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Abstract ‘ 0

Background: The biodegradation of fegrs m effective alternative to other processing
methods. 3 N -

Objectives: This study inv*at%e\éffects of various hydrolyzed feather meals (HFM) on
antioxidant status, m&tﬁalibg and immune response of broilers.

Methods: A total of 480- aAd Ross 308 male broilers were used for 42 days in a completely
randomized design with eight treatments and five replicates (12 chicks/replicate) in the Research
farNgric‘ture’ Faculty, Guilan University (Rasht, Iran) in October 2022. Experimental diets
were: (1) a control diet (without feather meal; FM), (2), (3), (4), (5), (6), (7), and (8) all
containing 4% raw FM (RFM), HFM by autoclave (Au-HFM), fermented FM (FFM) by Bacillus

licheniformis (BI-FFM), FFM by Bacillus subtilis (Bs-FFM), FFM by Aspergillus niger (An-
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FFM), FFM by Bacillus licheniformis + Bacillus subtilis + Aspergillus niger (Co-FFM), and
HFM by an enzyme (En-HFM), respectively.

Results: Results of the in vitro experiment showed that the 2,2-diphenyl-1-picrylhydrazl (DPPH)
and 2, 2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radical scavenging activity, as
well as microorganisms count of FFM increased by increasing the fermentation P <0.05).

Also, the pH of FFM significantly decreased by increasing the fermentation time{(P,< 0:05). The

DPPH and ABTS radical scavenging activity of FFM was higher than WW]\‘, and En-

HFM (P < 0.05). Results of the in vivo experiment shoﬁthz*he SW levels of total

ase, and\talase in broilers fed

Q
the FFM were higher than in control and other treatm < 0.05). Compared to control and

antioxidant capacity, glutathione peroxidase, superoxide dis

other treatments, broilers fed FFM had lower meatdalondi ldehyde levels, higher meat pH, and
higher water-holding capacity at 0, 7, and 14¥f tl@t meat storage, as well as lower serum
malondialdehyde levels (P < 0.05). Broilec‘;d F.‘hmd higher antibody titer against Newcastle
disease virus, lower heterophil count, ower heterophil-to-lymphocyte ratio, as well as higher
total anti-sheep red blood c‘s (a%RMBC) titer, immunoglobulin G, and immunoglobulin M
compared to control anﬁhe&rea@nents (P <0.05).
N

Conclusion: The ferment til of FM increased its antioxidant properties, which improved the
body’s‘*i—&at;\yus and contributed to improving the meat quality and immune response
of th roilers\

Keywords: Biodegradation; Broiler chicken; Feather meal; Fermentation; Radical scavenging.

1. Introduction
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Reducing feed costs, reducing the cost of treatment, and increasing the quality of products in
livestock production are the main challenges confronted by many researchers (Safari et al., 2016;
Al-Muhammadawi & Jassim Hammoudi, 2022). Up to 70% of the total cost of commercial
poultry production is spent on feed costs (Safari et al., 2016). As a result of the rising global
price of soybean meal, the most commonly used source of protein in the diet ulation of

poultry, competition between humans and animals for soybeans causes res€atehersyto seek

unconventional, alternative, or cheap sources of feed (Safari et al., 2?6@%4 make up

about 5-10 percent of the live weight of poultry. The feathe@rﬂby-pw of the poultry

industry, contain 90% crude protein, mainly keratin. The disulfide bonMydrogen bonds, and

N
hydrophobic properties of keratin result in its low solubi and digestibility, hard to hydrolyze
by enzymes, and limited bioavailability (Huang eta@ly2 . Féathers are extremely resistant to

common proteases and stable against differe&)ro@ncluding thermo-chemical, autoclave,
chemical, and mechanical (Prajapati et ( 202{&" hese intense processes denature and lose
some amino acids, resulting in pger stible feather meal (Huang et al., 2022). For example,
autoclave conditions launcl*eatwuﬁts of waste gases, which include ammonia and sulfur
dioxide, making them ﬁtaﬁinatmg and unsustainable. Additionally, these methods produce

7

non-nutritive ami achs dlch as lanthionine and lysinoalanine from Cys and Lys
(Abdeli\te@t &w)

Aane ‘fferent procedures, the biodegradation of feather keratin by keratinolytic
microorganisms is feasible as an effective alternative to other methods, because of their quick
growth and development, accessibility, large yield, cost-effective, sustainability, improved
digestibility, and bioavailability (Abdelmoteleb et al., 2023). Additionally, the fermentation

process increases the palatability of feed, improves growth performance, enhances beneficial gut

3
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microbiota, and improves immunity in broilers (Ibrahim et al., 2021). Microorganisms including
fungi, yeasts, actinomycetes, and Bacillus species can biodegrade feathers, which can utilize
feathers as the only source of both nitrogen and carbon (Pei et al., 2023). The main mechanisms
of feather keratin degradation in the fermentation process are as follows: (1) Breaking the
structural bonds and formation of the secondary structure of feather keratin: A ase of the
disulfide link in feather keratin from cystine (-S-S-) to cysteine (-SH), causes th€"steongly bound
structure of keratin to alter to its biodegraded state (Abdelmoteleb et al.’2w },ydrolysis:

