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1. Introduction
Industries are currently making use of a vari-

ety of nanoparticles such as titanium dioxide, zinc 
oxide, copper oxide, magnesium oxide, silica di-
oxide, chromium oxide, nickel oxide, manganese 
oxide, and cobalt oxide, among others, because of 
their interesting properties and application [1-7]. 
Nanoparticles exhibit harmful effects on various 
microorganisms, successfully eradicating a variety 
of bacteria [8-10]. Zinc oxide nanoparticles, in par-
ticular, are a diverse type of semiconductor materi-
al with a broad band gap of 3.37 eV, high binding 
energy, excellent ultraviolet absorption capabilities, 
superior chemical stability, and a hexagonal wurtz-

ite structure [11]. In recent years, there has been 
a growing interest in utilizing zinc oxide (ZnO) in 
various nanomaterial applications, including gas 
sensors, photo-catalytic processes, dye-sensitized 
solar cells, antibacterial products, water purifi-
cation systems, textiles, and food packaging [12]. 
ZnO also possesses antibacterial properties that are 
advantageous for pharmaceutical and biological 
uses [13,14]. The characteristics of ZnO are influ-
enced by the defects present in the material, such 
as oxygen vacancies [15]. By introducing impuri-
ties into ZnO at different doping levels, it is possible 
to modify and enhance the properties of ZnO [16]. 
Alternatively, as evidenced in various studies, uti-

The current study introduces an uncomplicated approach to produce Mg-doped ZnO nanoparticles through the sol-gel 
method, eliminating the need for a washing procedure, and assessing its antibacterial properties. The characteristics 
of the nanoparticles were examined through advanced techniques such as scanning electron microscopy (SEM), X-ray 
diffraction (XRD), and UV-Vis diffuse reflectance spectroscopy. The resulting Mg-doped ZnO nanoparticles displayed a 
spherical morphology. The antibacterial activity of these nanoparticles was evaluated. Prepared ZnO had a hexagonal 
wurtzite crystal structure. The incorporation of Mg into ZnO led to a modification of its band gap from 3.23 eV for pure 
ZnO to 3.18 eV for doped ZnO. MgO has a wider band gap compared to ZnO, and by doping ZnO with Mg, the band 
gap of the resulting Mg doped ZnO particles can be adjusted. The results exhibited inhibition sizes of 7.7 mm and 6.1 
mm against E. coli and S. aureus, respectively. Following Mg doping, the inhibition zone against E. coli and S. aureus in-
creased to 8.3 mm and 9.1 mm, respectively. The decrease in band gap values could be the reason behind the enhanced 
bactericidal activity as it increases the likelihood of hydroxyl radical generation. The results clearly show that the Mg 
doping have positive effect on the antimicrobial effects against E. coli and S. aureus bacteria.
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lizing doping techniques can result in significant al-
terations in the physical and chemical characteris-
tics of ZnO nanoparticles, ultimately boosting their 
photocatalytic and antibacterial capabilities [17]. 
In recent times, there have been numerous efforts 
made to incorporate metal ions such as calcium, sil-
ver, copper, iron, and magnesium into the structure 
of photo-catalysts [18-20]. In the list of metals dis-
cussed, it was found that ZnO nanoparticles doped 
with Mg showed antibacterial properties. This is 
because Mg2+ ions can take the place of Zn2+ ions in 
the structure due to their similar sizes. This substi-
tution causes the ZnO lattice to become distorted, 
creating oxygen or zinc vacancies [21]. As a result, 
there is an increase in the energy gap between the 
valence and conduction bands of ZnO. This leads 
to better absorption of light and the generation of 
more electron-hole pairs, ultimately improving the 
photocatalytic efficiency of the ZnO nanostructures 
[22]. For instance, Etacheri et al. (2012) have creat-
ed magnesium-doped zinc oxide nanoparticles that 
utilize sunlight for photocatalysis. The band gap of 
these magnesium-doped zinc oxide samples can 
range from 3.3 to 3.75 eV [16]. The study conduct-
ed by Habibi-Yangjeh et al. (2014) demonstrated 
that the microwave-assisted synthesis of Mg-doped 
ZnO nanostructures resulted in exceptional pho-
tocatalytic performance. [23]. Ivetić et al. (2014) 
have shown that the addition of magnesium im-
proves the effectiveness of ZnO nanoparticles in 
the process of breaking down alprazolam through 

