
تعداد نشریات | 162 |
تعداد شمارهها | 6,693 |
تعداد مقالات | 72,240 |
تعداد مشاهده مقاله | 129,239,985 |
تعداد دریافت فایل اصل مقاله | 102,076,851 |
اثرات مکمل سازی جیره با منابع مختلف اوره بر نرخ آزاد سازی نیتروژن، کینتیک تخمیر، فراسنجه های تولید گاز و ناپدید شدن مادۀ مغذی در شرایط برونتنی | ||
علوم دامی ایران | ||
دوره 56، شماره 1، فروردین 1404، صفحه 175-191 اصل مقاله (1.85 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijas.2024.362519.653957 | ||
نویسندگان | ||
کیان صادقی1؛ مهدی گنج خانلو* 2؛ مهدی دهقان بنادکی1؛ مصطفی صادقی1؛ ابوالفضل زالی1؛ اکبر تقی زاده3 | ||
1گروه علوم دامی، دانشکده کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران | ||
2گروه علوم دامی، دانشکده کشاورزی، پردیس کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران. | ||
3گروه علوم دامی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران | ||
چکیده | ||
هدف از این آزمایش، بررسی اثرات مکملسازی جیره با منابع مختلف اوره بر نرخ آزادسازی نیتروژن، کنتیک تخمیر، فراسنجههای تولید گاز و ناپدید شدن مادۀ مغذی در شرایط برونتنی بود. برای این منظور چهار جیره آزمایشی شامل 1) جیره بدون منبع اوره [شاهد]؛ 2) جیره حاوی 38/0 درصد مادۀ خشک اوره معمولی؛ 3) جیره حاوی 43/0 درصد مادۀ خشک اوره آهسته رهش ابداعی؛ 4) جیره حاوی 86/0 درصد مادۀ خشک اوره آهسته رهش ابداعی تنظیم گردید. انحلالپذیری اوره آهسته رهش ابداعی (SRU Lab) در آب مقطر، بافر فسفات و بافر مکدوگال- شیرابه شکمبه در سری زمانی 0، 60، 120، 180، 240، 300، 360، 420 و 480 دقیقه توسط روش فتومتریک تعیین شد. کینتیک تخمیر، فراسنجههای تولید گاز 96 ساعته و ناپدید شدن مادۀ مغذی در سری زمانی 4، 8، 12، 24، 48 ساعت با استفاده از آزمون تولید گاز اصلاح یافته برآورد شد. نتایج نشان داد انحلالپذیری اوره در محلولهای بافری برای SRU Lab نسبت به اپتیژن تجاری، کم و با شیب ملایم بود. اما انحلالپذیری اوره در آب مقطر برای SRU Lab، مشابه با اپتیژن بود. نتایج تولید گاز 24 ساعته برای جیرههای حاوی SRU Lab نسبت به جیره حاوی اوره معمولی افزایش معنیداری داشت (P≤0.001). ماده آلی تجزیهشده برای جیره شاهد و جیره حاوی SRU Lab نسبت به جیره حاوی اوره معمولی بهطور معنیدار بیشتر بود (P≤0.05). بیشترین مقدار شاخص بخشپذیری برای جیرههای حاوی 43/0 درصد ماده خشک SRU Lab و جیره شاهد بود. بیش از 50 درصد میزان ناپدید شدن مادۀ خشک جیرههای آزمایشی بعد از 12 ساعت انکوباسیون رخ داد. گوارشپذیری مادۀ خشک 24 ساعته جیرههای حاوی SRU Lab نسبت به اوره معمولی بهصورت معنیدار بیشتر بود (P≤0.01). بهطور معنیدار تغییرات گوارشپذیری پروتئین خام در ساعات اولیه انکوباسیون تحت تأثیر جیرههای دارای SRU Lab قرار گرفت، اما تغییرات گوارشپذیری فیبر نامحلول در شوینده خنثی معنیدار نبود (P≥0.05). با گذشت ساعات انکوباسیون، درصد گوارشپذیری NDF و CP در جیره حاوی 43/0 درصد SRU Lab نسبت به جیره شاهد اختلاف معنیداری نداشت، اما با افزایش غلظت مصرف SRU Lab (جیره چهارم) تغییرات معنیدار و زیاد بود (P≤0.001). بهطور کلی محصول SRU Lab از نظر نرخ آزادسازی اوره در انواع محلولهای بافری نسبت به اپتیژن آهستهتر بود. افزودن SRU Lab به جیرههای آزمایشی نسبت به اوره معمولی تاثیر نامطلوبی بر گوارشپذیری برونتنی مواد مغذی، روند تولید گاز و سایر فراسنجههای اندازهگیری شده نداشت. | ||
کلیدواژهها | ||
اوره آهسته رهش؛ نیتروژن غیر پروتئینی؛ کینتیک هضم؛ میزان ناپدید شدن مادۀ مغذی؛ تولید گاز | ||
مراجع | ||
REFERENCES Alipour, D., Saleem, A. M., Sanderson, H., Brand, T., Santos, L. V., Mahmoudi-Abyane, M. ... & McAllister, T. A. (2020). Effect of combinations of feed-grade urea and slow-release urea in a finishing beef diet on fermentation in an artificial rumen system. Translational Animal Science, 4(2), 839-847. Azizi, A., Sharifi, A., & Fazaeli, H. (2019). Effect of one produced slow-release urea component on gas production, fermentation, nutrient disappearance and activity of microbial enzymes using rumen liquor of sheep. Animal Sciences Journal, 32(122), 279-290. Azizi-Shotorkhoft, A., Sharifi, A., Azarfar, A., & Kiani, A. (2018). Effects of different carbohydrate sources on activity of rumen microbial enzymes and nitrogen retention in sheep fed diet containing recycled poultry bedding. Journal of Applied Animal Research, 46(1), 50-54. In