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Abstract

The study of compressible flow plays a fundamental role in the design of heat
exchangers at high temperature and pre Compressible flow is used to
design the aerodynamic structure, £ngi

ire the analysis of the unsteady
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differential equati
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system. Peristalsis can also occur in fluid-filled structures, such as in certain types of tubes or vessels
within the body or in engineered systems. In industrial and engineering applications, peristalsis can be replicated or
utilized to pump fluids through flexible tubing without the need for internal moving parts. Peristaltic pumps work by
compressing and relaxing the tubing in a rhythmic fashion, creating waves of pressure that push fluid through the
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system. The pioneers of the peristaltic study are Latham [1] and Shapiro et al. [2]. There are a lot of applications of
peristaltic flow in various fields. The peristaltic flow of viscous incompressible fluid is debated by Elshehawey et al.
[3]. The peristaltic flow of second order fluid in a tube is described by Siddique et al. [4]. The peristaltic motion of
non-Newtonian liquid is discussed by Vaidya et al. [5] through an inclined tube. The peristaltic study of Maxwell
liquid flow is explored by Hina et al. [6] in an asymmetric channel. The introduction of asymmetric wave
propagation is given by Taylor [7]. Furthermore, peristaltic mechanism of wave is more developed in an asymmetric
channel, is explored by Eytan and Elad [8] as an application in intra uterine liquid flow in a nonpregnant uterus. A
few recent researches on different asymmetric channels are listed in [9-11].

A numerical method naming finite difference technique is used to estimate the solutions of differential equations,
especially partial differential equations (PDEs). This approach has a lot of applications in computatienal fluid
dynamics, engineering, finance, and physics, among others. The behavior of viscous, unsteady, and |
fluid flow is analyzed by finite difference method [12]. A numerical approach named implici ite diffgrence
simulations in an asymmetric channel of a biconvective flow of nanofluid is described by Abbasifet “Hayat et
al. [14] deliberated the impact of nanomaterials with viscous dissipation and melting heat by t i
method. Reza et al. [15] observed the behavior of unsteady MHD flow in Casson flui
surface by using the explicit finite difference technique. Some updated literature on thi
16].

The phenomenon of convective heat transfer has received particular attegtie

a stretching
sis is expressed in [13,

ition to magnetic field with
igh temperature processes.
Ver plants are able to utilize these
ion. Using this method, the damaged

Applications such as gas turbines, thermal energy storage, and nuge
processes. Different parts of the human body are treated through heat e

investigation [17-26] available in existing literature.
A compressible fluid is one whose density is varia
velocity and causes significant changes in the fluid’

for the study of compressible flows and examined how ultr ie’radiation affected the flow of compressible fluid in
porous media. The MHD effect and porosity on compreSS|bI axwell fluid is examined by Mekheimer et al. [28],
who investigated lower flow rate for the Newt fluid relative to the non-Newtonian fluid.

According to the literature cited, abov re Nis a lot of discussion given about the peristaltic flow of
compressible fluid in symmetric an i
peristaltic flow of compressible fluid in d channel with the effect of source/sink and joule heating. The
joule heating and source/sink may, Jaave ces for heat transfer systems and energy conversion. This article
reveals thermal analysis of an unsfeady cpmpressible flow of viscous fluid with the effects of source/sink and joule
heating in an inclined chaffhel. A finite difference method is implemented to examine the above problem. This study
also described the flow rate.

2. Mathematical e
An electrlcally ting compressible flow of viscous fluid in a 2D asymmetric inclined channel of width
b, + x, V) ds coordinate axis. The fluid constitutes an effect of magnetic field acting perpendicular to the

nce of source/sink. Heat transfer analysis is also employed with thermal buoyancy effect and
ipation. Moreover, joule heating effect is also present. The sinusoidal waves are moving with speed ¢

channel
viscous

along the s of the channel. Fluid flow is due to propagation of these sinusoidal waves.
Mathematically, wave propagating through channel walls are described as:
Z 1
H,(x,t) =+b, +a,cos (TT (x — ct]) =+4b, +1n,, Upper Wall @)
H,(x,t) = — CIHCG.S‘{A (x —ct) + qb) —1,,  LowerWall )

where @, @i, are waves amplitude and 77,,7], are vertical displacement from mean position d; and d,
respectively. Wavelength and phase difference are denoted by A and ¢, respectively.
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Moreover, @y, &t5, by, b, and ¢ obeys the following inequality;
aj + a3 + 2a,a,cos¢ < (b, +b,)".

