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ABSTRACT 

Floods are one of the most prevalent and devastating natural disasters, and their impact on various 

societies worldwide has always been significant. While preventing floods is nearly impossible, 

obtaining sufficient information about flood situations and timely detection can mitigate potential 

damages. With advancements in remote sensing satellite technology and progress in deep learning and 

machine learning, the capability to flood detection with higher precision and efficiency has been 

achieved. In this regard, this study aims to develop ensemble-optimized models for flood detection 

utilizing Sentinel-1 satellite data and compare the performance of these models. The first step involved 

feature extraction from the images using the pre-trained deep neural network model, VGG-16. 

Subsequently, machine learning algorithms including Random Forest (RF) and Gradient Boosting (GB) 

were employed as classifiers, and Genetic Algorithm (GA) and Harris Hawks Optimization (HHO) were 

utilized for hyperparameter optimization of these classifiers. The prediction accuracy of the four 

ensemble flood detection models RF-GA, RF-HHO, GB-GA, and GB-HHO were 90.97%, 90.37%, 

91.45%, and 91.61%, respectively. Model GB-HHO exhibited the lowest error rate and the highest 

prediction accuracy. The findings of this study indicate that all four models offer acceptable 

performance and accuracy rates. Moreover, Gradient Boosting-based classifiers, GB-HHO and GB-GA, 

exhibit superior prediction accuracy compared to Random Forest and demand significantly lower 

computational resources for model training processes. 
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1. Introduction 

Floods, among all water-related natural disasters, have 

the highest prevalence. Approximately 23%  of the world's 

population, equivalent to 1.8 billion people, are directly 

affected by floods (Amitrano et al., 2024). Climate change, 

heavy rainfall, snowmelt, and dam failures are counted 

among the causes of floods (Jeyaseelan, 2004). 

Preventing floods is a challenging task, but with proper 

management, it is possible to reduce the negative impacts 

of these natural disasters. Flood management involves 

assessing flood-affected areas' risks, damages, and 

vulnerabilities and planning to mitigate any potential 
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damages (Rahman & Di, 2017). Hence, the timely and 

precise gathering of data regarding flood conditions is 

paramount.  Sensors used in satellite and aerial platforms 

can provide the necessary data for mapping flood-affected 

areas and assessing the damages caused by them (Klemas, 

2014). 

Despite achieving suitable spatial resolution, collecting 

the required data utilizing aerial platforms is costly 

(Clement et al., 2017), while satellite platforms can provide 

valuable information about flood conditions in large and 

inaccessible areas over multiple time intervals (Bhatt & 

Rao, 2016). With the advancement and development of 

remote sensing satellites in recent years, active and passive 

satellite sensors, operating in various parts of the 

electromagnetic spectrum, including the visible, infrared, 

and microwave bands, provide diverse data at low cost and 

sometimes free of charge from flood-affected areas during 

and after flood events. Alos-Palsar, Terrasar-X, RadarSat-

1, Envisat, and Sentinel-1 are considered active sensors, 

whereas Landsat, Sentinel-2, and MODIS are among the 

popular passive sensors (Anusha & Bharathi, 2020). 

There are multiple methods for flood detection. Among 

these methods, flood detection utilizing optical satellite 

data is mainly based on spectral information through 

spectral indices such as NDWI and other simple image 

classification methods. flood detection utilizing radar data 

is complicated due to the complex characteristics of these 

data, with common image classification methods being 

very complex. Traditional methods of flood detection 

require a lot of time and depend on expertise in this field 

(Wu et al., 2023). In recent years, machine learning has 

significantly advanced in various fields (Hussain et al., 

2019). Additionally, deep learning-based methods have 

gained more attention than before and have been utilized in 

many studies (Wu et al., 2023). Neural networks form the 

basis of deep learning methods (Ma et al., 2019), with 

Convolutional Neural Networks (CNN) and Recurrent 

Neural Networks (RNN) being among the most common 

(Astola et al., 2021). One of the key challenges in deep 

learning methods is training models with large volumes of 

data, consequently increasing the time and computational 

burden required to complete the training process. In this 

regard, using transfer learning methods such as pre-trained 

models can significantly overcome this challenge (Tulasi 

Krishna & Kalluri, 2019). 