Macromolecules hydrolysis into soluble peptides and easiiﬁgible Wsize molecules

into bi\vailable amino acids

A
(Abdelmoteleb et al., 2023). Feather keratin, as an i sourcehof bioactive peptides and

(Huang et al., 2022). (3) The keratin is completely degra

oligopeptides, frequently has a variety of biologicalyp rtie§, including potent antibacterial,
immunomodulatory, and strong antioxidant Mpe@hetri et al., 2022). Feather is rich in
functional groups, such as -SH, -CO({ -OI;I,\nd -NH2, which are present on keratin
polypeptide chains and lead to biel activity like strong antioxidant activity (Fakhfakh et
al., 2011). In this connec‘n, w Broiler feather hydrolysate, researchers extracted an
antioxidative octapeptic Flkthelmore, it is well known that the intestinal mucosa's peptide
"N
transport system fa@ d direct, energy-free absorption of small peptides (Huang et al.,
2019). Itis {)vcevll kﬁo&n that the quality of poultry meat is strongly related to their diet; therefore,
modulation o\the animal feed could improve the quality and the nutritional value of their
products. Meat oxidation, water-holding capacity indicators, pH, and intramuscular fat all have a
direct impact on meat quality. Moreover, meat quality parameters like flavor, color, and nutrient

content are all impacted by oxidation (Safari et al., 2016). In the poultry industry, diseases rank

as the biggest economic challenge, after feed costs. Immunity and antioxidant levels are two key

4
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metrics for assessing health, and nutrition and health are inextricably linked (Huang et al., 2022;
Morovati et al., 2022; Mohammed Awad, 2023). Fermented feed improves not only humoral
response (immunoglobulin contents, lysozyme activity, cytokine production) but also cell-
mediated immunity and gastrointestinal health (Huang et al., 2022). Consequently, the goal of
the current study was to investigate the impacts of various hydrolyzed feather (HFM) on
antioxidant status, meat quality, and immune response in broilers. iy
"o\
A\~
’ \
®
\J

2. Materials and methods i,

Preparation of various hydrolyzed FM ‘ 0

Preparation of FM: White broiler beCeathgrs were collected from a slaughterhouse in the

4

Rasht, Guilan province, Iran. Thé feathers were removed mechanically and washed (by hand in

tap water), dirt-free, and th“sun i dehe material was then milled (MAKI-M-1282-1) and
powdered (TS- 2700Lccpa§cle 'size of less than 0.5 mm on average. Powdered feathers were
sterilized by autoclave (1 121 °C, 1.8 bar), then dried for 48 hours at 45°C in the sterile
oven. F\ly N of the dried FM was stored in the sterile bags for the raw feather meal

Meax‘vhlle the remainder was prepared for hydrolysis through an autoclave, a

fermentation process, or an enzyme.

Fermentation of FM: The solid-state fermentation process was developed according to the

methods of previous studies (Belewu et al., 2008; Jazi et al., 2017; Oluseun et al., 2016). The
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steps for fermentation of FM were as follows: (1) Bacillus licheniformis (PTCC: 1595) and
Bacillus subtilis (PTCC: 1720) bacteria, as well as Aspergillus niger (PTCC: 5154) fungi, were
prepared from the Persian Type Culture Collection of Iranian Research Organization for Science
and Technology (IROST). (2) Bacillus licheniformis and Bacillus subtilis were cultured on
nutrient agar (Merck, Germany) and incubated for 48 h at 37°C and 30° spectively.
Aspergillus niger was cultured on potato dextrose agar (PDA; Merck, Germany)*and incubated
for 72 h at 26°C. (3) One liter of distilled water was mixed with each klr)gwwl\’ and 15 g

of corn starch as a source of easily digestible carbohydratesfn*ﬂatew either Bacillus
I

subtilis &(109 CFU/mL), and

N
Aspergillus niger (10° spores/mL) or Co-fermented er meab (Co-FFM) (10° CFU or

licheniformis (10° colony-forming unit (CFU)/mL), Bacil

spores/mL of each strain was used for Co-FFM) asdermented feather meal (FFM) treatments in a
fermenter (10 L), with a one-way valve to tM)ut produced gases and prevent air entry
(B. Braun Biostat B Fermenter/Bioreact(Cont‘Mr, type 8840334), for 12 d at 30°C. (4)
Finally, FFM was dried at 50°C fox t ys.

Autoclave hydrolysis: For <s tr&eﬁt, FM was hydrolyzed with an autoclave at 140°C and
2.5 bar steam pressure f60\1inu;es (Wiradimadja et al., 2014).

