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Abstract 

A novel approach for assessing the structural health of cables in cable-stayed bridges, under 

varying load patterns, was presented. The method aimed to evaluate cable conditions by utilizing 

phase space analysis while minimizing traffic disruptions and reducing the necessity for extensive 

sensor deployment. Through comprehensive numerical investigations on the Manavgat cable-

stayed bridge, the efficacy of the proposed method was demonstrated. For this purpose, the time-

domain responses of the deck were utilized. The combination of Change in Phase Space Topology 
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(CPST) and Mahalanobis Distance (MD) indexes was applied to detect cable damage by discerning 

nuanced deviations in phase space trajectories. The results revealed that both the MD and CPST 

indexes exhibited impressive accuracy in identifying damage severity and location. To emphasize 

the robustness of the phase space-based damage detection method, a comparative analysis between 

the CPST and modal parameters was conducted. At the 10% damage level, the accuracy of CPST 

increased by 84.5% compared to the first mode frequency of the structure in load state 1. It 

highlighted the high sensitivity of CPST in cable damage detection. 

Keywords: Cable-stayed bridge, Structural Health Monitoring, Phase Space Method, Damage 

Detection, Time Domain Responses. 

1. Introduction 

A cable-stayed bridge is a type of bridge where the deck is supported by a system of cables 

connected to one or more towers. These cables extend directly from the tower to the deck, forming 

a pattern that resembles a fan or a series of parallel lines. Cable-stayed bridges are widely used for 

medium to long spans, ranging from 200 meters to well over 1,000 meters. Cable-stayed bridges, 

noted for their distinctive appearance, structural efficacy, and ability to span significant distances 

without intermediate piers, are often located in regions where conventional suspension bridge 

construction is impractical due to geological or environmental constraints. Stay cables, as the main 

load-bearing components of a bridge, typically account for approximately 25–30% of the total 

construction cost. Moreover, the cost of replacing cables can be nearly 3-4 times higher than that 

of new construction (He et al., 2022). As such, ensuring the health of cables throughout the lifespan 

of the structure and assessing their operational efficiency are paramount concerns, especially for 

both existing and newly constructed cable-stayed bridges. 



 

 
 

3 
 

The practice of Structural Health Monitoring (SHM) for bridges involves continuously 

collecting and analyzing data about the bridge's condition throughout its operational lifespan. The 

goal of SHM is to detect and quantify any potential deterioration that may occur during service, 

while also providing relevant recommendations for maintenance and oversight of the structure. 

SHM systems typically utilize various sensors, such as accelerometers, strain gauges, and 

displacement transducers, to capture the structural responses of the bridge to external forces, 

including traffic, wind, and seismic activity. After data collection, advanced algorithms are 

employed to analyze the data and identify changes in the structural dynamics of the bridge, 

including variations in natural frequencies, mode shapes, and damping ratios. This strategic 

approach enables the early detection of structural impairments, facilitating prompt rectification 

and maintenance. This technique reduces the risk of catastrophic failures and extends the 

operational lifespan of the bridge. Furthermore, structural health monitoring helps optimize 

maintenance schedules and reduce maintenance costs by providing accurate insights into the 

condition of the bridge (Saidin et al., 2023). In essence, the core of SHM lies in identifying, 

locating, and quantifying damage through dynamic responses. This comprehensive methodology 

involves assessing and predicting damage at both local and global levels (Pamwani and Shelke, 

2018).  

In the field of monitoring performance and ensuring the longevity of engineering structures, the 

implementation of SHM has provided invaluable insights over extended periods. Over time, 

numerous numerical and experimental studies have explored the field of cable-stayed bridge health 

monitoring. The assessment of bridge health and dynamic characteristics in most studies has 

typically been examined under various environmental conditions, moving loads, artificial 

vibrations, or stimuli such as earthquakes. Bakhshizadeh et al. (2023) investigated the impact of 
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Multiple Support Excitations (MSE) on the dynamic response of large-span cable-stayed bridges 

to seismic hazards. Various system identification methods, including mode shape curvature and 

modal strain energy techniques, were utilized for health monitoring to assess structural 

performance and identify potential damages (Bakhshizadeh and Sadeghi, 2023).  

Numerous researchers have directed their investigations toward ambient vibration (Bedon et 

al., 2016; Hong et al., 2012). Prawin et al. (2020) introduced a diagnostic scheme for bridges with 

minimal measurements, considering environmental and operational variations alongside 

measurement noise. Null subspace analysis was employed in the first stage to confirm the presence 

of damage using ambient vibration data through online monitoring. It was concluded from the 

investigations that the proposed approach was capable of detecting and localizing multiple, as well 

as subtle, damages under varying environmental conditions with very limited noise-contaminated 

measurements. 

Vibration-based methods have played a central role in the field of structural health assessment. 