In this study, Sentinel-1 satellite data were utilized as 

training data for flood detection, using a combination of 

transfer learning methods and machine learning algorithms, 

optimized with metaheuristic algorithms. The innovation in 

this study lies in utilizing four ensemble models based on 

training with features extracted from the transfer learning 

method using the VGG-16 deep neural network model for 

flood detection, alongside comparing their performance. 

While the VGG-16 model has general applicability and is 

not specific to remote sensing data, our approach focuses 

on employing this model and evaluating its results in the 

context of remote sensing for flood detection. The 

implementation and analysis of the models were conducted 

in the Google Colab programming environment. 

2. Methodology 

    The primary objective of this study is to develop 

ensemble flood detection models using Sentinel-1 data, 

which is a valuable resource for flood detection and 

monitoring, and then to evaluate and compare the 

performance of these models with each other. The pre-

trained VGG-16 neural network model is employed for 

feature extraction to achieve this goal. Machine learning 

algorithms are then employed to train classifiers using the 

features extracted by the VGG-16 model. Additionally, 

metaheuristic algorithms are utilized to optimize and fine-

tune the hyperparameters of the machine learning models. 

    Furthermore, to examine the impact of combining deep 

learning and machine learning methods proposed in this 

study as feature extractors and classifiers under identical 

and completely equal conditions, the VGG-16 model was 

entirely excluded from the process. This was done to 

evaluate the performance of models developed and 

implemented without any involvement of the VGG-16 

model. A comparison was also made between these models 

and our proposed models, in which the VGG-16 model 

played the role of feature extractor. The following sections 

fully introduce and describe the algorithms and methods 

used. 

2.1. Dataset 

    The dataset used in this study, titled "Cloud to Street – 

Microsoft Flood and Clouds Dataset," consists of a 

collection of georeferenced ground image patches with the 

size of 512×512 pixels from Sentinel-1 and Sentinel-2 

satellites. It is utilized for training and evaluating machine 

learning and deep learning models for flood detection on a 

global scale. This dataset includes 900 Synthetic Aperture 

Radar (SAR) image patches from the Sentinel-1 with two 

polarizations (VV and VH), 900 optical image patches 

from the Sentinel-2 with 13 spectral bands, and ground 

truth labels for each image patch which covers various 

regions around the world, including the Mekong River 

Basin in Southeast Asia, India, Bolivia, Spain, the United 

States, and Ghana, during 18 flood events. Figure 1 shows 

the sample of the image patches utilized in the study. 

Figure 1. Sentinel-1 VV polarization image patches. 

2.2. Data Preparation 

      In this study, only Sentinel-1 images have been used 

for training and evaluating flood detection models. All 
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image patches underwent visual inspection to identify and 

exclude any with incorrect or unreliable labels, ensuring 

that they do not participate in the model training process. 

      For the ease of the process and to prevent potential 

issues due to the limitations of Google Colab service, each 

image patch with a size of 512×512 pixels was split into 

image patches with a size of 128×128 pixels along with 

their corresponding labels. Subsequently, to achieve a 

proper balance between background and flood pixels, 

image patches with the new size that lacked flood pixels or 

had an insignificant number of them compared to 

background pixels were removed from the dataset. Finally, 

this study's total number of image patches utilized for 

training and evaluating flood detection models was 

narrowed to 322. Table 1 shows the final number of image 

patches for each geographical region. 

 

Table 1. Geographical dispersion of final data 
 

ID 

 

Region 
 

Number of image patches 

1 USA 34 

2 Ghana 15 

3 Pakistan 41 

4 Sri Lanka 19 

5 Somali 30 

6 Nigeria 33 

7 Spain 35 

8 Paraguay 52 

9 Mekong 22 

10 Bolivia 24 

 

2.3. Feature Extraction using Transfer Learning  

      Transfer learning is a machine learning method where a 

model is trained for a specific task or application and then 

reused for other similar purposes (Gao & Mosalam, 2018). 

This study utilizes the transfer learning method for 

automatic feature extraction without human intervention. 

For this purpose, the VGG-16 deep neural network model, 

which can extract diverse features from image data, is 

employed. The VGG-16 model is one of the Convolutional 

Neural Network models introduced in 2014 (Simonyan & 

Zisserman, 2015). This model is trained on the ImageNet 

dataset, which consists of approximately 15 million high-

resolution images across 22,000 different classes. 

