodology as the preceding study [27]. Although the 
mentioned research efforts were successful in identifying and modelling 
crucial mineralization zones, our study employs an updated and more 
robust inversion approach. By utilizing an expanded set of study profiles, 
we aim to scrutinize the targeted iron mineralization with greater 
precision. By using a sparse norm inversion strategy, we improve the 
accuracy of our iron ore modelling, achieving sharper boundaries and 
more precise depth estimates than previous studies. Following the 
inversion process, we validate our reconstructed models by comparing 
them with the true geological model derived from borehole data. 

It is important to note that, given the nature of the Gol-e-Gohar iron 
deposits as Kiruna type, utilizing magnetization vector inversion and 
incorporating remanent magnetization would likely yield more effective 
results [28, 29]. This is recommended for future studies on this 
extensive iron deposit. However, while susceptibility inversion 
disregards remanent magnetization and focuses on induced 
magnetization, it remains an acceptable method for primary inverse 
modelling. 

The subsequent sections of this article are structured as follows. Prior 
to presenting the physical properties derived from geophysical data, a 
brief exposition is provided on the methodology encompassing forward 
and inverse modelling, synthetic scenarios, and the geological setting. 
Each segment of our results model is thoroughly described, featuring a 
comparative analysis of proposed exploration targets with existing 
borehole data and geological evaluations. The final section offers a 
comprehensive summary of the overall findings from this research. 
Geophysical modelling was executed using the SimPEG package 
(version 0.20.0) via the Python programming language [30]. The 
hardware configuration utilized for both forward and inverse modelling 
consists of an ASUS laptop equipped with an AMD A6 2.4 GHz CPU 
and 8 GB of RAM. 

2. Methodology 

In this section, we first discuss the mathematics of gravity and 
magnetic forward modelling. Next, we provide a detailed examination 
of the mixed norm inversion approach for the independent inversion of 
gravity and magnetic data. 

2.1. Forward modelling 

Solving the forward problem allows us to predict geophysical datasets 
that correspond to particular subsurface geological structures. In 
essence, through the utilization of model parameters (𝐜) as an example, 
we can predict the resultant data (𝐝), utilizing 𝐴𝑠 as the mathematical 
operator for forward modelling connected to the causative source  𝒔 
[31]: 

 

𝐝 =  𝐴𝑠(𝐜).                                                                                               (1) 
 

In the context of gravity forward modelling, first we define the gravity 
vector (𝒈), containing components in the x, y, and z directions (Eq. 2). 
These components are related to the density distribution through the 

tensor 𝑇. This tensor essentially translates the density value at each cell 
( 𝜌 ) into the gravitational field observed at a specific location, P 
(𝑥𝑃, 𝑦𝑃 , 𝑧𝑃) [32]. 

 

𝒈 =  [

𝑇𝑥

𝑇𝑦

𝑇𝑧

] 𝜌.                                                                                               (2) 

 

Most gravity forward modelling studies primarily utilize the vertical 
component of the gravity field (𝑔𝑧) due to its superior ability to detect 
variations in subsurface density distribution [33]. Eq. (3) defines this 
component [33, 34]: 

 

𝑔𝑧 =  𝑇𝑧𝜌.                                                                                                 (3) 
 

The specification of 𝑇𝑧 is outlined in Eq. (4): 
 

𝑇𝑧 = −𝐺∗ (𝑎𝑟𝑐𝑡𝑎𝑛
𝑑𝑥𝑑𝑦

𝑟𝑑𝑧
+ 𝑙𝑜𝑔[𝑑𝑦 + 𝑟] + 𝑙𝑜𝑔[𝑑𝑦 +  𝑟]) |

𝑥𝑈

𝑥𝐿
|

𝑦𝑈

𝑦𝐿
|

𝑧𝑈

𝑧𝐿
 ,    

 

𝑟 =  (𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2)1/2,  
 

𝑑𝑥 = (𝑥𝑝 − 𝑥), 𝑑𝑦 = (𝑦𝑝 − 𝑦), 𝑑𝑧 = (𝑧𝑝 − 𝑧).                                      (4) 
 

In each unit cell, establishing the relative distance 
𝑟(𝑑𝑥, 𝑑𝑦, 𝑑𝑧)between the observation point and the nodal boundaries 
requires solely the coordinates of the lower southwest corner 
𝐿(𝑥𝐿, 𝑦𝐿 , 𝑧𝐿) and the upper northeast corner, identified as 𝑈(𝑥𝑈 , 𝑦𝑈 , 𝑧𝑈). 
In situations involving a considerable quantity of observation points, the 
primary equation utilized for gravity forward modelling calculations is 
denoted by Eq. (5) [33]: 

 

𝒈𝑝𝑟𝑒 = 𝐅𝑮𝜌.                                                                                        (5) 
 

In the equation provided, 𝐅𝑮 represents the forward operator matrix 
used in gravity modelling. It transforms the space of physical parameters 
into the data space denoted as 𝒈𝑝𝑟𝑒 , where 𝜌 ∈ 𝑅𝑀,  𝒈𝑝𝑟𝑒 ∈ 𝑅𝑁 , 𝐅𝑮 ∈
𝑅𝑁×𝑀 . Here, 𝑀 signifies the total number of cells, and  𝑁 indicates the 
number of observation points [33, 34]. 