A prominent approach is the modal-based damage detection algorithm, which requires the 

automated identification and continuous tracking of modal parameters for real-time analysis (Li et 

al., 2014). These methodologies have been validated through comprehensive computational 

modeling and empirical investigations. A notable study was the work by Saidin et al. (2023), which 

focused on structural health monitoring using a vibration-based approach for an Ultra-High-

Performance Concrete (UHPC) bridge. In this study, researchers extracted mode shapes, natural 

frequencies, and damping ratios to understand the modal characteristics of the bridge. These 

parameters were then used to assess the bridge's performance and monitor its health over time. The 

main objective of this study was to highlight the effectiveness of SHM in detecting structural 

impairments and predicting the behavior of engineering structures.  
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Also, Vibration-based methodologies are extensively utilized for estimating cable tension and 

evaluating the comprehensive health of cable structures. Fatigue and corrosion have presented 

recurring challenges that can affect cables, leading to decreased stiffness and compromised force 

transmission. Therefore, monitoring tension, as the primary indicator of cable health, is of 

paramount importance. This consideration arises from the relationship between cable tension, its 

strength, and stiffness. Cable tension can be determined using various methodologies, including 

direct force sensor measurements, non-contact measurements, or assessments of parameters like 

stress, strain, or natural frequency (Cheng et al., 2024; Fathali et al., 2020; Rinaldi et al., 2023; 

Yu, 2020). An illustrative example is the study conducted by Zarbaf et al. (2018), who utilized this 

technique to evaluate the cables of the Ironton-Russell Bridge. Their findings were subsequently 

compared with those obtained from lift-off tests. These approaches have utilized the natural 

frequencies, mechanical properties, and geometric features of cables to estimate tension. Jana et 

al. (2022) introduced a framework that utilized video-based measurements as multiple sensors to 

minimize estimation errors in real-time cable tension determination. Non-contact video-based 

sensing offered superior spatial resolution and lower costs compared to conventional sensors. The 

algorithm was implemented on the Fred-Hartman cable-stayed bridge in Texas, demonstrating 

accurate tension estimation from video-based measurements. This showcased the significant 

potential of the framework in structural health monitoring. 

Damage detection methods under moving load can be categorized into two methods: frequency 

domain method and time domain method (He et al., 2017; Wu et al., 2017, 2019). While frequency 

measurement provides high precision, it tends to offer a global perspective. It has posed challenges 

for local damage detection. Conversely, mode shape and its derivatives, such as modal curvature 

and modal flexibility, have theoretically shown sensitivity to damage. However, they are often 
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affected by measurement noise, compromising their reliability in practical civil structural health 

monitoring scenarios when using displacement or acceleration data (Hong et al., 2012; Wu et al., 

2017).  In some investigations, Time Domain Responses (TDR) have proven to be effective tools 

for identifying localized damage. TDR-based methods directly identify damage from the output, 

bypassing the need for conversion into structural modal information. Zhang et al. (2020) 

introduced a rapid output-only technique for detecting damage in highway bridges under moving 

vehicles, relying on the fractal dimension of long-gauge FBG strain responses. The feasibility of 

both single and multiple damage scenarios was demonstrated through numerical simulations and 

an indoor bridge-vehicle model experiment. Additionally, the method's resistance to noise was 

assessed by adding a signal-noise ratio (SNR) of 30 dB in the numerical simulation, and the impact 

of varying sensor quantities was investigated. In another study, Kordi and Mahmoudi (2022) 

presented a new method for detecting damage in truss bridges under moving loads. Damage was 

identified by comparing the displacement response curve shapes of the intact and damaged models 

with the axial force influence line curve shape. The results showed that the proposed method can 

accurately identify the damaged members. 

Cable-stayed bridges are renowned for their flexibility. In this structural configuration, the 

girder operates like a beam resting on a flexible foundation, while the cables provide flexible 

support from their anchoring points. The primary load paths across the bridge deck provide 

valuable insights into the condition of secondary structural elements, such as the stay cables. 

Nazarian et al. (2016) introduced a straightforward approach to recognizing damage in the cables 

of cable-stayed bridges. This method involved monitoring variations in support reactions by 

analyzing shear forces acting upon deck components near the support locations. The researchers 

also proposed a technique to identify cables that have experienced partial or complete loss of 
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tensile force, achieved by measuring strains along the bridge deck.  It is important to acknowledge 

that this technique may face challenges in accurately modeling geometric constraints and boundary 

conditions, potentially resulting in inaccuracies. 

Displacements of the main beam and towers are key indicators of bridge performance, 

commonly tracked using Global Positioning System (GPS) sensors. For example, in long-span 

cable-stayed bridges, these displacements are often measured statically during load testing before 

the bridge is opened to traffic. Although acceleration measurements can also provide displacement 

data, their precision is lower (Zhang et al., 2023). Additionally, various factors such as temperature 

fluctuations, wind forces, and vehicular traffic impact the displacement of long-span bridges. Lei 

et al. (2023) proposed an approach involving the use of a one-dimensional residual convolutional 

autoencoder model to estimate displacement responses of a cable-stayed bridge under various 

loading conditions. To implement this approach, the researchers collected monitoring data from a 

cable-stayed bridge, including comprehensive measurements of varied loads and corresponding 

displacement responses. Subsequently, temperature, wind, and vehicle load characteristics were 

used as input variables, while the displacement responses at the mid-span of the main girder and 

the tops of the two pylons were used as output variables. The model underwent training and 

validation procedures using the collected monitoring data. It achieved an accuracy exceeding 95% 

in predicting a range of displacement responses associated with multiple critical loads, all used 

simultaneously as inputs. 

Within the field of civil engineering, phase space analysis has emerged as a valuable tool for 

damage detection. This methodology initially relies on strain history data, transforming time series 

data into a spatial domain, where even slight changes in parameters can propagate throughout the 
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entire system. The Change in Phase Space Topology (CPST) index has been introduced as an 

immensely effective method, capable of increasing in value proportionally to the severity of 

damage, regardless of its location (Nie et al., 2012, 2013). Zhang et al. (2017) introduced a model-

free method for detecting damage in bridge structures under moving loads, relying on changes in 

phase trajectory across multiple vibration measurements. The sensitivity and reliability of this 

approach were examined through numerical analysis of a simply supported beam structure. 