"N

Enzymatic hydrolsisb:}hgnzyme used in this experiment was Cibenza IND900 (Novus
Intema%£¢).%enza IND900 is a heat-resistant protease designed solely to increase the
nutritienal Val‘e of FM (Novus International, Inc). Cibenza IND900 has an enzyme activity of
65,000 U/g, according to the manufacturer. The steps for hydrolysis of FM by enzyme were as
follows in compliance with the manufacturer's instructions: (1) 50 kg of raw feathers (50-60%

moisture) were loaded into a batch. (2) 150 g of Cibenza IND900 was dissolved in 2 liters of

water (Cibenza IND900 solution). (3) Cibenza IND900 solution was added to the feathers and

6
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mixed well. (4) 50 kg of additional raw feathers (50-60% moisture) were added to the batch and
mixed well again, and thoroughly mixed before being placed in the oven. (5) It was incubated at
55°C for 45 minutes. (6) The temperature was gradually increased to 120°C and pressure at 1.8
bar with agitation for 20 minutes by autoclave. (7) The HFM was dried at 45°C for 48 hours
(Ajayi & Akoma, 2017). x

In vitro experiment e
Measurement of the physiochemical characteristics of fermented feat’e\\ ’

For measurement of the pH value and microorganisms count, 4‘ and u)f fermentation
ten samples from each of FFM were taken. After homogenizi ﬁve gra of each sample in 45
milliliters of distilled water for one minute, the pH o homoge‘ate was measured using a
digital pH meter (Inolab, Germany) (Safari et al#=2016). To" determine the microorganisms
count, 1 g of feed was added to 9 mL of steri wa@ homogenized. The supernatants were
diluted 10-fold with buffered peptone vx@r. T‘Mloo puL of supernatant were cultured on
nutrient agar (Merck, Germany)ya cubated for 48 h at 37°C and 30°C, for Bacillus
licheniformis and Bacillus ﬂtilis peEtively. Also, Aspergillus niger was cultured on potato
dextrose agar (PDA' Mﬁ( Eermgny) and incubated for 72 h at 26°C (Belewu et al., 2008; Jazi
etal., 2017; Oluse et al. 2%)

Measu‘( 0x1 ative activity of various HFM

Pr&on ‘Varlous HFM and RFM for antioxidative assay: Various HFM and RFM were
prepared using the method described by Jeampakdee et al. (2020). Regarding these ten samples
from each replicate of various HFM (on 0, 4, 8, and 12 d of fermentation for FFM) and RFM

were milled and powdered to a particle size of 150-um. Then, 0.5 g of each of the various HFM

and RFM were mixed with 10 mL of 20-mmol phosphate buffer (pH=7.2), homogenized (High

7
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Speed Homogenizer, D-500 Pro), and stirred (Magnetic Stirrer C-MAG HS) with 10 mL of 150-
mmol NaCl overnight at 4°C. Next, the samples were centrifuged for ten minutes at 10,000 x g at
a temperature of 4°C and the clear supernatants were collected. Supernatants were clarified by
filtering through 0.45-pm filters (Whatman filter paper, GE, Buckinghamshire, UK) to remove
the insoluble substrate. Then filtered supernatants were subsequently frozentate—20°C for
evaluating antioxidant potency by 2,2-diphenyl-1-picrylhydrazl (DPPH) and 27%2'-azino-bis-3-

ethylbenzthiazoline-6-sulfonic acid (ABTS) radical scavenging activiti% Wﬂﬁ)les were

measured in triplicate in the laboratory for DPPH and ABTS r ¢ *VGHWUVIUGS

DPPH radical scavenging activity assay: Methods describ y Sals ey et al. (2019) and
Jeampakdee et al. (2020) were used to assay the DPP ical scetengmg activity. Briefly, a
DPPH radical solution of 100 umol in methanol ywasyt added to each of the samples in the
ratio of 1:4 (v/v), amounting to 80 uL of the p@320 uL of the DPPH radical solution.
Then this mixture was incubated at 25°Gor I‘Minutes in conditions of darkness. After 5
minutes of centrifugation at 12,500 , the solution was measured for absorbance at 517 nm
(As17) using a microplate re*r. Asithe ﬁositive control, ascorbic acid (100 pg/mL) was used.

ABTS radical scavenﬁg Niviw assay: Methods described by Saisavoey et al. (2019) and

g
020\

) WJ employed in the assay for ABTS radical scavenging activity.

Jeampakdee et al.
Briefly,“a, 1: 1 (v/v) mixture of potassium persulphate (2.45 mmol) and ABTS solution (7 mmol)
haNpla‘d m total darkness and allowed to sit at 25°C for 12 hours to produce ABTS
cation radicals. Next, the cation radical solution ABTS was diluted to reach an absorbance of 0.7

+ 0.02 at 734 nm (A734). Then, this solution was mixed with the test hydrolysate at a ratio of 1:30

(v/v), requiring 25 pL of the sample and 750 pL of the cation radical solution of ABTS. The
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A734 was measured using a microplate reader after a 10-minute incubation period in the dark.

As the positive control, ascorbic acid (100 pg/mL) was used.

