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Abstract

In this paper, an analytical solution for orjng the buckling characteristics of
functionally graded (FG) plate is presented Based on a quasi-3D shear deformation
theory. It is considered that thegplate is slbjected to different types of in-plane
compressive load. The FG pI placed on three-parameter foundation Winkler-

material properties of FG plate are assumed to be
are estimated through the Voigt micromechanical
ions are obtained on the base of the quasi-3D

varied across the thickn
model. The governi

alytical solution is used to determine the critical buckling
ion of numerical examples and the comparison with those of
the re i literature, the convergence and the reliability of the present
alidated. Finally, the parametric investigations of the in-plane
are carried out, including the influence of boundary conditions, elastic
, plate geometric parameters and power law index. The results reveal
critical buckling loads are strongly influenced by several parameters such
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1. Introduction

Functionally graded materials (FGM) are inhomogeneous advanced composite materials that have been
introduced into industry in recent years. They are made of a mixture of two or more distinct material phases
generally ceramic and metal. The mechanical properties of these materials changes gradually in one (or more)
direction(s) according to a specific function. Since these materials exhibit many desirable properties, they can be
used as effective compositions for beams, plates and shells [1]. In the open literature, investigation of mechanical
behavior of structures made from FGM have been widely reported and therefore many solutions and models were
proposed [2-7]. Plates are important components in many engineering applications. They are used in several
practical situations such ship buildings and automotive industry where these plates can be submitted to in-plane
loads of different types that can cause buckling, a phenomenon which is highly undesirable. Therefore, kbowledge
of the stability characteristics of FG plates is of great practical importance for the design of plates. Gons ntly,
several researchers have been interested in this research axis and several works have been published

Sari et al. [8] used the classical plate theory (CPT) and the Eringen’s nonlocal elasticity
buckling of FG thin nanoplate subjected to biaxial linearly varying mechanical loads and
distributions through the thickness. Taczata et al. [9] studied the nonlinear stability of sti
to thermo-mechanical loading using the First Shear Deformation Theory (FSDT) in conj
method (FE). Using the same theory, Thang et al. [10] obtained an approximat

ith finite element
study the elastic

ction with the nonlocal elasticity
ing and free vibrations analysis of
[14] used the higher-order shear deformation
int mterpolatlon method (RPIM) to predlct

thick FG nanoplates resting on Pasternak foundation. Van Do
theory (HSDT) and the mesh-free approximation based on th

nknown functions. Yi et al. [16] presented a
closed-form solution based on a special higher-order s normal deformable plate theory for the static,
dynamic and buckling analysis of a simply supported FG plates. Kar and Panda [17] examined analytically the post-
buckling behaviour of FG curved shell panels
compression. The authors used the HSDT in nction with Green-Lagrange geometrical nonlinear strains. Singh

nonlinearity to study dynamic bucklin
types of in-plane pulse forces. Kolakaws

esponse and shock spectrum of imperfect plate under various
Czechowski [19] studied linear and non-linear stability of a square

and post-buckling behavigp of FG\imperfect plates resting on Pasternak foundation exposed to mechanical, thermal
and thermo-mechanical loadgyTh the Reddy's higher-order shear deformation plate theory to formulate the
problem and the Galegkin ‘méethod to determine the buckling loads. Tamrabet et al. [21] developed a powerful
method to analyze ho ous metal plates with gradually changing properties buckle under pressure. This method
eri erties change throughout the plate's thickness and the influence of the holes within
Slimani et al. [22] studied how bending affects plates made from materials that gradually

oo

the vibrafiefs of plates made from materials with gradually changing properties (FG plates) that are supported on all
sides (simply, supported edges). To achieve this, they employed a sophisticated method that considers the way the
plate bends’and stretches, along with the variations in material properties throughout its thickness. Messaoudi et al.
[24] developed a new approach to analyze the vibrations of plates using a simpler method compared to existing
techniques. This method requires solving for fewer unknowns, making it more efficient. Unlike traditional 2D
methods, it also considers the effect of the plate stretching in the thickness direction. However, this approach has
limitations compared to computer simulations, especially when dealing with complex boundary conditions.
Shahsavari et al. [25] presented a study focused on the fourfold coupled (axial-shear—bending-stretching) size-
dependent shear buckling force of FG porous nanoplates exposed to hygrothermal environment and lying on Kerr
elastic foundation. Bodaghi and Saidi [26] employed the CPT based on exact position of neutral surface to analyze
buckling of thin FG plate resting on Pasternak foundation and subjected to non-uniformly distributed in-plane
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loading. Singh and Harsha [27] proposed a 2D HSDT solution to investigate the buckling of FG plates exposed to
uniform and non-uniformly applied in-plane and transverse load.