Experimental validation revealed that shear connection failures in a composite bridge structure 

model subjected to moving loads were effectively identified by the method.  

In multidimensional statistical analysis, the Mahalanobis Distance (MD) is another index that 

refers to a measure of distance on the scale of standard deviation between an observation and a 

reference sample. Like CPST, it has been introduced as a damage index in studies related to health 

monitoring (De Maesschalck et al., 2000; Pamwani and Shelke, 2018). The significant sensitivity 

of phase space analysis to damage has made it widely used in various studies on structural damage 

detection  (Li et al., 2021; Paul et al., 2017; Peng et al., 2022; Tuttipongsawat et al., 2019).  

According to the studies, modal parameters such as natural frequency have shown limited 

sensitivity to local damages in bridges. Additionally, vibration-based methods for detecting 

damage have often disrupted traffic flow or required complete bridge closures if necessary. In 

examining the structure’s behavior in the frequency domain, time is also dedicated to converting 

responses from the time domain to the frequency domain, resulting in a large volume of data. In 

the literature review on moving loads, the assessment of structural health has typically been 

conducted using a single type of load pattern. In this article, a novel approach was introduced for 

tracking cable health in cable-stayed bridges subjected to various load patterns. The approach 

included a comprehensive examination of phase space reconstruction and damage-sensitive 
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indexes. This method observed how the structure behaves over time with minimal traffic 

disruptions or bridge closures, achieved by applying a specific load. The need for multiple and 

costly sensors was removed throughout the bridge deck using displacement sensors or non-contact 

methods. In this study, a rapid method was provided for early damage detection in cable-stayed 

bridges, by using only one type of response. The research conducted in the realm of damage 

detection using phase portraits has often focused on structures such as frames, buildings, and 

highway bridges. In this research, the efficacy of phase space analysis was assessed on a cable-

stayed bridge using both the change in phase space topology and the Mahalanobis distance indexes. 

A cable-stayed bridge located in Turkey, featuring a steel pylon, a composite deck, and 28 steel 

cables, was investigated. Numerous damage scenarios, encompassing distinct load patterns and 

speeds, were evaluated. The proposed method involved reconstructing the deck’s displacement at 

the cable connection points in the phase space and subsequently examining the resulting damage 

indexes. 

 

2. Methods 

2.1. Phase Space Reconstruction 

Phase space analysis is a novel method for structural damage detection. The method demonstrates 

exceptional sensitivity to damage because it magnifies changes in time-domain responses by 

converting them into a spatial domain. In phase space, each variable represents a distinct 

dimension in a multi-dimensional space, indicating that any change in one parameter will 

propagate throughout the entire system. Dynamic systems can be defined by their measured time-

series responses in phase space. The phase space can be reconstructed using multiple variables or 
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the time series of a single measured variable, incorporating parameters such as time lag (T) and 

embedding dimension (d) (Takens, 1981). 

Given a time series measurement denoted as x(i) with N data points (where i = 1, ..., N), the 

reconstruction of the phase space can be formulated as follows (Tuttipongsawat et al., 2019): 

𝑋(𝑛) = [𝑥(𝑛), 𝑥(𝑛 + 𝑇), … , 𝑥(𝑛 + (𝑑 − 1)𝑇)] (1) 

Each dimension can be expressed as:    

𝑥(𝑛) = [𝑥(1), 𝑥(2), … , 𝑥(𝑁 − (𝑑 − 1)𝑇)] (2) 

𝑥(𝑛 + 𝑇) = [𝑥(1 + 𝑇), 𝑥(2 + 𝑇), … , 𝑥(𝑁 − (𝑑 − 2)𝑇)] 
. 

. 

 

𝑥(𝑛 + (𝑑 − 1)𝑇) = [𝑥(1 + (𝑑 − 1)𝑇), 𝑥(2 + (𝑑 − 1)𝑇), … , 𝑥(𝑁)]  

The set of all dimensions plotted is called phase space topology. The geometry of the phase 

trajectory is closely related to the behavior of the structure. Any damage to the structure leads to 

changes in responses, which are accurately depicted in the topology of the phase space. By 

assessing the dissimilarity of the topology when damage occurs, it is possible to detect the presence 

of damage. Selecting an appropriate time lag is crucial during the reconstruction process. The time 

lag can be determined using methods such as the Autocorrelation Function and the Average Mutual 

Information Function (AMIF). Typically, the lag for reconstruction is chosen as the time 

corresponding to the first zero crossing of the Autocorrelation Function or the first minimum of 

the AMIF (Abarbanel, 2012; Jiang et al., 2010). Similarly, the optimal choice of the embedding 

dimension (d) is essential in the reconstruction process. Prominent techniques used to determine 

the appropriate embedding dimension include Singular System Analysis (SSA) and False Nearest 

Neighbor (FNN) methods (Broomhead and King, 1986; Nichols, 2003; Rhodes and Morari, 1997). 

In this study, the Average Mutual Information Function and False Nearest Neighbor methods were 

employed to determine the time lag and embedding dimension, respectively. 
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2.2. Damage Sensitive Feature 

In this study, the relationship between the geometry of the phase space trajectory and the dynamic 

response of the structure was discussed. As damage gradually occurs, discernible changes are 

triggered within the dynamic response, which are distinctly reflected in the topology of the phase 

space. Two damage indexes were used for damage detection in cable-stayed bridges: the Change 

in Phase Space Topology (CPST) and the Mahalanobis Distance (MD) between phase space 

trajectories. These indexes have been proposed as valuable tools for evaluating the health of the 

structure using phase space analysis (Nichols, 2003). 