Calculations of percentage inhibition: The radical scavenging percentage of samples was

calculated (Saisavoey et al., 2019; Jeampakdee et al., 2020), as follows: [(Abs control — Abs

blank) — (Abs sample — Abs background)/(Abs control — Abs blank)] x 100. Ab trol: is the

control's absorbance (no sample), Abs blank: demonstrates the absorbance ofdd€ienized water,

Abs sample: denotes the various HFM or RFM absorbance, and Abs ’a%\l: ‘hows the

level of color absorbance in the samples. ‘ J

In vivo experiment o \

Experimental birds and diets b Y

The current study was performed at the Poultry Res€arc atior*and Nutrition Laboratory of the

University of Guilan, Rasht, Iran. A total OMO-(@OM. male broiler chickens (Ross 308)

were obtained from the commercial @hery‘\dividually weighed, and allocated to a

completely randomized design with die{arf treatments and five replicates with 12 birds per

replicate. The main housing*ndiw of chickens (chicken density, light regime, microclimate

parameters, feeding, arﬁri&ing‘}pace) were identical for all groups and corresponded to the
S

Ross 308 broilers ra@uil for the year 2019. The chemical composition of raw feather meal

(RFM); &ri& v

foMn. \ll diets were formulated according to the Ross 308 broiler chicken nutrients

drolyzed feather meals (HFM) were analyzed and used for diet

requirement guideline. The following were the experimental treatments: (1) Control diet (based
on corn and soybean meal, without feather meal; FM), (2) Diet containing 4% RFM, (3) Diet
containing 4% HFM by autoclave (Au-HFM), (4) Diet containing 4% fermented feather meal

(FFM) by Bacillus licheniformis (BI-FFM), (5) Diet containing 4% FFM by Bacillus subtilis (Bs-

9
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FFM), (6) Diet containing 4% FFM by Aspergillus niger (An-FFM), (7) Diet containing 4%
FFM by Bacillus licheniformis+Bacillus subtilistAspergillus niger (Co-FFM), and (8) Diet
containing 4% HFM by an enzyme (En-HFM). The ingredients and chemical composition of the
starter (1-10 days), grower (11-24 days), and finisher (25-42 days) diets are presented in Table
1, Table 2, and Table 3 respectively. All diets were fed in the mash form, an birds were

provided ad libitum access to feed and water during the study. The experiment lasted for42 days.

Serum antioxidant capacity ’ \\ ‘
At d 42 of the experiment, from each replicate, 3 birds weﬁw ranw, and 4 h after

feed withdrawal from the brachial vein, blood samples were taken. Th\ blood samples were
centrifuged at 3000 x g for 15 minutes, and collecte m s;mﬂes were kept at -20°C for
further analysis (Hosseinian et al., 2021; Xu stwal., 022). Finally, the serum level of
malondialdehyde (MDA), as well as activities of &@de dismutase (SOD), catalase (CAT),
glutathione peroxidase (GPX), and total@ioxi‘h capacity (TAC) of serum were assessed
using commercial kits (Kushanzist - Rars’éh, Tehran, Iran), based on the manufacturer’s
instructions. Samples were wyze\terlicate in the laboratory for serum antioxidant capacity.
Meat quality measureﬁnt& D
N

At the end of the study (}44 three birds from each pen were slaughtered and the breast meat
samplexe 'nd&yy sliced, washed in a solution of 0.9% NaCl, vacuum packaged in
plaN%s, ‘d kept frozen at -20°C for 0 (immediately after sampling and before freezing), 7,
and 14 days to assess the meat quality characteristics. Samples were tested in triplicate in the
laboratory for meat quality measurements.

Lipid oxidation: After dilution of 1 g of breast meat sample with 9 mL of ice-cold phosphate-

buffered saline (pH = 7.2), homogenization and centrifugation at 9000 x g for 15 minutes at 4°C

10
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were used to obtain muscle homogenates (Alahyaribeik et al., 2022). To measure MDA, the clear
supernatants of the homogenates of breast meat were poured into vials. The MDA was
determined using corresponding diagnostic kits (Kushanzist Azma- Parseh, Tehran, Iran) in
compliance with the manufacturer's instructions.

pH: After homogenizing the five grams of breast meat for one minute in 45 milli of distilled

water, the pH of the homogenate was measured using a digital pH meter (Ifiélab, Germany)

calibrated at pH 4.0 and pH 7.0 (Safari et al., 2016; Partovi et al., 2021). ’ \\ ‘

Water-holding capacity (WHC): The method of Aristides I.‘OIS)Wfollowed (with
small modifications) to determine the WHC. Samples of meaﬁ taken from the same location
in the breast muscle and cut into 15.0-g (wet wei cube; Eirst, samples were gently
sandwiched between two sheets of filter paper (What Filter Paper, No 2, 150 mm circle,
1002-150). Following a 5-minute exposurM) a@ force using a pressure instrument
(Guangzhou Runhu Instrument Co, Chinacam@ere weighed again. Finally, the percentage
of WHC was determined according t folLoang equation:
WHC (%) = 100 — [((initial qightwa\l\ weight)/initial weight)) x 100].
Immune responses r R, %