      Therefore, the VGG-16 model is pre-trained (Deng et 

al., 2009; Marmanis et al., 2016). This model exhibits 

satisfactory performance and prediction accuracy on both 

small  and large and complex datasets (Theckedath & 

Sedamkar, 2020). The structure of this deep neural network 

model consists of 13 convolutional layers, 3 fully 

connected layers, and 5 pooling layers (Qu et al., 2020). 

Convolutional layers use 3×3 kernels with a stride of 1. 

The number of filters gradually increases from 64 in the 

first layer to 512 in deeper layers (Wang, 2020). In a study 

(Jain et al., 2020), a similar approach is used to 

automatically feature extraction from Sentinel-2 data with 

the aim of flood detection. Using the pre-trained VGG-16 

model led to acceptable results and indicated the feasibility 

of automatic flood detection. 

2.4. Classification Algorithms 

      After feature extraction, performed by the pre-trained 

VGG-16 model, classifiers  need to be applied to classify 

the pixels of Sentinel-1 satellite images into two classes: 

flood and non-flood, to extract flood-affected areas from 

the background of the image.  This study employs Random 

Forest (RF) and Gradient Boosting (GB) algorithms to train 

flood detection models. 

2.4.1. Random Forest 

      Random Forest (Ho, 1995) is one of the most widely 

used and effective algorithms in machine learning, 

providing accurate and reliable precisions using an 

ensemble of decision trees. The final precision of a 

Random Forest is calculated based on the precisions of all 

decision trees created in the model (Breiman, 2001). 

      Therefore, Random Forest can control the problem of 

overfitting by averaging multiple precisions. Additionally, 

this algorithm can rank different features based on their 

importance and consider the feature with the highest 

importance as the differentiating factor in decision trees 

(Esfandiari et al., 2020). Compared to other machine 

learning algorithms such as Support Vector Machines 

(SVM), Random Forest has lower computational burden 

and less sensitivity to multicollinearity in multivariable 

linear methods (Feng et al., 2015). Over the past two 

decades, Random Forest has gained a prominent position 

among machine learning methods due to its outstanding 

performance in classification tasks and high processing 

speed (Belgiu & Drăguţ, 2016). 

2.4.2. Gradient Boosting 

      Gradient Boosting with decision trees (Friedman, 2002) 

is one of the most common algorithms in the realm of 

machine learning (Guryanov, 2019). Gradient Boosting 

presents a predictive model as an ensemble of weak 

predictive models, for example, models that make very few 

assumptions about the data, such as simple decision trees. 

Its performance usually outperforms Random Forest. 

      Unlike Random Forest, in a Gradient Boosting with a 

decision trees model, trees are constructed sequentially and 

iteratively (Hastie et al., 2009; Piryonesi & El-Diraby, 

2020). 

      The Gradient Boosting algorithm delivers exceptional 

performance, offering superior quality alongside relatively 

efficient training and inference times. One advanced base 

learner in this domain is the piecewise linear tree, which 

employs linear functions as precisions within its leaves. 

Compared with contemporary Gradient Boosting libraries 

using publicly accessible datasets, this algorithm 

demonstrated superior performance, achieving higher 

quality results while reducing the size of the ensemble and 

inference time (Guryanov, 2019). 
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2.5. Hyperparameter Optimization 

      Hyperparameter optimization is crucial in achieving the 

best prediction accuracy and performance for machine 

learning-based classification models. Nowadays, 

metaheuristic algorithms aimed at solving problems, 

especially in optimizing and tuning hyperparameters, have 

gained significant attention and have been accompanied by 

remarkable advancements compared to the past, as there 

has been the constant introduction of new algorithms 

(Morales-Hernández et al., 2023). 

      In this study, Genetic Algorithm (GA) and Harris 

Hawk Optimization (HHO) are used as representatives of 

traditional and modern generations of metaheuristic 

algorithms to optimize the hyperparameters of Random 

Forest and Gradient Boosting  classifiers. Subsequently, the 

performance and prediction accuracy of the classifiers  are 

evaluated for each combination of hyperparameters to 

determine the optimal values for each model. The 

hyperparameters considered for the Random Forest 

classifiers include the number of trees and maximum 

depth. In contrast, the hyperparameters considered include 

the maximum iterations, depth, and learning rate for 

Gradient Boosting classifiers. The task of optimizing and 

fine-tuning these hyperparameters in the models is 

undertaken by the metaheuristic as mentioned earlier 

algorithms. 