photocatalysis [24]. Chandraseka et al. (2020) in 
their recent study have successfully created mag-
nesium-doped zinc oxide nanoparticles through a 
chemical precipitation process [16]. Their findings 
revealed that these doped ZnO nanoparticles ex-
hibit remarkable antibacterial properties against E. 
coli. Additionally, the researchers observed that the 
band gap of the Mg-doped ZnO samples can range 
from 3.3 to 3.15 eV. Various chemical methods of 
synthesis are applied to synthesize nanostructured 
ZnO powders containing using hydrothermal [25], 
precipitation [16], sol–gel [26,27], layer-by-layer 
electrostatic assembly [28], and thermal decompo-
sition [29] methods. The sol-gel method stands out 
as a preferred choice among various methods for 
nanoparticle synthesis, mainly due to its simplicity, 
high product purity, low processing temperature, 
easy doping capability, cost-effectiveness, and the 
ability to create uniform nanostructures suitable 
for mass production [27,30]. A common challenge 
encountered during nanoparticle synthesis is the 
meticulous washing process needed to eliminate 
byproducts and contaminants, which often leads 
to smaller particle loss. This research deviated from 
conventional sol-gel methodologies by skipping the 
washing step. The study focused on producing ZnO 
nanoparticles with Mg doping using the sol-gel 
method. It aims to investigate how Mg doping af-
fects the structural, optical, and antibacterial prop-
erties of ZnO. The results include an examination 
of characterization techniques and the antibacterial 

Fig. 1- Schematic of synthesis method.

 
Figure 1. Schematic of synthetic method 
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effectiveness against E. coli and S. aureus.

2. Material and methods
2.1. Chemicals

The zinc nitrate (98%) was obtained from Mer-
ck Co, along with the magnesium nitrate (99%) 
and citric acid (98%) used in the experiment. The 
chemicals were all purchased in their pure form 
and were not subjected to any additional purifica-
tion processes. The nutrient agar used in the exper-
iment was also obtained from Merck Co.

2.2. Synthesis procedure
Citric acid was carefully added in small drops to 

a mixture of Zn(NO3)2 and Mg(NO3)2. The molar 
ratio of metal ions to Citric acid was maintained 
at 1:1. The molar ratio of Mg2+ to Zn2+ was also 1:1.
The temperature of the solution was then slowly 
raised to 60 °C using a water bath. Over the course 
of an hour, the solution transformed from a liquid 
to a hydrogel. The resulting gel was subsequent-
ly dried at 80 °C for 48 hours in a vacuum oven. 
The resulting xerogel contained evenly distributed 
magnesium ions bound by citric acid. The xerogel 
was then subjected to calcination at 500 °C for 1 
hour. The synthetic method is illustrated schemat-
ically in Figure 1.

2.3. Characterization
A LEO 1430VP device (Germany) was employed 

for scanning electron microscopy. Additionally, a 
Philips PW 1050 diffractometer from The Nether-
lands was used to conduct powder X-ray diffrac-
tion studies. Furthermore, powder samples were 
examined using Diffuse Reflectance UV-Vis Spec-

troscopy (DR UV-Vis) across a wavelength range 
of 200–800 nm. This analysis was carried out using 
a spectrophotometer from Scinco S4100 based in 
South Korea. To evaluate the size and distribution 
of nanoparticles, DLS analysis (Horiba, SZ-100) 
was employed. 