2.2.1. Change in Phase Space Topology (CPST) 

The CPST index concept aims to measure the difference between the predicted damage case and 

the actual damage case. assume X(n) and Y(n) are phase space reconstructions of a healthy case 

and a damaged case, respectively. The calculation concept is illustrated in Figure 1 

(Tuttipongsawat et al., 2019). To begin, a fiducial point Y(r) at time index r from the damage case 

is selected, and mapped on the healthy case. By minimizing the Euclidean norm, the nearest p 

neighbors of this fiducial point are chosen on the healthy case (Nie et al., 2013; Pamwani and 

Shelke, 2018; Tuttipongsawat et al., 2019): 

𝑁𝑁(𝑛𝑗): 𝑚𝑖𝑛‖𝑋(𝑛𝑗) − 𝑌(𝑟)‖,      𝑗 = 1, … , 𝑝 (3) 

Here, P denotes the total number of neighborhood points, and the operator •  calculates the 

Euclidean norm. The set of nearest neighbor points to the fiducial point Y(r) is denoted as NN. 

These selected neighborhood points are used to quantify the dissimilarity between the healthy and 
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damaged cases. The predicted damage case at the 's' time step can be computed using Eq. (4) (Nie 

et al., 2013; Pamwani and Shelke, 2018; Tuttipongsawat et al., 2019). 

Y (r + s) =
1

𝑃
∑ 𝑋(𝑛𝑗 + 𝑠),     𝑗 = 1, … , 𝑝

𝑝

𝑗=1

 (4) 

Hence, the difference between the damage case Y  and the predicted damage case Y  of the fiducial 

point at time index r is determined as shown in Eq. (5) (Nie et al., 2013; Pamwani and Shelke, 

2018; Tuttipongsawat et al., 2019). 

CPST(i) =
1

𝑃
‖Y (r + s) − Y(r + s)‖ ,    𝑖 = 1, … , 𝑛𝑡 (5) 

The calculation process will be repeated to obtain an average value of the CPST difference. The 

number of repetitions or fiducial points is denoted as nt. It is recommended to choose at least 5% 

of the total number of points in the reconstructed trajectory as the number of fiducial points to 

achieve a reasonable estimate of CPST(Nichols, 2003). In some references, the number of fiducial 

points is calculated using Eq. (6) (Nie et al., 2013). 

𝑛𝑡 = 𝑁 − (𝑑 − 1)𝑇 (6) 

Where N, d, and T represent the total number of data points, embedding dimension, and time lag 

of reconstruction, respectively. 

  
   Healthy phase space topology           Damaged phase space topology 

Fig. 1. Diagram of CPST calculation process 

 

2.2.2. Mahalanobis Distance (MD) 
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The Mahalanobis Distance (MD) is commonly utilized to measure the distance of an individual 

point from a cluster of points and evaluate its deviation from the overall population. The 

observations of the coordinate vectors for each point from the healthy and damaged cases are 

represented in matrix form as [X] and [Y], respectively. The matrices are of dimensions (m × d), 

where ‘m’ is the number of points sampled on the embedded phase portrait, equal to the number 

of rows. The number of columns ‘d’ represents the number of embedding dimensions. The healthy 

and damaged phase portraits are represented by two random vectors, {X} and {Y}, respectively. 

The centroid of these portraits is obtained by calculating the mean of these random vectors, denoted 

as  
X

  and  
Y

 , respectively.  Their covariance matrices can also be estimated as  XXC and  YYC

, respectively. To compute the MD, a single weighted covariance matrix is derived by assigning 

relative weights to each of these covariance matrices. This is expressed as (George et al., 2018) : 

[𝐶𝑊𝑊] = 𝑊1[𝐶𝑋𝑋] + 𝑊2[𝐶𝑌𝑌] (7) 

The weight factors are determined based on the ratio of the number of points sampled in each 

phase portrait to the total number of points sampled in both. In this paper, equal weights were 

assigned to each covariance matrix, 
1 2 0.5W W= = . The Mahalanobis Distance (MD) between the 

phase portraits is calculated using the following formula (George et al., 2018): 

𝑀𝐷 = √({𝜇}𝑋 − {𝜇}𝑌)𝑇[𝐶𝑊𝑊]({𝜇}𝑋 − {𝜇}𝑌) (8) 

This modified version of the MD was used as a damage index in this study. More detailed 

information on MD calculation can be found in the reference (George et al., 2018).  

 

3. Case Study 

The Manavgat cable-stayed bridge, shown in Figure 2, was selected for numerical analysis. This 

bridge is Turkey's first cable-stayed bridge, designed to accommodate two lanes of road traffic. 
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The bridge is 202 meters long, with each span measuring 101 meters. It features a 13.7-meter-wide 

deck connected to a steel tower by 28 cables. The tower stands approximately 42 meters high and 

has a hollow hexagonal cross-section, mounted on a concrete foundation. The deck is constructed 

with a composite cross-section, comprising 25 cm of concrete, 10 cm of asphalt, and two 

continuous steel girders that are laterally restrained. I-shaped steel profiles are embedded 

continuously along the length of the deck. The deck is supported by 28 steel cables, which are 

interconnected with the tower. The nearest cable to the pylon is 19.6 meters away, with a distance 

of 12 meters between each subsequent cable. The last cables are situated 9.4 meters from the 

supports. The arrangement of the cables, as well as the cross sections of the deck and the pylon, 

are shown in Figure 3 (Pan et al., 2018).  