Persian Beig, B., Niazi, M.B.K., Jahan, Z., Hussain, A., Zia, M.H. and Mehran, M.T. (2020). Coating materials for slow release of nitrogen from urea fertilizer: A review. Journal of plant nutrition, 43(10), pp.1510-1533. Blümmel, M., Makkar, H. P. S., & Becker, K. (1997). In vitro gas production: a technique revisited. Journal of animal physiology and animal nutrition, 77(1‐5), 24-34. Broderick, G.A. and Kang, J.H., 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of dairy science, 63(1), pp.64-75. Calomeni, G. D., Gardinal, R., Venturelli, B. C., Freitas Júnior, J. E. D., Vendramini, T. H. A., Takiya, C. S. ... & Rennó, F. P. (2015). Effects of polymer-coated slow-release urea on performance, ruminal fermentation, and blood metabolites in dairy cows. Revista Brasileira de Zootecnia, 44, 327-334. Ceconi, I., Ruiz-Moreno, M. J., DiLorenzo, N., DiCostanzo, A., & Crawford, G. I. (2015). Effect of slow-release urea inclusion in diets containing modified corn distillers grains on total tract digestibility and ruminal fermentation in feedlot cattle. Journal of Animal Science, 93(8), 4058-4069. Chalupa, W. (2007). Precision feeding of nitrogen to lactating dairy cows: a role for Optigen® II. In Nutritional Biotechnology in the Feed and Food Industries: Proceedings of Alltech's 23rd Annual Symposium. The New Energy Crisis: Food, Feed or Fuel? (pp. 221-226). Alltech UK. Chegeni, A., Li, Y. L., Deng, K. D., Jiang, C. G., & Diao, Q. Y. (2013). Effect of dietary polymer-coated urea and sodium bentonite on digestibility, rumen fermentation, and microbial protein yield in sheep fed high levels of corn stalk. Livestock Science, 157(1), 141-150. Cherdthong, A., & Wanapat, M. (2014). In vitro gas production in rumen fluid of buffalo as affected by urea‐calcium mixture in high‐quality feed block. Animal Science Journal, 85(4), 420-426. Cherdthong, A., Wanapat, M., & Wachirapakorn, C. (2011). Effects of urea–calcium mixture in concentrate containing high cassava chip on feed intake, rumen fermentation and performance of lactating dairy cows fed on rice straw. Livestock Science, 136(2-3), 76-84. Ferme, D., Banjac, M., Calsamiglia, S., Busquet, M., Kamel, C., & Avguštin, G. (2004). The effects of plant extracts on microbial community structure in a rumen-simulating continuous-culture system as revealed by molecular profiling. Folia Microbiologica, 49, 151-155. Galo, E., Emanuele, S. M., Sniffen, C. J., White, J. H., & Knapp, J. R. (2003). Effects of a polymer-coated urea product on nitrogen metabolism in lactating Holstein dairy cattle. Journal of Dairy Science, 86(6), 2154-2162. Golombeski, G. L., Kalscheur, K. F., Hippen, A. R., & Schingoethe, D. J. (2006). Slow-release urea and highly fermentable sugars in diets fed to lactating dairy cows. Journal of dairy science, 89(11), 4395-4403. Gonçalves, A. P., Nascimento, C. F. M. D., Ferreira, F. A., Gomes, R. D. C., Manella, M. D. Q., Marino, C. T., ... & Rodrigues, P. H. M. (2015). Slow-release urea in supplement fed to beef steers. Brazilian Archives of Biology &Technology, 58, 22-30. Guo, Y., Xiao, L., Jin, L., Yan, S., Niu, D., & Yang, W. (2022). Effect of commercial slow-release urea product on in vitro rumen fermentation and ruminal microbial community using RUSITEC technique. Journal of Animal Science & Biotechnology, 13(1), 56. Harrison, G. A., Meyer, M. D., & Dawson, K. A. (2008). Effect of Optigen and dietary neutral detergent fiber level on fermentation, digestion, and N flow in rumen-simulating fermenters. Journal of Dairy Science, 91(Suppl 1), 489. Huntington, G. B., Harmon, D. L., Kristensen, N. B., Hanson, K. C., & Spears, J. W. (2006). Effects of a slow-release urea source on absorption of ammonia and endogenous production of urea by cattle. Animal Feed Science & Technology, 130(3-4), 225-241. Mazinani, M., Naserian, A. A., Danesh Mesgaran, M., & Valizadeh, R. (2019). Determination of coated urea releasing in ruminant’s rumen through in vivo and in vitro studies. Iranian Journal of Animal Science Research, 11(2), 179-193. In Persian Olivera, R. M. P. (1998). Use of in vitro gas production technique to assess the contribution of both soluble and insoluble fractions on the nutritive value of forages. A thesis to the University of Aberdeen, Scotland, in partial fulfillment of the degree of Master of Science in animal nutrition. (PP. 56-62). Ørskov ER, McDonald I. (1979). The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science. 