Mohammadi et al.[28], study the dynamic behavior of rectangular nanoplates with single-layered graphene
sheets laying on an elastic medium subjected to shear in-plane load, based on differential quadrature method. The
dynamic behavior of annular and circular graphene sheet surrounding Winkler-Pasternak elastic supports and
subjected to thermal and in-plane load, using the nonlocal elasticity theory, have been study by Mohammadi et al.
[29]. Mohammadi et al. [30] have studied the effect of the thermal load on the free vibration of mono-layer graphene
sheet laying on an elastic foundation. Using the nonlocal elasticity theory to obtain the governing equations and
based on Levy and Navier solutions technics, the naturel frequency are obtained for three cases of boundary
conditions. Considering the effect of viscosity, the dynamic behavior of nanobeam embedded in the visco-Pasternak
foundation subjected to hygro-thermo-mechanical loading have been study by Mohammadi et al. [31}*Chu et al.
[32] examine the stability and dynamic response of circular sandwich plates with a special foam core rced
faces with graphene platelets in thermal environment. The Chebyshev collocation technic is applied to_attain the
discrete form of equilibrium and dynamic equations. Based on the novel theory of two- al/nonlocal
elasticity, wave propagation and vibration of a nano super capacitor based on Kerr viscoelasti
two springs, two dampers, and one shear element are studied by Al-Furjan et al. [33] u efi zigzag theory
(RZT). Wan et al. [34] investigate the effects of reinforcing a hybrid nanocomposite visc@efastica4hombic plate with
Carbon Nano-Tubes (CNTs) and Carbon Fibers (CFs) laying on a viscoelastic torsi al substrate on the
post-stability response, naturel and excited vibration . The distribution ofg@p the structural damping is

>

study Wave propagation of imperfect
ers. Based on refined zigzag theory

in improving the mechanical characteristics and optimization in nanocomposite materials. Chu et al. [37]
presents the energy absorption, free and forced vibrati jch non-rectangular nanoplates made from
alumina reinforced by graphene platelets (GPLS) wi i spidal edge laying on a viscoelastic foundation.
Micromechanical Halpin—Tsai distribution and Kelvin— s are considering to obtain the effective material
characteristics and structural damping, correspondingly. Re zigzag theory (RZT) and Hamilton’s principle are
used to derive the coupled electro-magneto-mechanical equations of motion and analyzed by Galerkin’s and
Newmark’s procedures. Theoretical evaluatio e impacts of moving load and the use of a piezoelectric patch on
the dynamic behavior of a Nano Conical Pa NCP) laying on viscoelastic foundation via the First-order Shear
Deformation Theory (FSDT) has tud u et al. [38]. Boron nitride nanotubes (BNNTS) are used to
reinforce the piezoelectric patch. Integr uadrature (1Q), Differential Quadrature (DQ), and Newmark methods

were coupled to solve the equation otionsrWan et al. [39] examine the nonlinear flutter response and reliability
of trapezoidal plates made_of hybfid composite core layer reinforced by carbon nanotubes (CNTs) and carbon fibers
and subjected to yawed va sin ed differential Quadrature hierarchical finite element method (DQHFEM).

The complexities of the h
et al. [40] optimizes
challenging conditio

an posite properties are determined by using the Halpin-Tsai model. Kolahchi
conical shells made from advanced materials for better performance under
magnets, moisture, and heat. Using Hamilton's principle, the researchers derived
otion of the system. These equations were then solved with two techniques: the
differential quadfa method and Bolotin's method. This allowed them to determine the range of conditions
i where the system remains stable.To further improve the system's performance and find
conditions, the authors proposed a new hybrid optimization method. This method combines
particle optimization (PSO) and harmony search algorithms (HS). recently the researcher and his team have
several warks on static and dynamic behavior solicited on different types of structures [41-50].

Surveyjef the literature shows that a few studies address the buckling of FG plates subjected to uniform and non-
uniformly‘applied in-plane. In this regard, this paper aims to propose a theoretical formulation based on a quasi-3D
solution that includes the stretching effect to study the buckling of FG plate subjected to compressive uniform,
linear, and non-linear in-plane loads. Stretching effect plays a very important role in determining the response of
thick structures. In addition, several types of foundations will be used such as Winkler, Pasternak and Kerr with
various types of boundary conditions. To the best of the authors' knowledge this problem has not been treated
before. The proposed model contains undetermined integral terms and involves only four unknown functions. In
addition, several boundary conditions will be considered and their effects on the critical buckling load will be
determined. The overall material properties of the plates are considered to be varying across the thickness according
to a power law. Analytical solution will be used to determine the critical buckling loads. Comparisons studies are
carried out in order to validate the efficiency of the present model. Then, parametric studies are conducted allowing

desi
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studying and analyzing the effects of power law index, geometry of plate, elastic foundation parameters and
boundary conditions on critical buckling load of FG plate resting on elastic foundation.