 

Fig. 2. Manavgat cable-stayed bridge (Elkady et al., 2023) 
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Fig. 3. Manavgat cable-stayed bridge arrangement and the cross-section of the bridge members 

 

3.1. Finite Element Modeling 

For the assessment of the structural behavior of the Manavgat cable-stayed bridge, a three-

dimensional finite element model was created utilizing SAP2000 software. The deck and pylon 

were modeled using frame elements and the pylon was fixed to the foundation. Truss elements 

were used for the cables. The details of the stay cables, labeled A1-A7 and including 14, 16, 19, 

19, 22, 19, and 24 strands respectively, are provided in Table 1 (Pan et al., 2018). Each strand has 

an elastic modulus of 197 GPa, a cross-sectional area of 150 2mm , and an ultimate strength of 1,860 

MPa. Moreover, the elastic moduli for the concrete and steel materials were specified as 34 GPa 

and 200 GPa, respectively. 

Table 1. Numbering and details of stay cables 

Cable 

number 

Cable 

name 

Number 

of strands 

Total area of cable 

 ( 2mm ) 

1 A7 24 4355 

2 A6 19 3448 

3 A5 22 3992 

4 A4 19 3448 

5 A3 19 3448 

6 A2 16 2903 

7 A1 15 2722 

8 B1 15 2722 

9 B2 16 2903 

10 B3 19 3448 

11 B4 19 3448 

12 B5 22 3992 

13 B6 19 3448 

14 B7 24 4355 

15 A7 24 4355 

16 A6 19 3448 

17 A5 22 3992 

18 A4 19 3448 

19 A3 19 3448 

20 A2 16 2903 

21 A1 15 2722 
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22 B1 15 2722 

23 B2 16 2903 

24 B3 19 3448 

25 B4 19 3448 

26 B5 22 3992 

27 B6 19 3448 

28 B7 24 4355 

 

To simulate the interaction between the bridge and vehicle, examples of a five-axle and a two-

axle truck, similar to the AASHTO standard load, were employed  in the finite element bridge 

model, as illustrated in Figure 4 (AASHTO, 2008). This five-axle truck is also specified in the 

Australian Bridge Design Code as T44 (Australasian Railway Association, 1992). The analysis of 

the bridge under moving load was conducted using simulated time history analysis in SAP2000 

software. The moving load was applied to the deck through the distribution of multiple point loads 

at uniform intervals. Breaking down the moving load into multiple point loads and their 

corresponding time history function is illustrated in Figure 5.  

  

(a) 5-axle truck (T5A) (b) 2-axles truck (T2A) 

Fig. 4. Truck loadings for 3D model analysis 
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                             (a) (b) 

Fig. 5. Breaking down: (a) the moving load into point loads at uniform intervals and (b) the time history functions 

Point loads, following the load pattern depicted in Figure 5, were applied and removed from 

the deck. Loads were successively passed over the bridge, with t  determined by the formula 

below: 

∆𝑡 =
𝐿

𝑉
 (9) 

L denotes the distance between point loads, while V indicates the speed of the moving load. 

 

4. Results and Discussion 



  

 

18 
 

As mentioned, the deck girder in cable-stayed bridges functions like a beam supported by elastic 

foundations, owing to the presence of cables. The changes in the deck's response provide crucial 

insights into the condition of the stay cables. In this paper, a time history analysis was performed, 

involving a round-trip truck at an average speed of 10-15 Km/h. Dynamic effects were ignored in 

the analysis. The evaluation of the vertical displacement of the deck at the points of cable 

attachment was conducted to assess the health of the cable-stayed bridge. The displacement of 

each point was reconstructed using parameters of time lag and embedding dimension, extracted 

from the displacement vector in the phase space. To identify damaged cables through disparities 

in phase space trajectories between healthy and damaged cases, two distinct damage indexes were 

utilized: the Change in Phase Space Topology (CPST) and the Mahalanobis Distance (MD). This 

paper aimed to detect damage within the cables of cable-stayed bridges using two distinct loading 

types. A comprehensive overview of the methodology is outlined in the workflow depicted in 

Figure 6. 

 

Fig. 6. Workflow of the proposed damage detection method 
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The process of damage detection typically involves the comparison of two cases: one healthy 

and the other damaged. In this study, the first investigation of cable damage detection was focused 

on five distinct cable damage scenarios under ideal conditions. The term 'ideal conditions' indicates 

that the passing load was consistent in both the healthy and damaged cases. The speed of the 

passing load was variable in the three damage scenarios. The extent of damage varied from a 

reduction of 10% to 45% in the cross-sectional area of the cables. After reconstructing the phase 

space of deck displacements at the cable connection points, the two damage indexes, MD and 

CPST, were computed and presented in Table 2. The discussion of these indexes can be found in 

the ‘Damage Sensitive Feature’ section. 

Except cable 1, both MD and CPST indexes (or at least one of them) accurately identified the 

damaged cables, namely cables 6, 11, 18, and 25. Cable 1, which acted as a backstay cable 

supporting all the bridge cables, remained undetected even with a significant damage intensity of 

45%. Damage to this cable has affected all other cables. It is important to note that the index values 

are normalized to the highest value for ease of evaluation. 