S
Anti-sheep red blood kll nti-SRBC) antibody assay: In the current study, as methods
described. b afa% et al. (2019) and Hosseini-Vashan and Piray (2021) non-pathogenic
aan sl“ep red blood cells (SRBC) were used to measure the broiler chickens' humoral
immune response. The SRBC was collected and diluted in phosphate buffer saline (PBS; pH 7.5)
to provide a 10% (vol/vol) suspension. At 28 and 35 d of age, 1 mL 10% suspension SRBC was

intravenously administrated to the right wing of three birds per replicate. Then, 7 days after the

first and second injections (at 35 and 42 d of age) the same broilers were bled through brachial

11
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273

venipuncture, and 3 mL samples were collected for primary and secondary antibody responses,
respectively. Blood samples were centrifuged for 15 minutes (at 2500 % g) at 4°C and the
obtained serum was kept at -20°C for further analysis. In the current study, samples were assayed
for total anti-SRBC antibody, serum levels of immunoglobulin G (IgG) and immunoglobulin M
(IgM) by hemagglutination assay (HA) test, according to the method as previous plained by

Rafat Khafar et al. (2019). Finally, antibody titers were reported as logz of thedeeiprocal of the

highest dilution giving visible agglutination. Samples were tested in trivime ’aboratory

for anti-SRBC antibody assay. ‘ J
us, to ‘assa

Anti-Newcastle disease virus antibody assay: In our st he humoral immune

responses of broilers antigens Newcastle disease virus ), all\thbbirds were subcutaneously
vaccinated in the back of the neck against Newcastlézin nza‘H9N2 subtype) with 0.3 ml per
chick on 8 d of age. In addition, birds were orally @ed against Newcastle disease (Lasota)
on 18 d of age. To measure antibody titengain&&)V on day 24 and 42, blood samples were
taken from the brachial vein of thre ers from each replicate, and antibody titers production
response against NDV W< as%d ‘\using the hemagglutination inhibition (HI) method
(Hosseini-Vashan & Piﬁ 2&1). ‘Samples were measured in triplicate in the laboratory. Finally,
"N
the HI antibody tit@e Jpressed as logz of the reciprocal of the highest dilution giving
visible ‘J&tio\
HeNﬁlile ‘I) and lymphocyte (L) count: In the present study, to measure the immune
responses of broilers on d 42, blood samples were taken from the brachial vein from three same
selected birds per replicate in heparinized tubes (containing heparin to avoid blood clot

formation). To acquire heterophile (H) and lymphocyte (L) count and H/L ratio, 1 drop of each

blood sample was smeared on each of the three glass slides. Then May-Grunwald-Giemsa

12
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staining was used to prepare blood smears. Then by counting 100 leukocytes on each slide, the H
and L count, as well as the H/ L ratio were determined for each broiler (Jazi et al., 2019).
Statistical analysis

Levene's test and the Shapiro-Wilk test were used for variance homogeneity and normality of
distributions respectively. Data were analyzed in a completely randomized design using the

GLM procedures of SAS software (SAS, 2009). Significant differences amongitreatm t\means

were determined using Tukey’s multiple-range tests. Significance was bav(\&).(’i.
A
>

= N

3. Results ( .\

In vitro experiment p O 5

T
DPPH and ABTS radical s&eng\activity assay

As shown in Table Cth§ DPPH and ABTS radical scavenging activity, as well as

g \
microorganis COWF{signiﬁcantly increased by increasing the fermentation time (P <
ip

0.05). N
<0

.05) As il\stra{[ed in Table 5, the DPPH and ABTS radical scavenging activity of FFM was

H\ue of FFM significantly decreased by increasing the fermentation time (P

significantly higher than RFM, Au-HFM, and En-HFM (P < 0.05).

In vivo experiment

Antioxidant enzymes

13
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As presented in Table 6, serum levels of TAC, GPX, SOD, and CAT in broilers fed the FFM diet
were significantly higher than those fed the control, RFM, Au-HFM, and En-HFM diets (P <
0.05). Birds on the En-HFM diet had higher GPX, and SOD levels compared to the control and
RFM (P < 0.05). Broilers fed Au-HFM diet had higher GPX, and SOD levels compared to the
control (P <0.05).
Meat quality and serum MDA i
Table 7 presents the effects of various HFM on pH, WHC, and MDA ilyor\&t, ‘15 well as
serum MDA concentrations in broilers. The results showed at‘d ofybreast meat storage,
broilers fed En-HFM had a lower breast meat MDA compaﬁ the c&rol (P <0.05), while
those fed diet containing FFM had the lowest level of b ea‘:\ MDA compared to the control,
En-HFM and other treatments (P < 0.05). Compated with fhe control and other treatments,
broilers fed FFM had lower breast meat MD‘GV@ and 14 d of storage, as well as lower
serum MDA levels (P < 0.05). Broilers f@FM‘M higher breast meat pH, and WHC at 0, 7,
and 14 d of storage compared withyt trol and other treatments (P < 0.05).
Immune response ‘ \ )
Effects of various HFM on aMbody response against SRBC, NDV, heterophil, and lymphocyte
N
in broilers are shown in ﬁbl& At 35 d broilers fed FFM had higher total anti-SRBC, IgG, and
IgM titw(@re&w control and other treatments (P < 0.05). At 42 d birds on the En-HFM
diet a hig\er total anti-SRBC titer compared to the control (P < 0.05), while those fed with
FFM had the highest total anti-SRBC titer compared to the control, En-HFM and other groups (P
< 0.05). At 42 d broilers fed FFM had higher I1gG, and IgM titers compared to the control and
other treatments (P < 0.05). Broilers fed FFM had higher antibody titer against NDV at both 24