2. Problem formulation

The geometry and dimensions of the plate resting on elastic foundations are represented in Figure 1. Rectangular
Cartesian coordinates (X, y, z) are used to describe infinitesimal deformations FG elastic plate occupying the region
[0,a]x[0,b] x[-h/2, h/2]in the unstressed reference configuration. The top and bottom faces of the plate are
atz=+h/2, and the edges of the plate are parallel to axes x and y. The volume and the area surface are indicated

with V and A, respectively.
The effective material properties, like Young’s modulus E can be expressed by the rule of mixture as:

P (2)=Pn+(R—Pn) V(2) (€
V(z):(;+;)

@)
The subscripts m and c refer to metal and ceramic. k is the volume fraction index ( s@, which indicates
the material variation profile through the thickness.

z
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Fig 1: coordinate sy8tem an metry for rectangular FG plates on elastic foundation

The plate is assumed to be subjected ifferent type of in-plane compressive loading as shown in Fig.2 (Singh
and Harsha [27]).
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Fig2: schematic representation of different type of in-plane compressive loads (a) uniformly varying load, (b) trapezoidal, (c) triangular,
(d-e) exponential varying load, (f) sinusoidal load
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2.1. Kinematic

The displacement field satisfying the conditions of transverse shear stresses (and hence strains) vanishing at (x,
y, £h/2) on the outer (top) and inner (bottom) surfaces of the plate, is given as follows [51]:

- Mo f(2)[6d
u(x Y. 2) =g (0 y) 22+ 1 (2)] 0

oWy
v(X,y,2) = Vo x,y)—-z—= & 0k f(z)j&dy

®)
w(X, y,2) = Wq (X, ¥) +9(2)0(x, y)
Some simplifications are used here to get:
oWy 00
u(x,y,2) :uo(x, y)—Z—+k1Af (z)—
aw k Bf
V(X,Y,2) =Va(X, P 7)—
(xy.2) =v(x )=z ( ) @ 2
W(X,Y,2) =Wy (X, ¥) +9(2)8(x, )
And
A H
Where:
mz nz
ﬂ = — = —
a M= (6)
In the present study, the new shape function f (z) i ollo
f()=z| = - 2 x(5) 7
@=2 -2 ('] ™
Where:
df (z)) g
)= o[ 4 ®)
Based on the small-strain elasticity y, ear strain expressions derived from the displacement field are
given as follow:
o 1 2
e, =&, +ze + T(z)e
£, =g° +Z£$y+f?2 2 O
+
! 9)
62w0
o~
62w0
=4 v
Wy Ny AL (10)
oy o oxoy
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%0
kK, A—-
gix ' 8X2 0 kA% 1 %
82 _ kBazﬁ Vv _ ! OX vz _ OX
- ,B=— , = , =
" oy 7wl ksl \m.) | (11)
£ %0 oy o
Y0 (k A+ k,B)
oxay
The stress—strain relationships for the FG plate are as follows:
o-xx Cll ClZ C13 0 0 0 gxx
Oy C, C, Cy O 0 0 yy
o-ZZ _ C13 sz C33 0 0 0 ‘EZZ
T 0 0 0 C_ 0 0]y,
7y, 0 0 0 0 Cy 0|y, 2)
Ty 0 0 0 0 0 Cyuf |y
The terms Cj; are given by:
E (2)1-v)
Cp=Cp=Chg=—" """+
@-2v )1+v)
v E (2)
C.=C.=C.,,=_  —\*7
12 13 23 L-2v )1+v ) (13)
E (@
C,, =C.,. = =
44 55 66 2(1+V )

2.2. Governing equations

By employing the principle of virtual displaceme e external work is equal to the internal one, the
governing equations of equilibrium for the FG plate are

0=[(0U +06V +6U )dv (14)
Vv f

Where oU is the variation of strain energy, dJais the variation of the external work done by external load applied
to the plate and SU, is the variation of strain f@. of foundation

5U:\./[|:0-XX58XX+O-W58W+ o yé‘}/xy+ry257/yz +TX257XZ:|dV (15)

Ny 3 £9x + My S o Px O +Nyy Sy + Myy S by +Pyy 56y
o
§U:£J; +NZZ 5892"' xy55}(y+ny58)%y +Qyz§}/92 +QXZ 5}/)(()2 dA (16)

The stress, moment an itional moment resultants N, M, P and Q of the FG plate are expressed by:

My hi2 Oxx
zdz, My, _—hjlz Oy zdz (17)
Mxy Tyy
(n)
Qy, hi2 |7y,
f(z)d z, = g(z)dz
{Qyz —hI/2 7y, (18)
Tyy
(n)
Sy, hi2 |z, of (2) h/2 (n)
= dz, {N,}= "(z)d z,
{Syz} —H'./Z{Tyz} oz { ZZ} —P{/Z {O-ZZ} g ( ) (19)

Substituting Eq. (5) into Eq. (7) and the subsequent results into Eq. (12), the stress resultants of the FG plate can
be related to the total strains by:
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0
Noo | T 0 B, 0 Cs;, C 0 7|
N A A, By, By S LS X3 &0
W
W A, Ay 0 By, n 0 Cs, Csy 0 Xos 0
N,y 0 0 A; O Bs O 0 GCs¢ o "’"Iy
M B, By, 0 Dy D, O F. Fy 0 Yis Exx
1
My, _ B, By 0 Dy, D, F, Fp 0 Yy |]éy
My[|© 0 By 0 0 Dg 0 0 Fy o ||& (20)
P Csy Csp 0 Ry R, 0 Hy Hy 0 Ry &2
Pyy Cs, Csy 0 R, Ry 0 Hi, Hy 0 Ry &2
P, 0 0 Csg; O Fe 0 0  Hg o "
£
N, L X3 Xy 0 Yz Y 0 R Ry 0 Zg i (X)y
gZZ
Se | |G G, 0 0|7
S 0 1 1
vl _ 0 0 Gy Ggil||”w (21)
sz Gzll4 G66 0 0 e Sz
1
Qyz 0 0 G55 GGG yi]z
Where: Ajj, Bjj, Csij .. .etc. are the plate stiffness’s, defined as follow
Ay By Dy Csy Ry Hy| Cu
A, B, D, Cs, F, Hp,,= hj/ [Lz,2%, f(2),zf(2), 2 C, 22)
A Bes Deg Csg Fog Heg
(Azz’ By D%, Co. Ky sz) = (Au’ By, Dy, Cy, Ryt (23)

8f z
G24 Ggs = J C44 ( )

Gi4 —Gé5 = j C44 g(Z) z
(24)
Ggs = j Cse [g(z) dZ

{x, ,Y,J,R”,Z,,} zq C; Bz f (20’ 9'(2)d z (25)

The variation of w N—plane loads is given by:

=—[Noéwd 50)dA
JNow +9(2)56) 26)
With:
82
strain energy of foundation is expressed as
= [ f,owdA=|f (6w, +g(z)50)dA (28)
A

Where“fe is the density of reaction force of foundation. For the Pasternak foundation model:
f, = Kw-GV’w
K=k, G= K,

The Kerr model foundation is a three-parameter elastic model that consists of a shear layer (with stiffness)

independent upper (with stiffness) and lower (with stiffness) elastic layers (modeled by distributed springs). The
distributed reaction of Kerr foundation model is defined as:

(29)
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f, = Kw—GV’w
kk, = kk, (30)
k +k, k, +K,

Substituting equations (10) and (11) into the equation (16), given equation is combined with equations (26) and
(28), the governing equations of stability can be expressed as follows:

K =

. aNxx aNXY_
S, : x oy 0
_ Ny Ny,
Vg N 8y =0
. My 50 My *Myy & o
S S 25 ay o +N+f,=0 1)
°P, P
50: —Ky AT A+KoB
1 aXZ 2 2 ) ay
KlAaanz + K,B 2;1 aQXZ (Syyz - Ng + g(Z)N+ 9(2) fe=

Substituting equations (10), (11), (20) and (21) into equation (31), the gowe
plate are defined by:

ations of stability of the FG

3

' %, o, v, 3wy
é‘uo : Au X2 + Aee ay? +(A12 + Aee) oxoy Bll a3 _(812 +ZBG (32a)

%0

+Cs, KAZ—+(CS K,B+Coy (K, A+K,B) o

oV

. aZuo 62v0 0
6\/0 : (A12 + Aee) OXoy + Azz ay? + Aee X2 /

+Cs,, K B%+(Cs K/A+Cs (K A+K,

8oy (32b)
63u0
OW_: B, — +ZB

0 11 aXB 66) + B +ZBGG)8XZay
0w, 50
0
D11 x4 Dzz 8y4 % 8X28y2 11 F K Bw

2
820 o°w aw
+(F, + 2R, )R Ak 0C 70 g Ot

+Y — )N, Xy@

2 X 238y2

’w,
20) =0

(32¢c)

_ g ou v,
60 : -Cs,; 3 —(Cs1 K,B+Cs, (K A+K B) 6y2 =X, W—CSZZKZB—3
63v v, 84w 64w
— (@5, K A+ s (K A+K B) o2 oy X gy 0 +F KA—L -
d*w, o°w aA
ZayZ +Y13 aXZO +Y23 ayZ H (K A)z %