Cables 1, 2, 13, 14, 15, 16, 27, and 28 were categorized as backstay cables. The damage 

detection index curve for cable 18 is illustrated in Figure 7. In this particular scenario, the speed 

of the passing load in the healthy case was 10 Km/h, while in the damaged case, it was 15 Km/h. 

The results were examined under a 5-axle truck (T5A). 

Table 2. Damage scenarios under ideal conditions 

 

Cable number 

Passing load 

(intact/damaged) 

Passing speed 

(intact/damaged) 

Km/h 

Damage 

percentage 

(%) 

Mahalanobis 

distance 

(MD) 

Change in phase 

space topology 

(CPST) 

1 T5A/T5A 10/10 45 26 26 

6 T5A/T5A 10/10 40 5 6 

11 T2A/T2A 15/15 10 11 11 

18 T5A/T5A 10/15 30 18 18 

25 T2A/T2A 15/10 30 25 17 
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       (a)  (b) 

Fig. 7. Damage detection curves for cable 18: (a) MD; (b) CPST 

 

The second part of the considered damage scenarios involved the passage of trucks with varying 

load patterns and speeds in both healthy and damaged cases. The severity of damage in these 

scenarios varied from 20% to 40% of the cable cross-sectional area. These scenarios were analyzed 

across five distinct states, as shown in Table 3. 

In the first state, the passing load in the healthy case was the 2-axle truck (T2A), while in the 

damaged case, the displacements were acquired from the passage of the 5-axle truck (T5A). The 

passing speed for both trucks in this state remained consistent at 10 Km/h. In the second state, data 

were examined for the passage of the T5A truck at 15 Km/h in the healthy case and the passage of 

the T2A truck at 10 Km/h in the damaged case. The third state was the opposite of the second one, 

where the trucks passing in the healthy and damaged cases changed places, but the passing speeds 

remained the same as in the second state. In the fourth state, the T5A truck was used at 10 km/h in 

the healthy case, whereas the T2A truck was utilized at 15 km/h in the damaged case. In the fifth 

state, the trucks were opposite to those in the fourth state, but the passing speeds remained the 

same as in the fourth state.  

All cables, except for the backstay cables (totaling 20 cables), were analyzed and examined 

under these five states, each with three different levels of damage intensity: 20%, 30%, and 40%. 
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The aim of examining the cables in these scenarios was to assess how well the damage detection 

method performs when exposed to various load patterns. The results of the damage detection 

indexes for cable cross-section damage levels of 20%, 30%, and 40% under the five different states 

are presented in Tables 4, 5, and 6, respectively. 

Table 3. Five states of load passing scenarios 

 Intact  Damaged  

 Passing load 

 

Passing 

speed 

Km/h 

Passing load Passing  

speed 

Km/h 

State 1 T2A 10 T5A 10 

State 2 T5A 15 T2A 10 

State 3 T2A 15 T5A 10 

State 4 T5A 10 T2A 15 

State 5 T2A 10 T5A 15 

 

As depicted in Figure 8, To maintain uniformity in the number of data points for phase space 

analysis resulting from the passage of different trucks at various speeds, the arrival and departure 

times of the resultant load were considered. Additionally, since the load values of the axles in the 

trucks were different, all initial data were normalized to the maximum displacement at the middle 

point of the bridge span. 

  
(T5A)  (T2A) 

Fig. 8.  Resultant load for T5A and T2A trucks 

Table 4. Results of damage detection for damage level of 20%, excluding backstay cables 

Cable 

number 

State 1  State 2  State 3  State 4  State 5  

 MD CPST MD CPST MD CPST MD CPST MD CPST 

3 3 3 3 25 17 16 3 12 3 17 

4 3 4 4 26 17 17 3 12 4 17 
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5 4 18 5 25 17 18 12 12 4 5 

6 5 6 26 12 17 12 12 12 5 5 

7 12 3 26 11 26 17 12 12 12 3 

8 25 3 3 11 12 12 17 17 9 3 

9 25 24 3 3 12 12 17 12 25 26 

10 25 11 10 3 12 12 17 12 11 11 

11 26 26 11 3 12 12 26 12 26 26 

12 26 25 12 26 12 12 26 17 12 12 

17 3 16 17 26 17 16 3 17 17 17 

18 3 18 18 25 17 16 3 12 3 17 

19 3 18 19 25 17 18 12 12 18 4 

20 4 4 26 12 17 17 12 12 5 5 

21 12 26 26 12 26 16 12 12 12 26 

22 25 22 3 25 12 12 17 12 24 26 

23 25 24 3 3 12 17 17 13 24 24 

24 25 24 24 3 12 17 17 12 25 25 

25 26 26 25 3 12 13 26 13 25 11 

26 26 26 26 17 12 12 26 11 26 12 
 

Table 5. Results of damage detection for damage level of 30%, excluding backstay cables 

Cable 

number 

State 1  State 2  State 3  State 4  State 5  

 MD CPST MD CPST MD CPST MD CPST MD CPST 

3 3 2 3 3 3 4 13 13 3 4 

4 4 4 4 4 17 12 4 12 4 18 

5 4 4 5 26 17 17 4 12 4 4 

6 5 6 26 25 17 18 12 12 5 5 

7 12 26 26 3 26 17 12 17 26 3 

8 9 8 3 25 3 12 17 12 9 8 

9 24 24 10 3 12 17 17 12 10 10 

10 25 10 10 10 12 11 25 12 11 10 

11 26 10 11 18 12 17 26 12 11 12 

12 26 26 12 12 12 12 26 12 12 12 

17 3 3 17 17 17 16 3 12 17 17 

18 18 18 18 19 17 18 18 19 18 18 

19 4 18 18 18 17 13 4 12 18 19 

20 5 20 26 26 17 17 12 13 19 20 

21 12 12 26 26 26 12 12 12 12 17 

22 23 23 3 12 12 17 17 12 23 22 

23 24 24 3 3 12 12 17 12 24 24 

24 25 24 24 3 12 12 25 12 25 24 

25 25 26 25 25 12 13 25 17 25 26 

26 26 26 26 26 12 17 26 12 26 26 

 