2.4. Antibacterial activity
The study aimed to assess the antibacterial 

properties of undoped and Mg-doped zinc oxide 
nanoparticles against E. coli and S. aureus bacteria 
through an agar diffusion test. Nutrient agar plates 
were inoculated with 100 µL of bacterial suspen-
sions. Discs loaded with 0.05 g of samples and 
measuring 0.5 cm in diameter were placed on the 
agar surface and incubated at 37 °C for 24 hours 
under UV light (Philips, 4W). The presence of inhi-
bition zones, indicating the suppression of bacterial 
growth, was visually examined.

3. Results and discussion
In the sol-gel method utilized in the present 

study, the reaction proceeds as follows:

One important aspect of this chemical reaction 
is that all resulting substances, with the exception 
of MgZnO, exist in the form of gases, making it 
easy to remove and separate them from the main 
product. As a result, there is no need for a washing 
process to eliminate any leftover materials. 

The SEM images in Figure 2 display the differ-
ences between undoped and magnesium-doped 
Zinc Oxide. It is evident that the introduction of 

   
 (a) (b) (C) 

Figure 2. SEM image of undoped (a) and Mg doped ZnO (b) and DLS results (C) 
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Fig. 2- SEM image of undoped (a) and Mg doped ZnO (b) and DLS results (C).
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magnesium dopant results in a noticeable decrease 
in the average particle size. This observation is con-
sistent with previous research [31]. In the case of 
undoped ZnO nanoparticles, two distinct types of 
grains were observed: one type consisting of larg-
er oval-shaped grains, and the other made up of 
smaller spherical grains. However, after magne-
sium doping, the larger grains disappeared. This 
can be attributed to the magnesium ions disrupt-
ing the ZnO crystal lattice, thus impeding crystal 
growth. After analyzing the data with Dynamic 
Light Scattering (DLS), it was noticed that the av-
erage size of ZnO particles decreased significant-
ly from around 161.2 nm to 93.4 nm after doping, 
as illustrated in figure 2c. In a study conducted by 
Kılınç et al. (2010), they created Mg0.04Zn0.96O 
powder through the sol-gel method, utilizing solu-
tions of organometallic compounds of Mg and Zn. 
They successfully achieved particle sizes ranging 
from 60 to 200 nm [26].

The samples were analyzed using powder X-ray 
diffraction to determine their level of purity, struc-
ture, and size of crystallites. The XRD patterns of 
both the ZnO and ZnO samples doped with Mg are 
displayed in Figure 3. In all diffractograms, prom-
inent XRD peaks were observed at around 2θ = 
31.61°, 34.31°, and 36.11° [32]. All of these diffrac-
tion peaks were in good agreement with the hexag-
onal wurtzite phase of ZnO (JCPDS No. 36-1451). 
After addition of Mg, the wurtzite characteristics 
of the nanoparticles remain consistent. The differ-

ence is the formation of one new peak at round 2 
θ = 42.78°, which indicates the formation of a new 
MgO phase. According to Wu et al. (2013) the lim-
itation concentration of Mg dopant in ZnO struc-
ture is less than 15% [33]. This suggests that incor-
porating more than 15% Mg dopant into the ZnO 
structure may lead to a change in the phase tran-
sition, resulting in a new phase (MgO) at around 
2θ value of 42.78°. Finally, The variation in peak 
intensity and position in the XRD pattern indicate 
a successful integration of Mg into the ZnO lattice.

The impact of magnesium (Mg) doping on the 
optical properties was investigated by the UV-
Vis DRS in the wavelength range of 200-800 nm. 
The absorption spectra are presented in Figure 4. 
It was observed that the absorption peak of pure 
ZnO occurred around 390 nm, whereas the Mg-
doped ZnO showed a red shift in its absorption 
spectrum. The Mg-doped ZnO exhibited increased 
absorbance in the 400-800 nm range compared 
to the pure ZnO. The calculated band gap energy 
was found to be 3.23 eV for pure ZnO and 3.18 eV 
for Mg-doped ZnO. The Mg-doped ZnO demon-
strated lower band gap energy levels than the pure 
ZnO. The size of the crystallites and the band gap 
play crucial roles in determining the properties of 
semiconductor materials. The study indicated that 
the introduction of Mg into ZnO can alter both the 
structural and optical properties of the synthesized 
nanoparticles [16]. Furthermore, the obtained 
band gap energy value of 3.18 eV for Mg-doped 

 

Figure 3. XRD patterns of undoped and Mg doped ZnO  
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Fig. 3- XRD patterns of undoped and Mg doped ZnO.
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zinc oxide nanoparticles aligns with findings from 
previous studies that utilized more complex prepa-
ration techniques [22,34].