For magnetic forward modelling [33, 35], we start by defining the 
forward problem analogous to Eq. (2). This linear system is expressed in 
Eq. (6), where 𝐒 represents a symmetric matrix that describes the linear 
relationship between a prism with magnetization 𝐦∗ = [𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧]𝑆 
and the magnetic field components 𝐛 = [𝑏𝑥, 𝑏𝑦, 𝑏𝑧]𝑆. 

 

𝐛 = 𝐒𝐦∗.                                                                                                   (6) 
 

The tensor 𝐒, detailed in Eq. (7), is a symmetric matrix with a zero 
trace. Its components are 𝑆𝑥𝑥 , 𝑆𝑥𝑦 , 𝑆𝑥𝑧 , 𝑆𝑦𝑦 , 𝑆𝑧𝑦, 𝑆𝑧𝑧 . 

 

𝐒 =  
𝜇0

4π
[

𝑆𝑥𝑥 𝑆𝑥𝑦 𝑆𝑥𝑧

𝑆𝑥𝑦 𝑆𝑦𝑦 𝑆𝑧𝑦

𝑆𝑥𝑧 𝑆𝑦𝑧 𝑆𝑧𝑧

].                                                                          (7) 

 

Finally, we can formulate the magnetic forward modelling equation 
analogous to Eq. (5), as shown in Eq. (8). Here, 𝐅𝑻  is the forward 
operator matrix for magnetic modelling, with 𝐦∗ ∈ 𝑅3𝑀,  𝐛𝑝𝑟𝑒 ∈
𝑅𝑁 , 𝐅𝑻 ∈ 𝑅𝑁×3𝑀 [33, 35]. 

 

𝐛𝑝𝑟𝑒 = 𝐅𝑻𝐦∗.                                                                                            (8) 
 

2.2. Inverse modelling 

The theoretical foundation for the inversion methodology employed 
within the SimPEG framework is laid out in the pioneering works of Li 
and Oldenberg (1996, 1998) [36, 37]. Subsequently, Fournier et al. (2016, 
2019) introduced a more advanced and robust framework for this 
approach [17, 18]. This inversion method is typically based on 
minimizing an objective function, which is classified as an optimization 
problem and formulated as follows: 

 

min 𝜙(𝑚) = 𝜙𝑑 + 𝛽𝜙𝑚.                                                                            (9) 
 

In Eq. (9), (𝑚) denotes the objective function to be minimized 
through the iterative inversion process. The component 𝜙𝑑  represents 
the data misfit term, ensuring that the recovered model accurately 
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predicts the field observations (gravity and magnetic data). The 
component 𝜙𝑚 is the model objective function or regularization 
function, which ensures the recovered model reflects plausible 
geological features and exploration targets. Lastly, the parameter 𝛽 
balances the relative contributions of 𝜙𝑑  and 𝜙𝑚  within the final 
objective function (𝜙(𝑚))[36, 37]. The misfit function expressed in Eq. 
(10) quantifies the disparity between observed data (𝒅𝑜𝑏𝑠) and 
predicted data (𝒅𝑝𝑟𝑒𝑑) and 𝛔 represents the estimated uncertainties in 
the data [36, 37, 38]. 

 

𝜙𝑑 =  ∑ (
𝒅𝑖

𝑝𝑟𝑒𝑑
−𝒅𝑖

𝑜𝑏𝑠

𝛔𝑖
)

2

        𝑁
𝑖=1                                                                     (10) 

 

The regularization function (𝜙𝑚) introduces prior information and 
constraints to the inverse problem, mitigating its inherent non-
uniqueness. The most frequently used approach employs the L2-norm 
measure, leading to a discrete linear system as shown in Eq. (11): 

 

𝜙𝑚 =  𝛼𝑠𝜙𝑠 +  𝛼𝑥𝜙𝑥 + 𝛼𝑦𝜙𝑦 + 𝛼𝑧𝜙𝑧 = ∑ 𝛼𝑟𝑟=𝑠,𝑥,𝑦,𝑧 ‖𝐖𝑟𝐕𝑟𝐆𝑟(𝐦 −

                 𝐦𝑟𝑒𝑓)‖2
2                                                                                      (2) 

 

In Eq. (11), the term 𝜙𝑠 measures the deviation of the discrete model 
(𝐦) from a reference model (𝐦𝑟𝑒𝑓 ) and  𝜙𝑥 , 𝜙𝑦 , and 𝜙𝑧  assess the 
roughness of the model in the respective 𝑥 , 𝑦 , and 𝑧  directions. The 
coefficients 𝛼𝑠, 𝛼𝑥, 𝛼𝑦 , and 𝛼𝑧  regulate the closeness of the derived 
model to the reference model and control the smoothness of the 
resulting model, respectively [36, 37, 38]. The matrices 𝐆𝑥 , 𝐆𝑦, and 𝐆𝑧 
represent discrete gradient operators, which are used to calculate the 
model gradients in different directions [36, 37]. For the smallness 
component, 𝐆𝑠 reduces to the identity matrix, indicating that it does not 
contribute to the gradient computation. The term 𝑾𝒔  represents the 
weight associated with the smallest model component, ensuring that the 
smallest possible model is favored. Similarly, 𝑾𝑥, 𝑾𝑦  and 𝑾𝑧 are 
weights that correspond to the flatness of the model in the 𝑥, 𝑦, and 𝑧 
directions, promoting smooth transitions in the model across these axes. 
𝑾𝑚 is the combined weighting matrix that integrates all these weights, 
providing a balanced approach to both model adherence to the 
reference and its smoothness across all dimensions. This comprehensive 
weighting scheme ensures that the derived model is both physically 
plausible and smooth, adhering to the constraints and prior information 
provided [36, 37, 38]. 