Table 6. Results of damage detection for damage level of 40%, excluding backstay cables 

Cable 

number 

State 1  State 2  State 3  State 4  State 5  

 MD CPST MD CPST MD CPST MD CPST MD CPST 

3 3 3 3 3 17 16 3 18 3 2 

4 4 3 4 4 17 16 4 12 4 4 

5 4 4 4 5 4 5 4 5 4 5 

6 5 6 26 12 17 12 12 12 5 6 
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7 12 3 26 26 26 17 12 17 26 26 

8 10 10 10 15 10 18 17 12 10 9 

9 24 9 10 3 12 12 17 12 10 24 

10 25 10 10 10 12 11 25 12 11 10 

11 11 25 11 11 12 12 25 17 11 12 

12 12 12 12 12 12 12 26 17 12 26 

17 17 2 17 17 17 17 3 12 17 17 

18 18 17 18 18 17 12 3 18 18 17 

19 4 19 19 19 17 17 4 12 18 19 

20 19 20 26 25 17 18 12 16 19 20 

21 12 26 26 25 26 18 12 12 26 3 

22 23 22 3 27 3 12 17 17 23 22 

23 24 24 23 18 12 17 17 13 24 23 

24 25 24 24 10 12 11 25 12 25 25 

25 25 26 25 25 12 12 25 12 25 26 

26 26 26 26 26 12 13 26 13 26 13 

 

The damage indexes, especially MD, accurately detected damaged cables at different levels of 

damage in specific cases, such as cables 3, 12, 17, and 26. Furthermore, in several cases involving 

cables 5, 10, 18, 19, 23, and 24, the MD index frequently indicated the damaged cable with a 

difference of one cable before or after it. However, in many cases involving cables near the pylon 

(cables 7, 8, 21, and 22), the indexes failed to detect the damage using this method, resulting in 

inconclusive outcomes. Notably, more favorable results were obtained for damage levels of 30% 

and higher. 

The MD and CPST curves for the 40% damage level of cables 5 and 21 are presented in Figures 

9-12. The choice of cable 5 was an example of cables for which the indexes often detected a cable 

before or after the damaged cable in most states. Cable 21 was selected as one of the four nearest 

cables to the pylon that could not be identified through this method. Although in cases like cables 

8 and 22 in the fifth state at damage levels of 30% and 40%, CPST correctly detected the damaged 

cables, it's worth noting that the accuracy of this method was limited. In addition, the values of the 

indexes in states two and five for all scenarios showed that the changes in other cables, except the 

damaged cable, were relatively less compared to the other states. In essence, when the T5A truck 
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passed at a higher speed than the T2A, the changes observed in the other cables were less 

pronounced. 

  
         (State 1)          (State 2) 

  
         (State 3)           (State 4) 

 

 
         (State 5) 

Fig.9. Mahalanobis Distance (MD) curves of cable 5 for five states 

 

  
        (State 1)           (State 2) 
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         (State 3)           (State 4) 

 

 
         (State 5) 

Fig. 10. Change in Phase Space Topology (CPST) curves of cable 5 for five states 

 

  
         (State 1)           (State 2) 

  
          (State 3)          (State 4) 
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         (State 5) 

Fig. 11. Mahalanobis Distance (MD) curves of cable 21 for five states 

 

  
        (State 1)         (State 2) 

  
        (State 3)          (State 4) 

 

 
         (State 5) 

Fig. 12. Change in Phase Space Topology (CPST) curves of cable 21 for five states 



 

 
 

27 
 

 

The summary of results evaluation for MD and CPST damage indexes is presented in Table 7. 

Out of 100 analyses conducted, MD correctly identified 24% of scenarios when the cable damage 

level was 20%, while CPST correctly identified 12% of scenarios. For a damage level of 30%, 

these values increased to 31% for MD and 28% for CPST. When the damage level was 40%, MD 

and CPST indexes demonstrated the ability to detect 34% and 35% of the damaged cables across 

various states, respectively. Moreover, a significant percentage of the diagnoses were near the 

damaged cable. The MD index showed an accuracy of approximately 56%, considering both 

accurately and nearly detected cases for the 40% damage level. 

Table 7. Summary of MD and CPST evaluation 

Damage percentage 20%  30%  40%  

Damage index MD CPST MD CPST MD CPST 

Total number of analyses 100 100 100 100 100 100 

 Exactly detected 24 12 31 28 34 35 

Nearly detected 15 14 19 20 22 12 

Accuracy 39% 26% 50% 48% 56% 47% 

 

4.1. Comparison with Modal-Based Methods 

To highlight the robustness of the phase space-based damage detection method, a comparative 

analysis between CPST and modal parameters was conducted. CPST was derived from the 

displacement measurements at three distinct points on the deck, as shown in Figure 13: near the 

support in the first span (point 1), adjacent to the pylon (point 2), and in proximity to the support 

in the second span (point 3). it was meticulously examined across damage levels of 10% to 50% 

for cable number 25 under all five aforementioned states. Modal parameters such as the frequency 

of the bridge's first mode and Modal Assurance Criterion (MAC) were analyzed. All indexes were 

normalized as follows (Nie et al., 2013): 
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𝐶𝑃𝑆𝑇𝑛𝑜𝑟𝑚 =
|𝐶𝑃𝑆𝑇𝑑 − 𝐶𝑃𝑆𝑇𝑢|