+(K A+K B)(F +2F, )

Zgyg—(ZH (KA)K,B) +H_ (K A+K B)’ )

H,, (K,B) o +((K1A)2(3j34 +

2 (32d)
2K,A Gy, + Gy 72R13(K1A))2X—f+ ((K,B)?Gs + 2K,B Ges+ Gy 72R23(K25))27f,

2 52 2
—g(2)| N La‘;" N;’yLW—Ngaw +9(2)| Kwp—G(2W0, 90y | _ g
0Oxoy oy? Xz oy?
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2.3. Solution for FG plate with various boundary conditions

Solution of Eq. (32) for the FGMs plate under various boundary conditions can be constructed. To solve the
governing equations based on the proposed theory, a general solution of different boundary conditions is used. To
this end, the displacement field can be assumed as

oX . (x
W) U T2 (y)
Vo (X, Y) oY, (y)
=4V _X_(x)—"
Wo (X, Y) o K () oy (33)
W X (X)Y, ()
2] X, mn m n
R P
WhereU ,V ,Wand y are arbitrary parameters to be determined. The functions Xm(x) and Ya(y) sted

here to satisfy the geometric boundary conditions and represent approximate shapes of the deflected sur of the
plate. These functions, for the different cases of boundary conditions, are listed in Table 1.
Substituting equations (33) into equations (32), the obtained equations are expressed as foll

[MJ{A} = {0} 34)
Where {A} denotes the transposed columns
{A} = {U mn ’an 'Wmn ' ¢mn }T (35)

[K] is the symmetric matrix given by:

My, My, M, M,
M M M M
[K] _|Ma 2 23 2% (36)
My My, M33+§(Y) My, + (
M, M, M, +g(z)§(y) My, +(g(Z))
The elements M;; are expressed as follow:
My, = Ay, + A
My, = (A, + Ag) g
M,; =B o, — (B, +2Bg) e
My, = (Cs;,K,B +Csy (K, A #K7B))z, SuKiA g, + X306
M, =(A, + Aee)alo.
M,, = Aypa, + Ay
M, =-Ba, -
M,, = A A
o+ X3,
+2Bg ),
+2B o (37)

Dy, @3 — Dy —2(Dy, +2Dgg )y + K _G_(/12 +ﬂ2)
E. K Aoy, +(F, +2F)(K,A+K,B))ay, + F,,K,Bag
+ Yty + Vet + 9(2)K +9(2)G(A + 1%)
M,; =—(Cs,K,B +Csq (K,A+K,B)) o, —Cs, K A a3 — X5 0
M,, =—Cs,,K, a; —(Cs, K, A+ Css (K, A+ K,B))a,, — X5 1
M, = Ry K Aay; + (Fy, +2F6) (K A+ KzB))Oin +Fy, K_zBas
+Yys 0 + Yo a3 + §(2)K + 9 (2)G(A” + 41%)

My, = ~(K,A)* Hyy s — Hy, (K, B) a5 — (2H,, K, AK, B

+Hg (K, A+ K,B)) ey, + (G (K, A) +2GL, (K, A)

+Ggs — 2R3 (K A)) e, + (G (K, B) +2Gy, (K, B)

+Ggg — 2R, (K, B)) ety — Zgeer, + 9(2)* K + g(2)°G (A + 14?)
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0

. [\
With & (y) = =Ny (a +705), Ny = =Ny, NS =—x 1Ny, Ni =1, NO =0 (38)

y

And

a

b
(XaYo XoYo , XY XY XY, dxdy (s, 60 2;) j (XnYo, XY, XY, )XY, dxdy
0

(al’a2’a3’a4): m'n'*min
0

Oty
O e T

(.09, 01) II XY XYy o X Y) Yo AXdy (0,0, 005) =

m'n?* tm'n?

O'—.m

b
[ (XY XY XY, )XY, dixdy  (39)
0

The used non- dlmen5|onal parameters are

o Neb? 12(1-v?*)Nab® | K,a@°
N = = . Kk, = ,
D, Ech D 40)
K aZ 2 2 2 3
A ,ku:K“a ,ks=Ksa ,klzK'a,D: hE02
P D D D 12(1-v?)
Table 1: The admissible functions Xm(x) and Yn(y) [52,
Boundary conditions The functions X n
atx=0,a aty=0,b Xm(X) n(y)
SSss X,(0)=X,(0)=0 Y, (0)=Y,(0)=0 sin(4 n(uy)

Xq(@)=X,@=0 Y, (b)=Y,(b)=0

CSSs X,(0)=X,(0)=0 Y, (0)=Y,(0)=0 sin(Ax)[cos(¥)—1] sin(uy)
Xq(@)=X,@=0 Y, (b)=Y,(b)=0