In the mixed Lp-norm condition, the regularization term can be 
written as follows [18]: 

 

𝜙𝑚
𝑝

=  𝛼𝑠‖𝐕𝑠𝐑𝑠𝐦‖2
2 +  ∑ 𝛼𝑟𝑟=𝑥,𝑦,𝑧 ‖𝐕𝑟𝐑𝑟𝐃𝑟𝐦‖2

2                                 (12) 
 

Where 𝐆𝑟   is substituted with the finite difference operator 𝐃𝑟  as 
represented below [18, 33]: 

 

𝐃𝑟 =  [
−1 1 0 … 0
0 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ 0 −1 1

]                                                                  (13) 

 

We utilize a scaled iterative reweighted least squares method (S-
IRLS) to tackle a sequence of weighted least squares problems 
iteratively. The computation of the IRLS weight (𝐑𝑟) is outlined below 
[18, 33]: 

 

𝐑𝑟 = diag [(𝜖𝑟
2 + (𝐃𝑟𝐦(𝑘−1))

2
)

𝑝𝑟
2

−1

]

1

2

                                               (14) 
 

In the provided equation, 𝜖  stands for the threshold parameter, 
𝐦(𝑘−1) represents the model obtained from the preceding iteration, and 
𝐕𝑟  (Eq.12) signifies the volume terms linked with the discretization. 
Additionally, 𝑝𝑟 denotes the regularization parameter linked with the r-
th direction (e.g., x, y, or z). Through iterative updates of these weights, 
the Iterative Reweighted Least Squares (IRLS) method facilitates the 
convergence of the inversion process toward a solution that effectively 
balances the fit to the observed data and adheres to the regularization 
constraints [33]. The final objective function for the mixed-norm 
inversion of gravity and magnetic data is described as follows, where the 

symbol 𝜿 denotes the magnetic susceptibility, reflecting our adoption of 
susceptibility inversion and 𝛒 represents the density contrast through 
the gravity inversion: 

 

min 𝜙(𝑚)𝒈𝒓𝒂𝒗 = ‖𝐅𝑮𝛒 − 𝐝𝒈𝒓𝒂𝒗
𝑜𝑏𝑠)‖

2

2
+   𝛽(𝛼𝑠‖𝐕𝑠𝐑𝑠𝐦𝛒‖2

2 +

                                     ∑ 𝛼𝑟𝑟=𝑥,𝑦,𝑧 ‖𝐕𝑟𝐑𝑟𝐃𝑟𝐦𝛒‖
2

2
),  

 

min 𝜙(𝑚)𝒎𝒂𝒈 = ‖𝐅𝒃𝜿 − 𝐝𝒎𝒂𝒈
𝑜𝑏𝑠)‖

2

2
+   𝛽(𝛼𝑠‖𝐕𝑠𝐑𝑠𝐦𝜿‖2

2 +

                                     ∑ 𝛼𝑟𝑟=𝑥,𝑦,𝑧 ‖𝐕𝑟𝐑𝑟𝐃𝑟𝐦𝜿‖2
2).                                       (15) 

 

3. Synthetic scenarios 

This section assesses the effectiveness of the mixed-norm inversion 
method in recovering two synthetic models. The first model, a dipping 
prism, investigates the method's ability to differentiate between the 
recovery of deeper and shallower sections of a dipping structure. This 
evaluation is critical for understanding the inversion's capability for 
reconstructing features at depth and its sensitivity to structures with 
gentle dips. The second model, comprised of vertical prisms, examines 
the method's ability to resolve and distinguish separate causative 
sources. Here, we assess its proficiency in recovering vertical structures 
located at varying depths. 

To efficiently represent the subsurface environment, we employ tree 
meshes [30]. These adaptable grids allow us to define a refined box with 
smaller cells concentrated around the area of interest. This targeted 
refinement focuses computational power on the structures we aim to 
recover (causative sources) while reducing the number of cells in less 
critical areas. This approach leads to a potential improvement in the 
accuracy of recovered features and a significant reduction in 
computational time compared to using a uniform mesh size across the 
entire domain. 

3.1. Dipping prism 

The first synthetic model (Fig.1) represents a dipping prism with a 
density contrast of 1.0 g/cm³ and a magnetic susceptibility of 0.3 SI 
without remanent magnetization. This prism consists of five rectangular 
slabs with dimensions of 70m × 50m × 20m. To improve resolution in 
the target area, a refined box with smaller cells is implemented. This box 
extends from -130m to 130m in the x-direction, -80m to 80m in the y-
direction, and -10m to -130m in the z-direction. The entire synthetic 
survey area encompasses a 320m × 320m × 160m environment, with x 
and y ranging from -160m to 160m and z ranging from 0 to -160m. The 
spacing of the observation points is about 20 m, and there are a total of 
256 points (in both synthetic models). 