 

2.5.1. Genetic Algorithm 

      The Genetic Algorithm (Holland, 1992) is inspired by 

fundamental theories of Darwinian evolution and natural 

selection, which explains the origin of species. In nature, 

weak and unfit species face extinction in their environment 

through natural selection. Strong individuals are more 

likely to pass their genes to future generations through 

reproduction. Over the long term, species carrying the right 

combination of genes become dominant within their 

population. Sometimes, during the time-consuming process 

of evolution, random changes in genes may occur. If these 

changes provide greater advantages in the survival 

challenge, new species will evolve from old ones. 

Unsuccessful changes are eliminated through natural 

selection (Konak et al., 2006). 

      Genetic Algorithms have received extra attention in 

recent years due to their potential as a new optimization 

method. The Genetic Algorithm, due to its simplicity, ease 

of use, minimal requirements, and parallel and global 

perspective, has been widely used in various problems 

(Sivanandam & Deepa, 2008). 

 

 

 

 

 

 

Figure 2. Procedure of methodology. 
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2.5.2. Harris Hawk Optimization 

      The Harris Hawk Optimization is a population-based 

optimization algorithm proposed by Ali Asghar Heidari for 

the first time in 2019 (Hussien et al., 2022). The main 

inspiration for the Harris Hawk Optimization derives from 

the cooperative behavior and collective pursuit and evasion 

tactics of Harris Hawks in nature, referred to as "startle-

attack behavior." In this intelligent strategy, multiple 

Hawks collaborate to surprise prey from different 

directions. Harris Hawks can exhibit various tracking 

patterns based on the prey's evasion patterns. 

      The effectiveness of this algorithm has been 

investigated in solving and optimizing 29 fundamental 

problems and several engineering problems in the real 

world compared to other methods and algorithms inspired 

by nature. The Harris Hawk Optimization demonstrates 

promising results and performance compared to other 

common metaheuristic algorithms (Heidari et al., 2019). 

3. Result 

3.1. Pre-Trained VGG-16 Model  

      After loading the pre-trained VGG-16 model, a new 

model consisting of the first two layers of the loaded model 

was created to extract features from the Sentinel-1 data 

used in this study. Figure 3 shows a partial representation 

of feature extraction from sample training data. The 

purpose of selecting the first two layers of the pre-trained 

VGG-16 model was to extract general features with 

simpler patterns from the images and reduce the number of 

parameters. With the number of parameters reduced, the 

count decreased from 14,714,688 to 38,720. The parameter 

reduction significantly reduced the time, computational 

cost, and memory required for training and utilizing the 

models. 

Figure 3. Sample data extracted features by VGG-16. 

      The features extracted by the VGG-16 model were used 

to train the flood detection models. Additionally, as 

mentioned at the beginning of the methodology section, the 

flood detection models are also trained once without using 

the features extracted by VGG-16. This approach examines 

the impact of using pre-trained models in implementing 

flood detection models. Specifically, in the first scenario, 

Random Forest and Gradient Boosting models are trained 

with the features extracted by VGG-16 to evaluate the 

impact of feature extraction by the deep neural network. In 

the second scenario, the same models are trained with the 

simple and raw features from the data to assess the models' 

performance without using the deep neural network. 

3.2. Ensemble flood detection models 

In this study, as mentioned earlier, Genetic and Harris 

Hawk algorithms were utilized to optimize and tune the 

hyperparameters of the machine learning classifiers. Table 

2 shows the hyperparameter values for each flood detection 

model trained using features extracted from the VGG-16 

model. Table 3 also shows the hyperparameter values for 

models trained solely on raw features from Sentinel-1 data 

without utilizing the VGG-16 model. 

 

Table 2. Hyperparameters for models using VGG-16. 
 

Model 
 

Hyperparameters 

RF-GA n of trees 54 

max depth 6 

RF-HHO n of trees 39 

max depth 6 

GB-GA n of trees  73 

max depth 4 

learning rate 0.048 

GB-HHO n of trees 76 

max depth 6 

learning rate 0.096 

 

Table 3. Hyperparameters for models without using VGG-

16. 
 