CSCS Xy (0) =X, (0)=0
Xq(@) =X, (2)=0

CCss X, (0) =X, (0)=0
Xq(@) =X, (2)=0

CCCC  X,(0)=X,(0 50
Xn(@) =X, ()=

FFCC Xu(0) =X, Oz
X;(Q=X; )=0) Y,(0)=Y,(b)=0

FFSS X! (0) X" Y,(0) =Y, (0)=0  cos*(Ax)[sin’(Ax)+1Fin(xy)
() = =0 Y, (b)=Y,(b)=0

tiye’ with respect to the corresponding coordinates.

in(A¥f[cos(Ax) 1] sin(uy)[cos(xy)—1]

Sin”(Ax) sin(uy)

sin®(Ax) sin®(uy)

cos?(AX) [sin2 (A%) +1]sin2(,uy)

(41)

¢ (y) is defined as a function representing the variation of in-plane load along the y-axis (see table 2). y is the non-
dimensional load parameter. It takes two values, y =0 for uniaxial compression and y =1for biaxial compression.
Q is a parameter which controls the shape of a function defining in-plane load

A(Qo)z%icj( )sm( byjsm(be)dy (42)

w is a constant parameter determined during post-processing and gives satisfactory results for one parameter
approximation only, r = j=1, and isequal to b/2.
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Q, =0for uniform distributed compressive load, Q, =1, for compressive triangular load and 0 <<, <1 for
trapezoidal compressive load.

Table 2: Different type of variations in-plane load [27]

Load behavior
¢ ( y) A (Qo )
. . Qo y Q0

1 Uniformly varying (UVL) 1- 1-—

b 2

8

2 Sinusoidal (SL) sin (”y) 2

b 3z

QY 4% (eQO 71)

3 Exponential (EL) e

e 2 2
0, () +47

4. Numerical results and discussion

In this section, various examples are introduced for the buckling of FG plate resting err/Pasternak/Winkler
foundation with general boundary condition. The composed plate is made of Aluminui Alumina (AI203)
with the following properties:

v Alumina, Al,Os: E =380x10° N/m?;
v Aluminium, Al: E =70x10° N/m?;

The Poisson’s ratio is assumed as constant for all results (v =0,3) .

In order to verify the accuracy of the present formulations, the non-dimensiénalized buckling load N of FG plate
simply supported and without elastic foundation predicted usi quasi-3D solution is compared with the 2D

solution of Singh and Harsha [27] as listed in Tables 3-5: Thegigsults resented for different values of power law
exponent “k”, shape parameter “ ), ” and for three ¢ SSive e load (UVL, EL and SL). Note that, in these

tables, the span-to-thickness ratio (a/h) is taken to be equ

Table 3. Comparison of non-dimensional critical buckling loads N (UVL = Uniformly Varying Load)

K4

k=1 k=4 k=10
bl O f [27] Present Ref [27] Present  Ref[27]  Present
0 6.23988  6.50800 5.45286  5.59653
0.25 9407  7.13129 7.43773 6.23184  6.39603
1 0.5 12451 4 12.7642  8.31984 8.67734 7.27048  7.46204
4 75 6 15.3170 9.98381  10.4128 8.72458  8.95444

18.6782 19.1463 12.4798  13.0160 10.9057 11.1931

0 3.75015 3.81066 253616  2.60333 2.20779  2.24664
25 4.28588 4.35503 2.89847 297523 2.52318  2.56760
0.5 5.0002 5.08087 3.38155  3.47110 2.94371  2.99553
0.75  6.00024 6.09704 4.05786  4.16531 3.53246  3.59464
1 7.5003 7.62131 507232 520664 4.41557  4.49330

0 2.59144 2.65196 1.74857  1.81420 1.53236 1.56720

0.25  2.96165 3.03081 1.99836 2.07337 1.75126  1.79109

5 0.5 3.45526 3.53594 2.33142 241893  2.04314  2.08960
0.75  4.14631 4.24313 279771 290271  2.45177  2.50751

1 5.18289 5.30391 3.49714  3.62840 3.06471  3.13440
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Table 4. Comparison of non-dimensional critical buckling loads N (EL = Exponential Load).
k=1 k=4 k=10

b/a
Ref [27]  Present  Ref[27] Present Ref [27]  Present

0 9.3391 9.57315 6.23988  6.50800  5.45286  5.59653

025 105718 10.8367 7.13129  7.36701 6.23184  6.33523

1 05 11.9428 122421 8.31984  8.32240  7.27048  7.15681
0.75  13.4641 13.8016 9.98381  9.38255  8.72458  8.06848