In the construction of both synthetic models, a flat topography was 
adopted for two primary reasons. Firstly, synthetic modelling often 
seeks to simulate idealized geometric shapes that approximate the key 
features of the target anomaly. Since the real-world case study exhibits 
a relatively smooth topography, neglecting it simplifies the synthetic 
model and allows us to isolate the performance of the sparse norm 
inversion algorithm. Secondly, employing a flat topography in both 
synthetic models ensures that the inversion results are primarily 
influenced by the causative sources and not by additional complexities 
arising from topographic variations. 

Fig.2 depicts the inversion results in an Easting-Elevation cross-
section, showcasing the density contrast and susceptibility models (Figs. 
2a and 2b) obtained after 20 iterations through the mixed Lp norm 
inversion. This approach utilizes a customizable norm combination 
denoted as [ 𝑝𝑠 , 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧 ], where 0 ≤ 𝑝 ≤ 2 . The first norm (𝑝𝑠 ), 
referred to as the model norm, applied to both density contrast and 
susceptibility models, controls sparsity [39]. In this case, we use the L0 
norm (𝑝𝑠 = 0) to promote a model with many zero values, sharpening 
the distinction between the target anomaly and the background while 
facilitating a more effective background recovery [18, 33, 39]. The 
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remaining L2 norms are applied to the gradients of the models (𝑝𝑥 =
 𝑝𝑦 =  𝑝𝑧 = 2), encouraging smoothness in the final recovered solution 
in three dimensions. This specific norm combination, [𝑝𝑠 = 0, 𝑝𝑥 = 2, 
𝑝𝑦 = 2 , 𝑝𝑧 = 2 ], is known as a sparse norm combination. Fig.2 
demonstrates the successful recovery of the dipping prism through 
sparse norm inversion of gravity and magnetic data. This highlights the 
effectiveness of this approach in capturing such complex structures. 

 

 

 
Figure 1. The first synthetic model (dipping prism) is presented in cross-sections. 
(a) x-z vertical cross-section at y = 0, and (b) x-y horizontal cross-section at z = -
40 m. 

 

 

 
Figure 2. Inversion results for the first synthetic model along y = 0. (a) Density 
contrast model obtained from sparse norm inversion of gravity data, and (b) 
Susceptibility model obtained from sparse norm inversion of magnetic data. 

Figs. 3a and 3d show the gravity and magnetic anomalies generated 
from the synthetic model, incorporating 5% Gaussian noise. For a 
simpler analysis of the observed and predicted magnetic anomalies, 
inclination and declination angles were set to 90° and 0°, respectively 
for both synthetic models and the Earth's magnetic field intensity was 
considered as 50000 nT. Figs. 3b and 3e display the recovered gravity 
and magnetic anomalies after sparse norm inversion. Finally, Figs. 3c and 
3f illustrate the residual plots, representing the difference between the 
observed and calculated data normalized by the standard error. In 
simpler terms, these plots depict the discrepancy between the anomalies 
arising from the true and recovered models. Positive values in the 
residual plots indicate areas where the true model has a higher gravity 
or magnetic anomaly compared to the recovered model, and vice versa 
for negative values. It is evident that the gravity inversion was slightly 
more successful in recovering the true model anomaly. The acceptable 
normalized residuals achieved by both recovered models strongly 
support the effectiveness of the sparse norm inversion algorithm in 
reconstructing the dipping prism. 

3.2. Vertical prisms 

The second synthetic model (Fig.4) consists of two vertical prisms, 
each with a density contrast of 1.2 g/cm³ and a magnetic susceptibility of 
0.4 SI without remanent magnetization. The prisms have dimensions of 
30m × 40m × 70m, and one prism is positioned 20 meters deeper than 
the other. To improve resolution in the target area, a refined box is 
implemented. This box extends from -120m to 120m in both the x and y 
directions, and from -10m to 140m in the z-direction. The overall 
dimensions of the synthetic environment remain identical to the first 
model. 

Fig. 5 displays the recovered models for the second synthetic model 
in an Easting-Northing cross-section after sparse norm inversion. While 
both density contrast and susceptibility models successfully captured 
the presence of the two vertical prisms, the magnetic inversion (Fig.5b) 
appears to be more effective in resolving the deeper portion of these 
structures. Similar to the first synthetic model, the recovered models 
were obtained after 20 iterations. 

Figs. 6a and 6d display the gravity and magnetic anomalies generated 
from the second synthetic model, incorporating 5% Gaussian noise 
similar to the first model. Figs. 6b and 6e illustrate the recovered 
anomalies after sparse inversion, which closely resemble the true model 
anomalies. The normalized residuals are shown in Figs. 6c and 6f. As 
previously mentioned, these residuals are a valuable metric for 
evaluating the inversion's effectiveness in minimizing the difference 
between the observed and predicted data. They represent the difference 
between the observed and calculated data normalized by the standard 
error, and therefore, are unitless. In this case, the low normalized 
residuals for both recovered models indicate good consistency with the 
true synthetic model. 