92(2):499-503. Ottenstein D and Bartley D. 1971. Improved gas chromatography separation of free acids C2-C5 in dilute solution. Analytical Chemistry. 43(7):952-955. Parnian-Khajehdizaj, F., Taghizadeh, A., Hosseinkhani, A., & Mesgaran, M. D. (2018). Evaluation of dietary supplementation of B vitamins and HMBI on fermentation kinetics, ruminal or post-ruminal diet digestibility using modified in vitro techniques. Journal of BioScience & Biotechnology, 7(2-3), 125-133. Ran, T., Jin, L., Abeynayake, R., Saleem, A. M., Zhang, X., Niu, D. ... & Yang, W. (2021). Effects of brewers’ spent grain protein hydrolysates on gas production, ruminal fermentation characteristics, microbial protein synthesis and microbial community in an artificial rumen fed a high grain diet. Journal of Animal Science & Biotechnology, 12(1), 1-14. Salami, S. A., Moran, C. A., Warren, H. E., & Taylor-Pickard, J. (2020). A Meta-Analysis of the Effects of Slow-Release Urea Supplementation on the Performance of Beef Cattle. Animals, 10(4), 657. Spanghero, M., Nikulina, A., & Mason, F. (2018). Use of an in vitro gas production procedure to evaluate rumen slow-release urea products. Animal Feed Science & Technology, 237, 19-26. Tang, J. W., Mu, R. Z., Zhang, B. L., & Fan, X. S. (2007). Solubility of urea phosphate in water+ phosphoric acid from (277.00 to 354.50) K. Journal of Chemical & Engineering Data, 52(4), 1179-1181. Taylor-Edwards, C. C., Elam, N. A., Kitts, S. E., McLeod, K. R., Axe, D. E., Vanzant, E. S., ... & Harmon, D. L. (2009). Influence of slow-release urea on nitrogen balance and portal-drained visceral nutrient flux in beef steers. Journal of Animal Science, 87(1), 209-221. Tedeschi, L. O., Baker, M. J., Ketchen, D. J., & Fox, D. G. (2002). Performance of growing and finishing cattle supplemented with a slow-rlease urea product and urea. Canadian Journal of Animal Science, 82(4), 567-573. Tikofsky, J., & Harrison, G. A. (2006). Optigen® II: Improving the efficiency of nitrogen utilization in the dairy cow. Nutritional Biotechnology in the Feed and Food Industries: Proceedings of Alltech's 22nd Annual Symposium, Lexington, Kentucky, (pp. 373-380). Alltech UK. Trei, J., Hale, W. H., & Theurer, B. (1970). Effect of grain processing on in vitro gas production. Journal of Animal Science, 30(5), 825-831. Xin, H. S., Schaefer, D. M., Liu, Q. P., Axe, D. E., & Meng, Q. X. (2010). Effects of polyurethane coated urea supplement on in vitro ruminal fermentation, ammonia release dynamics and lactating performance of Holstein dairy cows fed a steam-flaked corn-based diet. Asian-Australasian Journal of Animal Sciences, 23(4), 491-500. Yamamoto, C. F., Pereira, E. I., Mattoso, L. H., Matsunaka, T., & Ribeiro, C. (2016). Slow release fertilizers based on urea/urea–formaldehyde polymer nanocomposites. Chemical Engineering Journal, 287, 390-397. Yan, X. T., Yan, B. Y., Ren, Q. M., Dou, J. J., Wang, W. W., Zhang, J. J., ... & Qiu, Q. (2018). Effect of slow-release urea on the composition of ruminal bacteria and fungi communities in yak. Animal Feed Science & Technology, 244, 18-27. Zhou, Z., Meng, Q., Li, S., Jiang, L., & Wu, H. (2017). Effect of urea-supplemented diets on the ruminal bacterial and archaeal community composition of finishing bulls. Applied Microbiology & Biotechnology, 101, 6205-6216. | ||
آمار تعداد مشاهده مقاله: 348 تعداد دریافت فایل اصل مقاله: 121 |