and 42 d compared to the control and other treatments (P < 0.05). Birds on the FFM diet had

14
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lower heterophil count, and lower heterophil-to-lymphocyte ratio compared to the control and
other treatments (P < 0.05). No significant changes were observed in lymphocyte count among
different treatments (P > 0.05).

4. Discussion

In vitro experiment

The physiochemical characteristics of fermented feather meals e

The fermentation process results in the growth of a large number of fer’ex\ro’rganisms,

which produce a high amount of some organic acids, which&s‘a reWn in the pH of

fermented feed (Engberg et al., 2009). This is consistent withithe 0bse1\ti0n from the current

N
study which exhibited a decrease in pH and an increas icroorganisms count by increasing
the fermentation time. i, >

DPPH and ABTS radical scavenging activMss@

In the current study, the in vitro antioxi@ ca]{hr of various HFM was assessed using the
DPPH and ABTS assay. The results cu(reﬁjt study are in agreement with the findings of the
previous studies, which der@str&th\ét fermented feather, (Callegaro et al., 2018; Bezus et
al., 2021; Prajapati et aﬁOﬂ, Kshetri et al., 2022; Abdelmoteleb et al., 2023; Pei et al., 2023;)
=N
as well as oligopeptides ad thides produced from fermented feather (Huang et al., 2022) had
a signif‘t ighyxidant activity with DPPH and ABTS radical scavenging activity than
coNd R‘/[ The DPPH is a strong free radical that is scavenged when it comes into contact
with a proton-donating material, such as an antioxidant, and its purple color changes to yellow,
resulting in a decrease in absorbance (Ben Hamad Bouhamed et al., 2020). Various mechanisms,

such as radical scavenging, chelation or reduction of metal ions, or a combination of these

processes, can give protein hydrolysates their antioxidant properties. In the DPPH assay, the

15



342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

latter becomes stable when an antioxidant transfers a hydrogen atom to a DPPH radical
(Callegaro et al., 2018). An electron-donating (antioxidant) molecule decreases the pre-formed
cation (ABTS™) to ABTS in the ABTS radical-scavenging assay, a decolorization technique that
results in reduced absorbance (Callegaro et al., 2018). According to reports, electron, and
hydrogen atom transfer are antioxidant mechanisms that both can be reflecte the ABTS

method (Callegaro et al., 2018). Therefore, loss of absorbance reflects the antipXidant aetivity of

the subject compound. ’ \\ ’
Studies have shown that the length of the peptide chain, &L‘ weiWnd amino acid

sequence are connected to the antioxidant potential and scavenging abil& of DPPH and ABTS
free radicals (Pei et al., 2023). Feather keratin hydroly m\i;robial contains low molecular
weight free amino acids and small peptides that donate trons to free radicals to create more
stable products (Ben Hamad Bouhamed et aM02@low molecular weight of peptides can
increase their ability to interact more reac§A With.‘»radicals, as a result, increasing antioxidant
activity and hindering the process idigatﬁ)n (Jeampakdee et al., 2020). As part of the
precursor protein, these pep‘es Nla?:tive; they only become active when they are released
via hydrolytic cleavagﬁnd\con@rted to bioactive peptides (Callegaro et al., 2018). Since
N
aromatic and hydro hob} ado acids promote interactions with DPPH and ABTS, there is a
tendenc‘1£tewlysis to increase ionizable groups and produce hydrophobic and/or
aromatic groups, which have a high degree of antioxidant potential (Callegaro et al., 2018; Pei et
al., 2023). This is due to the peptide sequences' hydrophobic amino acid residues can improve
peptide solubility at the water-lipid interface, enabling more interaction with any radical species

that may be present (Callegaro et al., 2018; Pei et al., 2023). About 50% of the amino acid