Model 
 

Hyperparameters 

RF-GA n of trees 53 

max depth 6 

RF-HHO n of trees 57 

max depth 4 

GB-GA n of trees  77 

max depth 5 

learning rate 0.042 

GB-HHO n of trees 78 

max depth 6 

learning rate 0.023 

 

Among the 322 images with ground truth labels, 300 

were used as training and testing data with a 70% to 30% 

ratio. These data were used to implement flood detection 

models RF-GA, RF-HHO, GB-GA, and GB-HHO with two 

different approaches in the feature extraction stage. The 

remaining 22 image patches from the total available data 

were utilized to evaluate the performance of the flood 

detection models. Figure 4 shows the output classification 

of a sample image from these 22 images for each ensemble 

model with its corresponding ground truth label. 
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Ground Truth Label Sentinel-1 Image Patch 

RF-HHO RF-GA 

GB-HHO GB-GA 

Figure 4. Flood detection with ensemble models. 

3.3. Statistical Index Analysis 

      Table 4 shows the prediction accuracy, mean squared 

error (MSE), and root mean squared error (RMSE) of the 

ensemble models RF-GA, RF-HHO, GB-GA, and GB-

HHO, which were trained based on features extracted by 

the VGG-16 model. The prediction accuracy indicates the 

models' correctness in identifying flood-affected samples, 

while the MSE and RMSE values show the overall error of 

the models in identifying flood-affected samples. The MSE 

values for the models are 0.090, 0.096, 0.086, and 0.084, 

respectively, and the RMSE values are 0.300, 0.310, 0.292, 

and 0.290, in order.  

 

Table 4. Models' accuracy rate, MSE, and RMSE using 

VGG-16. 
 

Model 
 

MSE 
 

RMSE 
 

Accuracy (%) 

RF-GA 0.090 0.300 90.97 

RF-HHO 0.096 0.310 90.39 

GB-GA 0.086 0.292 91.45 

GB-HHO 0.084 0.290 91.61 

 

      According to the results, the GB-HHO model exhibited 

the lowest error rate and consequently achieved the highest 

prediction accuracy of 91.61% among the models. The GB-

GA model secured the second position with 91.45% 

prediction rate, while the RF-HHO model had the lowest 

prediction of 90.39% among the four models. These results 

show that Gradient Boosting-based classifiers exhibited 

higher prediction accuracy than Random Forest-based 

classifiers.  

      Table 5 shows the prediction accuracy, mean squared 

error (MSE), and root mean squared error (RMSE) of the 

models trained on raw Sentinel-1 data features without 

using the VGG-16 model. All four models with this 

approach have had somewhat unsatisfactory performance, 

with very little difference between them. The prediction 

accuracy of the best model in this category did not exceed 

52%. Therefore, it can be said that none of them achieved 

prediction accuracy similar to or close to the models where 

the VGG-16 model was responsible for feature extraction. 

 

Table 5. Models' accuracy rate, MSE, and RMSE without 

using VGG-16.  
 

Model 
 

MSE 
 

RMSE 
 

Accuracy (%) 

RF-GA 0.478 0.691 52.23 

RF-HHO 0.478 0.691 52.21 

GB-GA 0.478 0.691 52.22 

GB-HHO 0.478 0.692 52.18 

 

Considering the information provided in Tables 4 and 5, 

the first category of models, which resulted from a hybrid 

approach of deep learning and machine learning methods, 

demonstrated significant performance in achieving high 

prediction accuracy and low error rates. These models 

showed absolute superiority over the second category of 

models, which were trained solely on raw data features. 

Figure 5 shows the accuracy rates of flood detection 

models in this study using the VGG-16 model and without 

it for feature extraction. 

 

Figure 5. Comparison between models' accuracy rates. 

3.4. ROC Curve Analysis 
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      ROC curves have been utilized to assess the prediction 

accuracy of the models and compare them with each other. 

The ROC curve is a graphical representation of the balance 

between true Positive rate (TPR) and false positive rate 

(FPR) using training and testing data (Razavi Termeh et 

al., 2018). Figure 6 shows the GB-HHO models based on 

both feature extraction approaches considered in this study. 

The AUC values for the RF-GA, RF-HHO, GB-GA, and 

GB-HHO models trained on features extracted from the 

VGG-16 model are 0.9732, 0.9702, 0.9749, and 0.9780, 

respectively. These values for the mentioned models 

trained without utilizing the VGG-16 model were also 

0.5102, 0.5098, 0.5099, and 0.5093, respectively. 