Flow's governing equations are as follows:
Conservation of mass

g +(V.Vp) +p(V.V)=0. (3)
Conservation of momentum

pV, +p(V.P)V = —Fp+ V.5+ ] X B+ pby(T —T). 4)
Energy equation

pC (T, +(V.V)T) =p, + (V.V)p +kV-T +].J+ ¢+ Q. (5
where B2, Cp, Ep ut V k and T, represents pressure, specific heat, coefficient of expansion,

Extra stress tensor 5 is defined as:

density, dynamic viscosity, time, velocity vector, thermal conductivity and temperature of®a spectively.
S=pL+ LT —Z(V.V)), (©)

where L the velocity gradient and LT isits transpose.

T represents the current density and is described as
] =o(VxB) @)

where & denotes the fluid electric conductivity.
Also, viscous dissipation is defined as

@ =u [Euxz +2v,7 + (u}. +v,) i, 71 (8)
The ideal state equation, which characterizes the fluid reagtier, is provided as
1ép _ ©)

pdp e
with the solution
p = pyexp(k.(p—p.)), (10)

where, k. the fluid's compressibility and 25 the density at the reference pressure p,.
The leading equations®@ill takéthe fofm with above mentioned assumptions
py + up, + voflt p(TF v,) =0 (11)

. 13 5 ,
p(*u,r L.+ m.-,}.) =—p,Tu ('E-"'u + ?E (ux + lﬂy)) —ouBj + pg(T — T, )¢sina,

(ur + uv, + li'lﬂy) =—-p, + _u(?:v + iﬂi_}; (ux + uy)) —pg(T —T,)écosa, (13)

pC, (T, + uT, +vT,) = p, + up, +vp, + kV’T + ou’Bj + ¢ + Q,. (14)

Eqg. (11) takes the form after using Eq. (10)
kc(pr +up, + L:pr) + {:ux + uy) =0. (15)

The boundary conditions are
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Att=0,u=0T=0.

Horizontal velocity is described with slip condition, i.e.,

—Au H
= ¥ — 1
u { A, aty { o (16)
Vertical velocity is deliberated with no permeability, i.e.,
Mir {Hl
= . at = . 17
[mr Y =4, 1

Thermal slip condition, i.e.,
_ Ty _ (H,y
TiﬁlTy_ {T.I! at}r_{H . 18

2
Introduce the foIIowing non-dimensional variables which are to be defined as

T-T, u v o I ct o I
TL_TD r ?? ! ﬂ" ﬂ’ p PD! bl.' bllp
H, ¥ H, a ' f 2nb
h =—!'!|i_}=—!'!}:"r=—’h =_=:a'=_=:p = ; L= . .
2 b, b, 5, 2 b, a, " g0t
__ Pgch, __oBib, #Cp . _be 1
RE—F—,H—FI—BG,P " ,S 5:},(}9 lp’f
%o’
k(T —Tp)
(19)

In terms of Egs. (19), Egs. (11-14) and (16-18) r to

}{(pr +up, + vpy) +u,+v, =0 (20)
p(ur + uu, + Vi, Eu” + 3 Viey + u},},] Hu + P-?f?;:ﬂf:r’ 21)
p(v, +uv, +vv, ‘|‘ Uy ﬁuw] + %’ (22)
(9 + uﬁ + 'IF'E ) 1} fl pr + up, + vpy] + [9-7&’-7&’ + 9.}’.}'] +
Ma (}’ l} z(u ) +2(v ) ——(:1:1 +u,) ]+HM:1 * 2 Rj;r,
(23)
7, (x, 0 - 1), =
Ma {xr DS{ﬂf{x - t] + ¢]; (25)
(26)
0
— [1_ @7)