3.1. Antibacterial activity screening
The study on the antimicrobial properties of the 

samples was conducted using the malt-agar meth-
od against E. coli and S. aureus. The results are de-
picted in Table 1. In the petri dishes containing E. 
coli and S. aureus, the undoped samples exhibited 
inhibition ring sizes of 7.7 mm and 6.1 mm, respec-
tively. Zinc oxide nanoparticles exhibit bactericidal 
activity through various means, including adsorp-
tion onto bacterial surfaces, creation of intermedi-

ates, and electrostatic interactions. These nanopar-
ticles possess the capability to target multiple areas 
within bacterial cells, primarily affecting the cy-
toplasmic membrane. The impact on other cellu-
lar structures is considered to be secondary to the 
membrane disruption [35]. Following Mg doping, 
the inhibition ring sizes against E. coli and S. aureus 
increased to 8.3 mm and 9.1 mm, respectively. The 
results clearly show that the Mg doping have posi-
tive effect on the antimicrobial effects against E. coli 
and S. aureus bacteria. The enhancement of anti-
microbial efficacy in doped samples correlates with 
the production of Reactive Oxygen Species (ROS), a 
phenomenon influenced by their energy band gap. 

(a)                                                                                  (b)  

 

 

Figure 4. UV–Vis DRS spectroscopy of undoped (a) and Mg doped ZnO (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4- UV–Vis DRS spectroscopy of undoped (a) and Mg doped ZnO (b)

 

Table 1. The Antibacterial activity of Undoped and Mg doped ZnO 

 
 

Table 1- The Antibacterial activity of Undoped and Mg doped ZnO
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The creation of valence band vacancies through 
a photochemical process leads to the synthesis of 
hydroxide radicals and superoxide radicals as ROS. 
Illustrated in figure 3b, the energy band gap dwin-
dled upon the addition of Mg dopant, potentially 
due to the flaws triggered by substituting Mg2+ for 
Zn2+ and the simultaneous integration of Mg pos-
sessing distinct electronegativity and ionic radius 
into structure of ZnO. This, in turn, boosts both the 
oxygen vacancies and electron density, signifying 
the efficient production of ROS. Consequently, the 
Mg-infused ZnO showcased elevated antimicrobial 
efficacy [36]. Additionally, the unique surface and 
interface properties of the nanoparticles might in-
fluence their capacity to attract and repel bacteria, 
resulting in varying degrees of antibacterial effec-
tiveness [37].

4. Conclusion
The sol-gel method was utilized effectively to 

produce Mg-doped ZnO nanoparticles. Based on 
the SEM images, it is clear that the addition of mag-
nesium dopant leads to a significant reduction in 
the average particle size, dropping from approxi-
mately 161.2 nm to 93.4 nm. The synthesized ZnO 
possessed a hexagonal wurtzite crystal structure. 
The introduction of magnesium into ZnO resulted 
in a modification of its energy band gap from 3.23 
eV for pure ZnO to 3.18 eV for doped ZnO. The 
findings demonstrated inhibition zones of 7.7 mm 
and 6.1 mm against E. coli and S. aureus, respec-
tively. Following the incorporation of Mg, the inhi-
bition zones against E. coli and S. aureus increased 
to 8.3 mm and 9.1 mm, respectively. The decrease 
in band gap values could be the reason behind the 
enhanced bactericidal activity as it increases the 
likelihood of hydroxyl radical generation The re-
sults clearly indicate that magnesium doping has 
a beneficial impact on the antimicrobial efficacy 
against E. coli and S. aureus bacteria.
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