𝐶𝑃𝑆𝑇𝑢
 (10-1) 

𝜔𝑛𝑜𝑟𝑚 =
|𝜔𝑑 − 𝜔𝑢|

𝜔𝑢
 (10-2) 

𝑀𝐴𝐶𝑛𝑜𝑟𝑚 =
|𝑀𝐴𝐶𝑑 − 𝑀𝐴𝐶𝑢|

𝑀𝐴𝐶𝑢
,   𝑀𝐴𝐶 =

{(𝜑𝑢)𝑇𝜑𝑑}2

{(𝜑𝑢)𝑇𝜑𝑢}{(𝜑𝑑)𝑇𝜑𝑑}
 (10-3) 

    

 

Fig. 13. Location of measurement points 

 

  

                  (a)                    (b) 
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                (c) 

Fig. 14. A comparison of the normalized CPST and modal parameters: (a) measurement point 1; (b) measurement 

point 2 and (c) measurement point 3 

 

The subscripts ‘u’ and ‘d’ denote the healthy and damaged cases, respectively.   refers to the 

mode shape. Figures 14(a) and 14(b) illustrate the CPST index values and the modal parameters 

at point 1 in the first span and point 2 adjacent to the pylon. CPST exhibited heightened sensitivity 

to damage compared to frequency analysis. While CPST may not consistently specify the exact 

location of damaged cables under different load patterns and speeds, its changes were much more 

noticeable than those of the first mode frequency and MAC coefficient. Although they have served 

as significant indicators of structural damage. Figure 14(c) depicts the results from point 3, which 

is situated near the damaged cable. Based on the previous analysis, a noticeable correlation was 

observed between the CPST values and increasing damage levels across load-passing states 1, 2, 

and 5. For instance, at the 10% damage level, the accuracy of CPST increased by 84.5% compared 

to the first mode frequency of the structure across load state 1. CPST emerged as a powerful index 

for identifying damage in cable-stayed bridges, showcasing its robustness regardless of the 

location of the damage.  

 



  

 

30 
 

5. Conclusion and Future Work 

A method for assessing cable health in cable-stayed bridges using phase space analysis was 

introduced. The proposed approach was validated through comprehensive numerical 

investigations conducted on the Manavgat cable-stayed bridge. The evaluation encompassed a 

range of scenarios, which included various loading patterns and speeds. The combination of two 

indexes, namely the Change in Phase Space Topology (CPST) and Mahalanobis Distance (MD), 

was used for damage detection by identifying subtle deviations in phase space trajectories. Some 

important conclusions are summarized as follows: 

• The damage indexes accurately identified the most damaged cables in scenarios where the 

passing load was the same in both healthy and damaged cases. However, cables near the 

pylon and backstay cables presented challenges due to their interconnected role. 

• The MD Index displayed accuracy ranging from 39% to 56% for damage levels of 20% to 

40% under various loading patterns and speeds, while the CPST Index achieved accuracy 

between 26% and 47%. In many cases, these indexes detected cables adjacent to the 

damaged cable, effectively identifying the location of the damage. In states where the T5A 

truck passed at higher speeds, the indexes demonstrated superior effectiveness. 

• Some scenarios involving cables near the pylon challenged the MD and CPST in detecting 

damage, resulting in inconclusive responses. For damage levels of 30% and above, 

improved results were noted, indicating the method's heightened sensitivity to higher levels 

of damage. 

• The comparison with modal parameters highlighted the enhanced sensitivity of CPST, 

derived from the phase-space response method, in detecting damage within the time 
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domain. CPST was presented as a valuable tool for monitoring the health of cable-stayed 

bridges, even when the measurement point is distant from the damage location. 

This paper presented an initial approach for a practical solution aimed at ensuring the health of 

cable-stayed bridges and exploring real-world implementations. Suggestions for enhancing this 

method in the future include incorporating dynamic effects from high-speed loading, refining 

parameters with increased precision and sensitivity (especially concerning backstay cables and 

those near the pylon), and considering different load placement locations within the passing lanes. 
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N = Data points of a time series 

X(n) = Reconstructed phase space for the healthy case 

Y(n) = Reconstructed phase space for the damaged case 

Y(r) = A fiducial point in the damaged case 

p = Total neighborhood numbers of the fiducial point 

NN = The nearest neighbor points to the fiducial point 

( )Y r  
= The fiducial point in the predicted damaged case 

nt = Number of repeats or fiducial points to obtain a reasonable estimation of CPST 

[X] = Matrix of the healthy case 

[Y] = Matrix of the damaged case 

{X} = Healthy phase portrait vector 

{Y} = Damaged phase portrait vector 

 
X


 

= Mean vector of the healthy phase portrait 

 
Y

  = Mean vector of the damaged phase portrait 

 XXC
 

= The covariance matrix of the healthy phase portrait 

 YYC  = The covariance matrix of the damaged phase portrait 

 WWC  = Weighted covariance matrix 

W = Weight factor 

L = Distance between point loads  

V = Speed of the passing load 

t  = Time taken to traverse L distance at speed V 

  = Modal frequency 

  = Mode shape 
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