1 151485 155281 12.4798  10.5563 10.9057  9.07784

0 3.75015 3.81066 2.53616  2.60333 220779  2.24664

025 424514 431363 2.89847 294694 252318 2.54318

2 05 479567 4.87304 3.38155  3.32911 2.94371  2.87300
0.75 540657 549380 4.05786  3.75320 3.53246
1 6.08292  6.18107 5.07232  4.22271 4.41557

0 259144 265196  1.74857 1.81420 1.53236
025 293349 3.00200 1.99836  2.05366
5 0.5 3.31392  3.39131  2.33142  2.31999

0.75 3.73607 3.82331 2.79771  2.61551 2.25943
1 420345 4.30160 3.49714 2.94271 2.54207
Table 5. Comparison of non-dimensional critical b oads (SL = Sinusoidal Load)
k=1 4 k=10
b/a 7

Qo Ref [27] Presel [27] ent  Ref [27] Present

1 0 11.002 11.2781 : .66707 6.424 6.59326

2 0 4.4180 4.48933 2.98 3.06697 2.6009 2.64677
5 0

3.0529 WG 2.0599  2.13730 1.8052 1.84631
3

As can be seen from these tables; oument is observed between the results of the present quasi 3D

solution and those of the 2D solution of and Harsha [27]. However, a slight deviation is noticed between the
results. This can be justified by act that”the results reported in the tables are for a value of a/h=10 which
corresponds to the case of‘ thick [plate.

For this case, the stretching e s an important role in determining the response of the plate. The latter is
neglected in formulatign of: and Harsha [27] since it is a 2D theory and is taken into account in the present
formulation.

In addition, the f inférmation can be derived from these tables:

ly varying load (UVL), the critical buckling load almost doubles in value from uniform
= 0)o triangular loading (€, =1) . For Exponential Load (EL), this increase is more than 60%.

Increasing the geometry ratio (b/a) leads to a reduction in the critical buckling load, irrespective of the
ype of loading and the value of the “k” index.
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Fig 3. Variation of the critical buckling load ( N ) versus the side-to-thickness ratio “a/h” for a simply s e ate. (a) plate
without elastic foundation , (b) plate on Pasternak elastic foundation (UVL, a/b=1, £0)
In figure 3, the variation of the critical buckling load as a function of the_a is plotted for different plate
configurations (variation of the volume fraction index k). The plate is cong i pported and subjected to

comparison between the two figures (a) and (b) reveals that the poratlon of an eIastlc foundatlon mcreases the
critical buckling Ioads of the plate regardless of its compo

thick plate area(a/h ~10) . Exceeding this area, its infl

T T T T T T T T T

w04 (Q) . (a) i
300 - 4 3504 i
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N 200 AN
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150 @ 4
150 | i
100 4
1 504 i
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30 05 1,0 15 2,0 25 30

itical buckling load ( N ) versus the aspect ratio “a/b” for a simply supported FG plate. (a) Plate without elastic
foundation, (b) plate on Pasternak elastic foundation

(UVL, Q, =0)

The variation of the critical load N as a function of the geometric ratio (a/b) is shown in figure 4 for two cases
with and without foundation. Several types of plaques are analyzed. It is found that the critical buckling load
increases with increasing (a/b) ratio and that the highest critical buckling loads are obtained for an isotropic ceramic
plate.

The effect of the elastic foundation parameters on the critical buckling load is shown in Figure 5 (a-b). For both
figures, the increase in either parameter leads to an increase in the critical buckling load. This can be explained by
the fact that the increase in the parameters of the elastic foundation leads to an increase in the rigidity of the plate
and consequently the increase in the critical buckling loads. In addition, the increase in the Pasternak parameter
generates an increase in the critical load compared to that of Winkler.
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Also, the a/h ratio, and as mentioned above, affects the critical load only for the case of thick plates (as is the
case for a/h = 5). For the other cases, its influence is minimal.

75 4 -
50 - (a) E (b) —8— a/h=5
—=— a/h=5 70 —e— a/h=10 .
—e— a/h=10 o —a— a/h=20
454 —a— a/h=20 g ] kw=100, k=1 SSSS ]
kg=10, k=1 SSSS 60 4 i

- 55

50 H

=>

45 4

40 4
30 4
354
304
25
25

20 T T T T T 20 T T T T T
0 100 200 300 400 500 10 20 30 0 50
kw

Fig 5. effect of the elastic foundation parameter on the critical buckling load ( N ) for a si
Figure 6 shows the variation of the critical buckling load as a function o volume fraction index for the first
three modes. The highest critical buckling loads correspond to the case of “k=07, i.e. the case of an isotropic plate

made entirely of ceramic. The increase in the values of the i k, which corresponds to the reduction in the
quantlty of ceramic in the plate and therefore a reduction,in ri 0 a reduction in the critical buckling load.

sUpported FG plate (a) Effect of Winkler
0)

parameter, (b) Effect of Pasternak parameter

t3)

lowest crltlcaI buckling loads are obtalned for mod
about 300% for mode (1,2) and by 900% for mode (1, 3) is inCrease tends to decrease with increasing values of
the k index.