This section showcases the effectiveness of sparse norm inversion in 
recovering complex subsurface structures. The method successfully 
retrieves both density contrast and susceptibility models, demonstrating 
good sensitivity to deeper features, a known challenge for many 
geophysical techniques. This capability is further supported by the low 
residual plots, indicating a strong fit between observed and predicted 
data. Even with the added challenge of 5% Gaussian random noise, the 
sparse norm inversion method successfully handled it, highlighting its 
robustness. In the next section, we will evaluate this method's 
effectiveness in a practical geological setting by applying it to the real-
world case of the Gol-e-Gohar iron deposit. 

4. Application to the field data 

This section applies the sparse norm inversion method to analyze 
field data acquired from the Gol-e-Gohar mine. We begin by providing 
a detailed overview of the study area's geological setting. Subsequently, 
we discuss the geophysical survey employed for data collection. Finally, 
the inversion results obtained along the study profiles are presented and 
analyzed.
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Figure 3. Resulted gravity and magnetic anomalies from true and recovered model along a horizontal cross-section (a) Gravity anomaly of the true model, (b) Gravity 
anomaly of the recovered model after sparse norm inversion, (c) Normalized residual for the gravity inversion, (d) Magnetic anomaly of the true model, (e) Magnetic 
anomaly of the recovered model after sparse norm inversion, (f) Normalized residual for the magnetic inversion. 

 

 

 
Figure 4. The second synthetic model (vertical prisms) is presented in cross-
sections. (a) x-z vertical cross-section at y = 0, and (b) x-y horizontal cross-section 
at z = -70 m. 

4.1. Geological setting 

Geologically, the Gol-e-Gohar iron ore district lies entirely within the 
southern section of the Sanandaj-Sirjan zone (Fig.7) [40]. This zone, a 
narrow strip trending northwest-southeast, stretches for approximately 
1500 km from western Lake Urmia to the eastern part of Bandar Abbas 
province in southwestern central Iran [41]. Notably, the Sanandaj-Sirjan 
Zone (SSZ) is situated northeast of the Zagros fold-and-thrust belt. 

Having undergone extensive metamorphism, magmatism, and multiple 
tectonic events, this zone is considered the most tectonically unstable 
region in Iran [40, 41]. Due to its complex geological history 
characterized by numerous transformations, reliable dating and 
correlation of geological units pose significant challenges [41]. 

 

 
 

 
 

Figure 5. Inversion results for the second synthetic model along y = 0. (a) Density 
contrast model obtained from sparse norm inversion of gravity data, and (b) 
Susceptibility model obtained from sparse norm inversion of magnetic data.
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Figure 6. Resulted gravity and magnetic anomalies from true and recovered model along a horizontal cross-section. (a) Gravity anomaly of the true model, (b) Gravity 
anomaly of the recovered model after sparse norm inversion, (c) Normalized residual for the gravity inversion, (d) Magnetic anomaly of the true model, (e) Magnetic 
anomaly of the recovered model after sparse norm inversion, (f) Normalized residual for the magnetic inversion. 

 

 
Figure 7. Geological map of the Gol-e-Gohar iron ore complex, located in the 
southern part of the Sanandaj-Sirjan zone. Exactly inserted with permission from 
[40]. 

The Gol-e-Gohar complex is predominantly covered by recent 
alluvium, obscuring most of the underlying bedrock [42]. Limited 
outcrops reveal Paleozoic metamorphic rocks in the south and 
southwest, belonging to the Gol-e-Gohar complex – the oldest 
metamorphic unit in the region. Mesozoic and Cenozoic sedimentary 
rocks are present in the eastern part of the area [42]. Its lower section 
consists of a sequence of gneisses, mica schists, amphibolites, and quartz 
schists. This sequence is overlain by another sequence comprising 
dolomite marble, mica schists, green schists, and graphite schists [42, 
43]. The uppermost unit is composed of dolomite or calcite marble. The 
oldest exposed unit within the Gol-e-Gohar complex is a granite-gneiss 
unit with interlayers of schist and amphibolite [43]. The uranium-lead 
method has dated the protolith of these gneisses to be approximately 
520 million years old. Metamorphic carbonate units, the youngest 
component of the Gol-e-Gohar complex, outcrop in various locations 
across the region [40]. Many researchers attribute the age of 
metamorphism within the Sanandaj-Sirjan zone to the Mesozoic, 
suggesting it resulted from the subduction of the young Tethys oceanic 
crust beneath the central Iranian plate [44]. 

Six iron ore bodies were discovered within the Gol-e-Gohar iron ore 
district through magnetic surveys (Fig. 7) [40, 44]. These discoveries 
were first made by the Iran Barite Mining Company in 1969 [45]. 
Outcrops in mine 2 (the study area, depicted by a black box in Fig. 7) 
reveal the evidence of alteration in the upper portion of the iron ore 
deposit [45]. This alteration, known as advanced martitization, is caused 
by the reaction between atmospheric water and the original iron 
minerals. As a result of this process, hematite forms along the edges and 
grain boundaries of the mineral [42, 45]. Hematite, the oxide portion, is 
characterized by very low sulfur content due to leaching during 
alteration. The color of the altered zone varies from red to brown, with 
some marginal areas exhibiting a yellow coloration due to the presence 
of limonite [45]. This type of alteration is observed down to a depth of 
approximately 90 meters. Below 90 meters, the iron ore transitions from 
hematite to black magnetite (the findings from the inversion results are 
consistent with this fact). The presence of pyrite veins within the 
magnetite indicates varying sulfur content. These magnetites can be 
further classified into two types based on their sulfur content: low sulfur 
magnetite (LSM) and high sulfur magnetite (HSM), as represented in 
Fig. 14a [45]. 