3. Numerical Technique

In order to calculate the solution, an explicit finite difference method is applied. Finite difference method
converts coupled current problem from the set of nonlinear PDEs along with boundary conditions. Space variables
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and time variables are approximated by the central and forward differences in this present study. We denote
w(xy, v, t, ) asuf s+ Using this method, one may estimate partial derivatives of it as follows:

w. = (M) u. = (_HE—L_S+HE+L_S} . = (_HE_S—L+HE_S+L) (28)
¢ At e T T ey T 2Ay !
w. = (“E—Ls_:“;.s"'“EHJJ _ (HE_S—L_:HE_S+HE_S+L) 29
e (Azx)? r Uyy = (ay)? ’ (29)
w. = (uE—L_E—L_HE+LS—L_HE—L_.S+L+HE+L_S+L} (30)
el 4(ax) (ay) )
When v and & are replaced by 1 in the partial derivatives of finite difference techniq ing “into the

approximations for finite difference technique in Eqgs. (28-30), respectively. Using these
(20-27) are given as

n n n n
n+tl — ..n n [Prtrs Pr—us “Prs—1 PRra+r)_a
Prs = Pr.— At [“k,s ( hv ) + ( 20y Vies T

atighs into Egs.

n —pn
kE+1 ?{_.5—1.]]
r
2y Ay

@31

u;;:l — “a;ﬁ — At [“’ﬁﬁ (HE+L_5_HE—L5) ¥ ”th (HE_S+L_HE_S—L) ln [(PE+LS_PE—L_S) _
2Ax 2ay ex e 2ix
i[ﬁ(“;+gs_:u;,s+ug—gs) + (EE,S+L_:HE,S+HE,S—L) + E(FE—LS—L"TEH.,S L_UE—L,.S+L_L1;+LS—L)] +
Re |3 (ax)? ) - (Ay)® 3 4(Ax){Ay)
+MT£?;: } . 91’1’-‘[&’[Pk_.s_ch]G””"”gk_.s]’
= Re

(32)

n n
ntl _ _..n n [ Vk+rs VR-18 n H5— 1 1 Prs+1 Phs—1
v =, — At [’u (— + v ( 7 ) + —
ks k. ks Thx Ay axpLx[pE_s—pE:I] AV
S n n _.n n _.om o,
i [(_-LF{,5+L?{+L,5+L?{—L,5 u?c—J.,.s—J. “?c—L,.SH.) + 1(!’?{,5“. -LF{,.s'l'!’?c_.s—L)] _
Re CAx)® CAyh 3 (A
sxp[‘z[p;_s—pcjl]fv'r'cos'ﬂ;s}]

Re ‘
P (33)
= gt gl 3

gu-l-l: n — At = F{—Ls) n (r{_5+1. r{_E—L)_ £
k.= v ”PL"[P;{PEJ] {Y

k.= ks 2Ay
n+L ‘?'I.

1 ljiltg (p;,.5+1._p;,5—1.)+ (p?c,.s _pg,.s)] + [(E;+L,s_:g?rcl,s+grc—1,s)+

2Ay At (Ax)?

n n 2 _..n n Z
[y -1Ma® B T T Uyt ULy e
- 2 4o (o s
Br.Re Re 2Ay 2Ax

n n 2 n n n n
“k_s+L_“k_s—L)] _ E[(“?HL_.S_“F{—L_.S) ¥ (_L?{_S—L+L?{_5+L}]
2ay 3 2Aw 2ay

I
—
[

a;

L]

+

=
|

E

Lo

|

l— HMa*(y* —

(34)

Att=0, w,. =0, v, =0, 6, =0, (35)
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At
K {HE-H-__”ES—'_) (':”'-}g;;_':”'_}gs)
— h’i = 1+ni . no _ " lay n _ ar
Y= -I = .il_} ! uk-‘s - ult _— ’ uk,&' - ‘ n+L s m o
I, = —0 —1, K ("‘?f-ﬂ'_ J;c-s-_'-} _ (n2dhs o)
n :I':l}- Ar
EF"{I.H'__EF?.S—'_ 0
ntp, (o) = [0 (36)
4. Discussion
This section includes a detailed graphical discussion of axial velocity variation, flow ratéj*and femperature
against sundry parameters in order to make a quantitative assessment of the under di d.p eters in the

current study. We repeatedly executed our code with different common parameters. The metgrs, which are kept
constant throughout the whole study: € = 0.5, p, = 10, K, = 0.01, d = 1.