Figure 6. GB-HHO model ROC curve (top, feature 

extraction by VGG-16 and bottom simple feature 

extraction). 

4. Discussion and Conclusions 

      This study employed ensemble flood detection models 

RF-GA, RF-HHO, GB-GA, and GB-HHO for flood 

detection through Sentinel-1 data. The transfer learning 

method was performed to achieve this goal, and the pre-

trained VGG-16 model was employed to extract features 

required for training the models from Sentinel-1 data used 

in this study. Taking advantage of the VGG-16 model for 

feature extraction from images serves as a useful tool for 

image pattern recognition systems and other related image 

processing applications, potentially enhancing the training 

speed and efficiency of deep neural networks. Integrating 

deep neural network-based methods with machine learning 

techniques and metaheuristic algorithms for 

hyperparameter optimization has led to the development of 

models with remarkable accuracy and performance. 

However, these models failed to perform satisfactorily 

when the VGG-16 pre-trained model was not utilized for 

feature extraction. 

One of the most significant outcomes of this study is the 

reduction of human intervention in supervised tuning and 

predefined feature extraction, achieved by leveraging the 

VGG-16 model as a feature extractor. Without human 

intervention, models trained solely on raw and simple 

features from Sentinel-1 data did not attain suitable 

accuracy and performance. 

This issue becomes crucial when machine learning model 

developers cannot identify specific anomalies or complex 

patterns in images and cannot manually extract appropriate 

features to train the models. In this study, we utilized the 

capabilities of deep neural networks to perform this task, 

achieving notable results.  This approach has not only 

improved the accuracy of flood detection but has also made 

the feature extraction process deeper and more efficient 

without the need for human intervention. 

      Furthermore, a comparison was made among models 

based on the proposed approach of this study, which 

integrates deep learning methods, machine learning 

techniques, and metaheuristic algorithms, serving 

respectively as feature extractors, classifiers, and 

optimizers. This comparison aimed to evaluate the 

performance of Random Forest classifiers and Gradient 

Boosting classifiers when combined with the two 

metaheuristic optimization algorithms: Genetic Algorithm 

and Harris Hawks Optimization. Many researchers have 

confirmed that ensemble machine learning models and 

metaheuristic optimization algorithms can improve 

prediction accuracy. For instance, in a study (Arabameri et 

al., 2022), Particle Swarm Optimization (PSO) and Genetic 

Algorithms (GA) were employed to optimize Support 

Vector Machine models for flood susceptibility mapping, 

which demonstrated enhanced model performance and 

prediction accuracy. Similarly, in another study (Razavi 

Termeh et al., 2018), three ensemble models, ANFIS-GA, 

ANFIS-ACO, and ANFIS-PSO, were utilized for flood 

susceptibility mapping, showing highly satisfactory 

performance. In another study (Paryani et al., 2021), Harris 

Hawk Optimization and Bat Algorithm (BA) were 

employed to optimize support vector machine and ANFIS 

models for landslide susceptibility mapping in Lorestan 

province, which highlights the importance and 

effectiveness of metaheuristic algorithms in optimizing 

machine learning models. In yet another study (Rujan & 

Neagoe, 2022), a combination of Convolutional Neural 

Network and Ant Colony Optimization (ACO) algorithm 
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was used for classifying hyperspectral images, with the 

CNN-ACO model outperforming support vector machine 

and pure convolutional neural network models in terms of 

performance and accuracy rate. 

      The results obtained in this study indicate that the 

ensemble flood detection models achieved approximately 

90% accuracy rate, demonstrating excellent performance. 

Additionally, the training speed in the GB-GA and GB-

HHO models was significantly higher than the RF-GA and 

RF-HHO models under the same conditions. This suggests 

that besides achieving an acceptable accuracy rate close to 

the Random Forest algorithm, the Gradient Boosting 

algorithm can also exhibit higher training speeds. Thereby, 

it potentially outperforms the Random Forest. 

      The proposed approach in this study is recommended 

for other research objectives, such as classifying and 

detecting various surface features including natural water 

resources, forests, agricultural lands, and other applications 

using remote sensing data. Additionally, it is suggested to 

develop more complex ensemble models using advanced 

transfer learning methods, such as the more contemporary 

and capable VGG-19. These models can examine and 

extract more diverse features with deeper layers and 

minimal human intervention. 
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