residues in feather keratins' sequences are hydrophobic and/or aromatic (Pei et al., 2023). This
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explains why unfermented FM achieves DPPH and ABTS radical scavenging activity. The
arrangement of the amino acids within the peptide sequence is one element that influences the
antioxidant activity of peptides (Pei et al., 2023). For example, His located at the C-terminal
functions as an efficient various radicals scavenger, whereas His located at the N-terminal
functions as an efficient chelator of metal ions (Jeampakdee et al., 2020). In meantime,
tripeptides with Tyr or Trp at the C-terminal function as potent radical scavengetsy(Jeampakdee
et al., 2020). Diverse proteases, which are highly active across a wide ’H‘&m‘primarily
classified as serine proteases that cleave peptide bonds n A*xatlc Wr hydrophobic
residues, are produced by bacteria and fungi during their gr th on fe er media (Pei et al.,
2023). In addition, as a result of microbial fermentati reakmg&iown the feather keratin's
disulfide bonds, cysteine is created which has sstren tioXidant properties. Since feather
peptide's cysteine-SH is a potent hydrogen‘no@ radicals, cysteine has antioxidative
activity (Prajapati et al., 2021). Sulfenic@id (G&H)’ and sulfhydryl (—SH) are yet another
prime antioxidant in feather keratin olygate’,’which are produced when the feather is under
microbial fermentation prc{ss waﬁati et al., 2021). Reductones which are present in
fermented feathers, havﬁlti&idam activity due to the radical chain breaking by the donation of
a hydrogen atom. Free r can react with hydrogen or electron-donating amino acids and
VS

peptide b tabi zus et al., 2021).

In Nper‘wnt

Antioxidant enzymes

The quick induction of protective antioxidant enzymes is necessary for a cell to be able to
maintain functional homeostasis. The GPX, SOD, and CAT enzymes, which make up the first

barrier in the antioxidant defense system, are crucial in protecting cells and tissues from the
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damaging effects of free radicals via scavenging oxygen free radicals by a chain reaction
mechanism (Xu et al., 2022; Obaid Saleh et al., 2022). The dismutation of superoxide anions to
hydrogen peroxide, the breakdown of H202 and hydroperoxides derived from unsaturated fatty
acids at the expense of reduced glutathione, and the conversion of H20: into water are all
catalyzed by the SOD, GPX, and CAT (Liu et al., 2020). Our findings are simila e previous
studies, which pointed out that FFM and other fermented feeds increased thes€émtentiof TAC,
GPX, SOD, and CAT in either serum or muscle and liver of broilers (Livt\w; ‘brahim et

al., 2021; Xu et al., 2022) piglets (Gu et al., 2021) and layY¢he*hick@ et al., 2020).

There are several potential methods by which FFM enhances the broiler&ntioxidant status. (1)
The increased antioxidant capacity of the fermented fe n be;\ attributed to the production of
lactic acid, small and bioactive peptides, andsanti idant® vitamins during fermentation
(Sugiharto et al., 2019). (2) Microbial enzym‘hy@phenolic compounds such as phenolic
glycosides which are produced by micro@nisr{lxi the fermentation process and release free
aglycones, which have the potentia high antioxidant activity (Ibrahim et al., 2021). (3)
Keratinase produced by mi‘org isms can enhance the digestibility of minerals (Xu et al.,
2022), which might in@vc\the wtilization of selenium. The activity of GPX as a selenium-
N

dependent enzyme; ould\aedproved by increasing selenium utilization (Xu et al., 2022). (4)
As wel]‘ tin&ovnicroorganisms can improve the hydrolysis of the proteins containing
cyst to r*ase cysteine, which is a precursor of glutathione, thus increasing the body's
synthesis of glutathione (Huang et al., 2022).

Meat quality

pH
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Our outcomes are in line with the results of the researchers, who reported that fermented feeds
including FFM significantly increased the pH value of the breast and thigh meat of broilers (Liu
et al., 2020). The pH value of breast meat in broilers fed FFM was higher than the broilers from
the control and unfermented FM groups; which indicates a positive correlation between strong
antioxidant capacity and higher meat pH in broilers. The postmortem conver of muscle
glycogen to lactic acid primarily determines the pH value, one of the most significant indices of
meat quality. In other words, the pH value directly reflects the meat ac"th ‘I., 2022).

Normally, the muscle cells in a broiler chicken that has b?sﬂuinat“d subsequently
sisito
A

suffer hypoxia eventually have to turn to anaerobic glycoly maint& metabolic activities.
This is the only energy source available to the post muscles (Aristides et al., 2018).
Under this condition, body glycogen stores are depletedias thky are converted to energy, and
lactic acid, thereby reducing pH (Aristides eM., 2 . However, an antioxidant can neutralize
the cation H" by direct reduction ViaGectr(‘)Nonation and prevent reducing pH, and
acidification of the meat (Callegaro ., 2018). The pH decrease leads to meat myofibrillar
protein denaturation, WhiCk«ﬂpaNhg proteins' ability to hold onto water inside the cell,
tenderness, and color,ﬁare\y creating economic losses by decreasing carcass quality and
=N

reducing production‘efﬁ(}ncﬂn the poultry industry (Aristides et al., 2018; Majidi et al., 2023).
Water-‘l‘dicawty

In line, with ﬂ‘ results of the current study, other studies also have shown that fermented feed
increased the WHC in muscles including the breast and thigh of broilers (Liu et al., 2020; Xie et
al., 2021). In the present study, the results showed that WHC was consistent with the pH values.