The primary iron mineralization in mine 2 is magnetite, often 
accompanied by pyrite in various forms [40, 45]. Additionally, minerals, 
such as talc, muscovite, serpentine, and occasional calcite veins are 
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present. A clear correlation is observed in samples between the 
abundance of these minerals and a decrease in both ore grade (iron 
content) and rock strength [42, 45]. The presence of these minerals as 
fracture fillings can even lead to mine instability and collapse. 
Furthermore, the presence of thin streaks of the host rock (mainly mica 
schists) within the ore body creates difficulties during extraction [44]. 
These intermixed materials are sometimes impossible to separate 
effectively. Overall, the most valuable component of the ore deposit is 
magnetite with low pyrite content, followed by the oxide zone 
(hematite). Iron-bearing schists represent the least valuable portion and 
fortunately, constitute a minor fraction of the total ore mass [45]. 

4.2. Geophysical survey 

To conduct exploratory operations in the Gol-e-Gohar area, 
Aeroservice Company initially performed airborne geophysical surveys 
(magnetometry) over an expanse of 4,500 km2 between Abadeh Fars and 
Jazmurian [45]. These surveys identified substantial iron ore deposits 
with high potential, exhibiting suitable grades and reserves. After the 

airborne surveys, the Yugoslavian Geological Institute performed 
ground-based gravity and magnetic surveys over a 74 km2 region in Gol-
e-Gohar. These efforts culminated in the discovery of six iron ore mines 
within the Gol-e-Gohar complex, with mine No. 2 being one of the 
identified sites [45]. The geophysical dataset acquired along the Gol-e-
Gohar mine No. 2 comprises 995 gravity and magnetic data points (Fig. 
8). The data spacing exhibits a strategic reduction in proximity to the 
target regions. The maximum spacing between data points is 
approximately 80 meters, while the minimum spacing is around 40 
meters. 

Following geophysical surveys, essential gravity, and magnetic data 
corrections were implemented. Gravity data underwent free-air, 
Bouguer, topographic, and trend corrections (using a first-order 
polynomial fitting method) [46]. Magnetic data processing involved 
diurnal correction, IGRF subtraction, reduction to the pole, and trend 
correction to obtain residual anomalies (Figs. 8a and 8b). Inclination and 
declination angles in the study area were 90° and 0°, respectively and 
the Earth's magnetic field intensity was 45300 nT. 

 

 
Figure 8. Processed geophysical data for the Gol-e-Gohar iron ore complex. (a) Residual gravity anomaly after applying free-air, Bouguer, topographic and trend corrections, 
(b) Residual magnetic anomaly after applying diurnal correction, IGRF subtraction, reduction to the pole and trend correction, (c) Gravity anomalies after 40-meter 
upward continuation, (d) Magnetic anomalies after 40-meter upward continuation. 

 
After obtaining residual gravity and magnetic data, upward 

continuation (40 meters) was applied to both datasets (Figs. 8c and 8d), 
revealing minimal source location changes but slight modifications in 
anomaly patterns, suggesting a near-surface, dense, and magnetized ore 
deposit. Additionally, Fig. 8 displays study profile locations. Inversion 
results for four cross-sections (A-B & E-F perpendicular to the strongest 
gravity anomalies; C-D & G-H perpendicular to the strongest magnetic 
anomalies) are presented, providing valuable insights into the 
subsurface distribution of dense and magnetized regions. Fig. 9 presents 
a topographic map of the study area. The elevation variation within the 
survey area is approximately 16 meters, indicating a relatively flat 
topography. A slight but inconsequential elevation increase can be 
observed towards the eastern portion of the area (refer to the right side 
of Fig. 9). 

4.3. Inversion results 

After implementing data corrections, we conducted a sparse norm 
inversion through a mixed norm approach, as outlined in the 
methodology section. The inversion process was subject to specific  

 
Figure 9. Topographical map of the study area with study profiles. The difference 
between the maximum and minimum elevation is about 16 meters, indicating that 
the study area has relatively smooth topography. 



418 A. Houshang et al.,  / Int. J. Min. & Geo-Eng. (IJMGE), 58-4 (2024) 411-422191-199 

 

upper and lower constraints. For magnetic inversion, the upper limit was 
established at 1.0 SI based on the susceptibility assessments derived from 
the core samples and drilling data, with the lower limit set at 0 SI. 
Regarding gravity inversion, the upper constraint was defined as 1.5 
g/cm³, while the lower bound was set to -0.5 g/cm³. These upper and 
lower bounds delineate the maximum and minimum density contrasts 
accommodated by the inversion algorithm. Their selection resulted 
from a comprehensive examination of geological and borehole data to 
ensure the consistency of inversion outcomes with actual geological 
conditions. The resultant models, encompassing density contrasts and 
susceptibility, were derived after 28 iterations, indicating the algorithm's 
attainment of the predefined target misfit. 