In addition, the presence of an elastic found
an increase in the critical buckling loads.

—a— Mode(1-1) —0: Mode(1-1) -
—e— Mode(1-2) -+ Mode(1-2)
—&— Mode(1-3) —1- Mode(1-3)
"N kw=kg=0 kw=100, kg=10
' a/h=10 i

200 .

150-] 7
Om v
1 —0 - . |
50 7
B I i B o (e ¢ o t (]t =t - o
0 T T T T T T T T T i T
0,0 0.2 04 0.6 0.8 1.0

Power low index k

Fig 6. variation of the critical buckling load ( N ) versus the power-law index of simply supported FG plate with & without elastic
foundations and for different modes (UVL, QO =0)
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Fig 7.Variation of the of critical buckling load ( N ) of FG plate resting on elastic foundation versus: a)-si
b) aspect ratio “a/b”, under different boundary conditions.
Figure 7 (a) and (b) depicts respectively the variation of critical bucklingglea versus the side-to-thickness
ratio “a/h” and the aspect ratio “a/b” for FG plate resting on elastic found
It is seen that the maximum values of the critical buckling loads are db
(CCCC) and this for the two figures. This can be explained by the fact that'the,embedding of the plate on these four
edges offers it additional rigidity and consequently the critical buckling loadsaefease. The lowest critical buckling
loads are obtained for the SSSS condition and the other edge conditions, namely CCSS and CSCS, lie between the
first two.
In addition, it was found in Figure 7b that the criti
Therefore, in order to have a high critical bucklin
square one.

lamped boundary condition

al buekling s increase with the geometry ratio “a/b”.
it is'\Qetterto have a rectangular plate geometry than a

70 ' ' ' -
X —a— without fondation
- = with fondation —#— UVL —v -
60 4 \ a/h=5, kw=100, kg=10 —— S —t - b
—— L —d: -
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index low power k

Fig 8. Comparison of the critical buckling loads ( N )for different types of in-plane load of FG plate simply supported with and without
elastic foundations ( €2, =1)

To examine the influence of the in-plane compressive load on the critical buckling load of FG simply supported
plate with and without elastic foundation; the variation of critical buckling load versus the volume fraction index “k”
is displayed in figure 8.

As it can be seen from this figure, plate under subjected to UVL always has a maximum critical buckling load
than any other load and this with or without an elastic foundation.

The effect of the three Kerr foundation parameters on the critical buckling load of a simply supported FG plate is
shown in figure 9. The results are given for three values of the a/h ratio (5, 10 and 20). According to this figure, the
critical buckling load is increased by increasing the parameters Ks and Ku, while it is decreased by increasing the
parameter Kl, regardless of the side-to-thickness ratio “a/h”.
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Fig 10.Buckling load and modes shapes for rectangular FG plate subjected to linearly varying uniaxial in plane compressive load
(without elastic foundation)

Figure 10 shows that the critical buckling loads are obtained for the case of a triangular compressive
load (Q, =1), the lowest for a uniformly distributed load (€, =0). The trapezoidal loading (0 <€, <1)gives
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critical buckling loads between the first two types for both boundary conditions (SSSS and CCCC). In addition, the
curves indicate values of a/b ratio in which mode transition occurs.

5. Conclusion

In the present article, the buckling response of FG plate resting on Kerr/Pasternak/Winkler foundation and
subjected to in-plane loading is studied and analyzed. The formulation used in this work is based on quasi-3D theory
which takes into account the stretching effect. Three types of elastic foundations have been used such as Kerr,
Winkler, and Pasternak and several boundary conditions are considered. The equations of motion have been derived
from Hamilton’s principle. The critical buckling loads are obtained after solving the problem by Navier solution. A
parametric study has been carried out to highlight the effect of the material grading indexes, in-plan compressive
load, elastic foundation parameters, boundary conditions and other parameters on critical buckling load G plate
on elastic foundation.

According to the results of the study, the followings can be drawn:

e The triangular load gives the highest critical loads compared to the other load cases,

e An FG plate with a CCCC boundary condition gives the highest critical buckling ed to other
boundary conditions,
e The highest critical buckling loads are given by isotropic plate made entirely micdl'he increase in the

values of the index k, leads to a reduction in the critical buckling load,

e Elastic foundation increases the critical buckling loads of the plate

e A rectangular FG plate gives higher critical buckling loads than a
Although this document deals with the analysis of buckling, the f
analysis of other types of materials and other models [54-60].
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