Figures 1-8 examined the impact of different parameters like R, g,
velocity. Figure 1 illustrates the impact of Reynolds number on axial

(source and sink) on axial

t is explored that axial velocity is
. channel; however, axial velocity is
constant at center of channel. Figure 2 displays the impact of phase differenceien velocity. It has been seen that axial

of channel. Figure 3 portrays the impact of magnetic field on velgeity of fluid. It is deliberated that velocity of fluid
slows down as the magnetic number increases as a result of tic field’s resistance. Figure 4 explores the

velocity increasing in the vicinity of the walls by increm ompressibility parameter. Figure 6 illustrates the
impact of Grashof number on fluid velocity. It is examined’that there are buoyancy forces dominants inside the
channel so fluids velocity is increased by increasing Grashof number. Figures 7 and 8 shows the impact of source
and sink parameter against fluid velocity. It i ar from the graphical view that there is an increasing behavior of
velocity of fluid as source parameter iAgreasesis compared to sink parameter, fluid velocity decreases.

Figures 9-15 explain the behavior undry” parameters, like @, M, Gr, Pr, Ma, R, ¢ on dimensionless
temperature. Figure 9 explores th havi wall amplitude on temperature. As wall amplitude increases the
temperature of the fluid slows down. Figure 10 examines the impact of magnetic number relative to the phase
difference on dimensionless temp As the magnetic number and phase difference increase, there is an increase
in the temperature of the fl ig 1 portrays the impact of Grashof number on the temperature of the fluid. It
has been seen that thergyi§ an o tory behavior of temperature against Grashof number, at the upper wall there is
maximum temperatu at the lower wall of channel the temperature is minimum. Figure 12 examines that the
impact of Prandtl smtimber emperature. As the behavior of temperature is oscillatory at the near of upper wall
there is greater tum diffusivity, while at the lower wall of the channel there is thermal diffusivity. Figure 13
temperature against Mach number. The temperature of the fluid increases as the Mach
influence of temperature profile is visualized against the Reynolds number in Figure 14.
ory behavior of the temperature of fluid at the near of upper wall there is decrement in the
while at the upper wall there is an increment in fluid’s temperature. Figure 15 depicts the impact of
ce on temperature. It has been seen that temperature of the fluid increases as the phase difference

increases.

Figures 16-18 show the flow rate for M, R, and ¥. It is explored that Reynolds number enhances the fluid flow
because there are inertial forces as a dominant factor in figure 16. Figure 17 shows the impact of magnetic number
on flow rate of fluid. When there is a higher magnetic field present, fluids require more force to maintain the same
flow rate. Therefore, a decrease in flow rate results from an increase in the magnetic number. Figure 18 deliberated
the behavior of compressibility parameter # on flow rate. There is decrement in flow rate with an increment in the
compressibility parameter of fluid.

5. Conclusions
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In this section, this article investigates the thermal analysis of peristaltic flow of unsteady compressible fluid
under the effect of viscous dissipation. The imitation of Joule heating effect with source/sink is also incorporated.
The notable detection of the above analysis is given and outlined as follow:

e  Fluid velocity is enhanced by the compressibility parameter, and in this way, fluid moves faster.

o The effect of inertial forces shows an oscillatory response towards axial velocity while the impact of
buoyancy forces enhances the fluid flow against axial velocity.

e The resistive nature of magnetic field slows down for axial velocity.
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e  Fluid velocity is enhanced in the source
The analysis of temperature dispensation sho

forces.

ing the reverse behavior in the sink case.

e Thermal dispensation shows an increasing behavior for Mach number.
e Temperature is enhanced when t netic number increases. It is just due to the retarding force.
e Flow rate drops when m tic d compressibility parameter increases.
e  Flow rate shows increment ha en the inertial forces are dominant.
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