In Figs. 10 and 11, we present the inversion results along four profiles. 
Figs. 10a and 10b depict density contrast and susceptibility models along 
the A-B profile, which crosses the high gravity anomaly region. The 
density contrast model (Fig. 10a) illustrates a high contrast region with 
a vertical distribution of 300m and a lateral distribution of 200m. The 
susceptibility model (Fig. 10b) delineates a magnetized region situated 
approximately 90-100m deeper than the high-density contrast region. 
This distinction between hematite and magnetite distributions was 
outlined in the geological report of the study area [45] and corroborated 
by the inversion results. Figs. 10c and 10d showcase the inversion 
outcomes along the C-D profile, which crosses a high magnetic anomaly.  

 

 

 

 

 
 

Figure 10. Inversion results along profiles A-B and C-D. (a) Density contrast model 
obtained along profile A-B, (b) Susceptibility model obtained along profile A-B, 
(c) Density contrast model obtained along profile C-D, (e) Susceptibility model 
obtained along profile C-D. 

As anticipated, the inversion findings disclose a significant 
magnetized region with a vertical expansion of about 200m (Fig. 10d) 
and a high-density contrast region located approximately 70-80m higher 
(Fig. 10c). Fig. 10d illustrates the most extensive distribution of 
magnetite in the whole area. It is evident that the depth and size of the 
magnetized mass decrease in profiles E-F and G-H (Fig. 11). 

Fig. 11a illustrates the density contrast model along the E-F profile, 
intersecting a significant gravity anomaly. A large, near-surface hematite 
ore body is clearly visible. Fig. 11b shows the susceptibility model along 
the same profile, indicating magnetite mineralization.  

Comparing Figs. 10 and 11 reveals that, moving rightward across the 
survey area, both hematite and magnetite mineralizations become more 
superficial and increasingly overlap. In Fig. 10, high-density contrast and 
magnetized regions differ vertically by about 70-100 meters, but in Fig. 
11 dense and magnetized masses are located at similar depths. Finally, 
Fig. 11c and 11d present density contrast and susceptibility models along 
the G-H profile, which intersects a major magnetic anomaly. Fig. 11d 
shows a more intensely magnetized body compared to Fig. 11b. Fig. 12 
shows the normalized residuals or misfit for gravity and magnetic 
inversion, as discussed in the synthetic scenarios section. This plot is a 
useful metric for evaluating the success of the inversion in minimizing 
the objective function and how well the inverse model matches the true 
anomalies. 

 

 

 

 

 
 

Figure 11. Inversion results along profiles E-F and G-H. (a) Density contrast model 
obtained along profile E-F, (b) Susceptibility model obtained along profile E-F, (c) 
Density contrast model obtained along profile G-H, (e) Susceptibility model 
obtained along profile G-H. 
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Fig. 13 shows the convergence plot, examining changes in the misfit 
( 𝜙𝑑 ) and model parameter ( 𝜙𝑚 ) after each iteration during the 
inversion process. In this context, a decreasing trend in 𝜙𝑑  indicates that 
the inversion algorithm is improving the fit of the model to the observed 
data. Ideally, 𝜙𝑑 should decrease and converge to a minimum value as 
the inversion progresses. If 𝜙𝑑 stabilizes at a low value, it suggests that 
the model adequately explains the observed data. Concurrently, an 
increasing 𝜙𝑚 observed during inversion signals the ascendance of the 
sparsity constraint. This trend indicates a stronger imposition of 
simplicity on the model as the inversion proceeds. Specifically, Fig. 13a 
corresponds to the convergence plot for gravity inversion, and Fig. 13b 
portrays the convergence plot for magnetic inversion. 

 

 

 
Figure 12. Normalized residuals after sparse norm inversion. (a) Normalized 
residuals after sparse norm gravity inversion, showing low residuals around the 
target area. (b) Normalized residuals for magnetic inversion. Although the 
maximum residual for magnetic inversion is lower than for gravity inversion, near 
the ore deposits, magnetic inversion shows higher residuals than gravity inversion. 

 
 
Fig. 14 illustrates the 3D models derived from geological findings and 

inversion outcomes. The geological models (Figs. 14a, 14b, and 14c) are 
directly derived from samples obtained through extensive drilling 
operations and exploratory boreholes [45]. In particular, Fig. 14a 
showcases the rock types prevalent in the study area, which can 
generally be categorized into two main groups. The first group 
comprises rocks characterized by a high sulfur magnetite component 
(HSM), containing pyrite grains that show a distinct schistosity trace. 
The second group consists of rocks with a low sulfur magnetite 
component (LSM), rarely containing pyrite grains, and in some cases, 
cut by quartz veins and chlorite. Notably, the low sulfur component 
exhibits a considerable correlation with rock formations featuring a high 
percentage of Fe, as depicted in Fig. 14c. Conversely, the high sulfur 
component demonstrates alignment with regions exhibiting elevated 
FeO content, as depicted in Fig. 14b.  

Low-sulfur magnetite components are typically associated with 
primary magmatic processes or early-stage hydrothermal systems that 
did not introduce significant sulfur. In contrast, high-sulfur magnetite 
components are often found in zones that have experienced substantial 
hydrothermal activity, leading to the introduction of sulfur-rich fluids 
into the ore body. Given that these two primary types of mineralization 

are often located in close proximity, and considering that some regions 
lack a distinct boundary between them, a multi-stage mineralization 
process can be inferred for this case study. In the initial stages of deposit 
formation, low-sulfur magnetite may originate from a relatively sulfur-
poor magmatic source. Subsequent hydrothermal events could 
introduce sulfur-rich fluids into the system, precipitating high-sulfur 
magnetite and sulfide minerals in structurally controlled zones or along 
fluid pathways. The spatial distribution of low- and high-sulfur 
magnetite likely reflects chemical gradients within the hydrothermal 
system, indicating that different parts of the deposit were exposed to 
varying sulfur concentrations. 

 
 

 

 
Figure 13. Convergence curves for sparse norm inversion with model norm (ϕ_m) 
in red and misfit (ϕ_d) in black. (a) Convergence curve for gravity inversion. (b) 
Convergence curve for magnetic inversion. 

 
 

To enable a more robust correlation and data interpretation, we have 
restricted the geological models (Figs. 14a, 14b, and 14c) along the 
North-South direction (y-axis) to ensure complete overlap with the 
geophysical models (Figs. 14e and 14d). This aligns the models, creating 
a consistent comparison area with identical dimensions across both 
geological and geophysical models. This approach is necessary because 
the geological data originally covered a broader spatial extent than the 
geophysical survey area. In Figs. 14d and 14e, we present the 3D models 
resulting from the inversion process. To facilitate a clearer comparison 
with the geological models, we applied cutoff values to refine their 
representation. Specifically, we restricted the density contrast model to 
the range of 1.2 gr/cm³ -1.5 gr/cm³ and the susceptibility model to the 
range of 0.8 SI -1.0 SI. This emphasis aims to highlight the more intensely 
dense and magnetized regions within the models. Additionally, we 
implemented cutoffs for the Fe and FeO models to delineate rock 
formations with high Fe and FeO content, enhancing their visibility and 
relevance within the overall depiction. 

Deriving a definitive interpretation and establishing a direct, one-to-
one correlation between the geophysical model and the FeO and Fe 
content models present significant challenges. These challenges stem 
from the inherent complexity and heterogeneity of the geological setting 
within our case study. In many instances, distinct boundaries between 
these elements are not readily discernible due to the intricate geological  
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Figure 14. 3D geological and geophysical models of the study area. (a) Distribution 
of the two main rock types (High Sulfur Magnetite Ore and Low Sulfur Magnetite 
Ore), (b) Distribution of Iron Oxide content (percentage), (c) Distribution of total 
Iron content (percentage), (d) Density contrast model obtained from sparse norm 
inversion, (e) Magnetic susceptibility model obtained from sparse norm inversion. 

processes at play. Despite these challenges, some general trends emerge 
from the analysis. The susceptibility models exhibit a stronger 
correlation with regions characterized by elevated FeO content and 
high-sulfur magnetite. Conversely, the density contrast model 
demonstrates a better alignment with areas containing high Fe content 
and low-sulfur magnetite. These observations suggest a potential link 
between the geophysical properties and the mineralogical composition 
of the subsurface. It is important to note that constructing a 3D model 
grounded in petrological data would provide a more robust foundation 
for comparison with the geophysical data in future studies. 

An examination of the geophysical modelling results presented in 
Figs. 14d and 14e reveals that both models identify three distinct 
causative sources. These sources exhibit high-density contrast and 
significant magnetization. The spatial distribution of the ore bodies in 
Fig. 14d (density contrast model) overlaps considerably with those in 
Fig. 14e (magnetic susceptibility model). However, the depth 
estimations for these causative sources differ between the methods. Fig. 
14d indicates a shallower depth for these features compared to Fig. 14e, 
suggesting a deeper location for the highly magnetized regions. This 
observation aligns with the information presented in the geological 
report for the study area and is now confirmed through geophysical 
modelling [45].  

It is important to acknowledge that the presence of diverse rock 
formations with high density contrast, particularly the metamorphic 
background, can limit the precision of the gravity method compared to 
magnetic surveys. Consequently, magnetic methods offer a relatively 
more accurate approach for targeting ore bodies in this specific 
geological setting. Nevertheless, both methodologies successfully 
detected the targeted mineralization, demonstrating the overall 
effectiveness of integrated geophysical surveys in mineral exploration 
efforts. 

5. Conclusion 

In this study, we examined the efficacy of gravity and magnetic 
inversion from both geophysical and applied perspectives. We first 
simulated two synthetic models to demonstrate the efficiency of sparse 
norm gravity and magnetic inversion using tree meshing. This 
methodology was then applied to the Gol-e-Gohar complex as the real 
case scenario. Both the density-contrast and susceptibility models 
showed a low normalized residual, indicating that the inversion 
algorithm successfully minimized the difference between observed and 
predicted data. Additionally, we compared these models with true 
geological models to assess their consistency with total Fe (iron) and 
FeO (iron oxide) models. The high magnetized regions (0.8-1.0 SI) 
accurately captured areas with high FeO content with acceptable 
precision. However, while the density contrast model was less successful 
than the susceptibility model, it showed an acceptable consistency with 
both Fe and FeO models as they represent high density contrast.  
Nevertheless, gravity inversion is not solely dependent on Fe and FeO 
content, it can detect any rock formation with a high-density contrast, 
which may not always be economically significant. Finally, we 
demonstrated that magnetic surveys are more effective in identifying 
prospect zones in the context of Kiruna-type iron deposits than gravity 
surveys. 
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