The improvement of pH and WHC of muscle can be related to the enhanced antioxidative status

of broilers through feeding FFM. Loss of soluble nutrients, poor flavor, and drier, as well as
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tougher meat can result from increased liquid outflow in muscles with low WHC (Xie et al.,
2021). The inverse correlation between meat moisture and intramuscular fat, which is directly
related to meat juiciness, could be the cause of the elevated WHC in muscle meat (Liu et al.,
2020; Xie et al., 2021). Since unsaturated fatty acids make up the cell membrane, oxidation
status, and meat WHC are closely associated. The fluidity and structure of the brane are
specifically affected by the oxidation of these fatty acids (Xie et al., 2021) #Muscle"WHC is
reduced as a result of altered cell permeability due to the oxidav'm\w ‘wmbrane

phospholipids. High WHC in meat indicates low water loss$1 ‘z benefit meat processing,

meat value, and meat appearance for consumers (Liu et al, 2020)~"he higher levels of

N
antioxidants in broiler meat, which demonstrated pot ee radical scavenging activity and
decreased oxidatively-induced conformational chafiges m})ﬁbrillar protein fragmentation,

may be connected to the higher WHC iMle @Xie et al., 2021). Furthermore, the
denaturation of sarcoplasmic proteins to rgﬁbril‘s\ay affect WHC in meat (Liu et al., 2020).

MDA of muscle and serum S . -
In comparison to other n{ts, %ké:\n meat has a comparatively high concentration of
polyunsaturated fatty aﬁ, such as the important n-3 fatty acids, and is more susceptible to free

"N

radical damage (Safari eﬁl.%l@. In the current study, feeding FFM contributed to improved
broiler Vt{lli@l was reflected by the reduction in meat postmortem MDA content.
The 1nding\ are’ consistent with other research, which found that FFM or other fermented
feeds decreased MDA amount in the serum (Drazbo et al., 2018; Gu et al., 2021; Xu et al., 2021;
Elbaz et al., 2023), and muscle including thigh and breast of broilers, egg yolk homogenate,

turkeys, and piglets (Aristides et al., 2018; Ibrahim et al., 2021; Alahyaribeik et al., 2022; Xu et

al., 2022). The one of the important products of lipid peroxidation, known as MDA, indicates the
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degree of lipid peroxidation and the generation of free radicals by reactive oxygen species (Safari
et al., 2016; Gholipour-Shoshod et al., 2023; Al-Abdaly et al., 2023). Also, lipid peroxidation
causes damage to the integrity of the muscle cell membrane, which can seriously cause meat to
lose nutrients and exudate (Safari et al., 2016). Moreover, reactive oxygen species harm
biological macromolecules such as proteins and nucleic acids. Lipid peroxidation produces
MDA, which can be incorporated into proteins through interactions with biomeléeules.“This can
lead to the generation of carbonyl derivatives, which have cytotoxic and ’ew\m‘acts (Zhu
et al., 2020). The possible reasons for decreasing MDA thro 1‘/1 in Wrs are: (1) The
activity of microbial proteases during the fermentation proc changerstrate proteins in a
manner that causes to exposure of the more active R S 0? amino acids. Thus, bioactive
peptides present in fermented products display greater, ioxidant activity (Alahyaribeik et al.,
2022). Also, bioactive peptides could pMnt@cumulation of cholesterol in meat
(Alahyaribeik et al., 2022), which is cnsitixyo oxidation. (2) Additionally, bioactive
polysaccharides that have antioxidan ertjes’fnay be produced by fermentor microorganisms,
particularly fungi and bact& ( iharto et al., 2019). (3) The live microorganisms in the
fermented feed includrg laetic acid bacteria, fungi, and Bacillus spp help keep the body's
balance of antioxid ‘ts ah [Joxidants in chickens (Sugiharto et al., 2019). (4) The antioxidant
enzymé\x&:e&mng the fermentation process inhibit lipoxygenase enzymes, improve
oxidative stab‘ty, and increase the meat quality and shelf life (Aristides et al., 2018; Ibrahim et
al., 2021; Alahyaribeik et al., 2022; Xu et al., 2022).

Immune SRBC

Following the present results, previous studies have demonstrated that FFM or other fermented

feeds significantly increased total anti-SRBC, IgG, and IgM levels in broilers (Liu et al., 2020;

21



479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

Xie et al., 2021; Xu et al., 2021), laying hen chicks (Zhu et al., 2020), and pigs (Huang et al.,
2022). The three main immunoglobulin classes in poultry species are IgG, IgM, and IgA (Zhu et
al., 2020), which are produced by B cells (Xu et al., 2021). It has been established that animal
immunity and disease resistance are positively correlated with antibody contents (IgA, IgM, and
IgG) (Xie et al., 2021). In other words, during acquired immunity, blood cells derived from B
cells produce IgA, IgM, and IgG immunoglobulins in response to pathogen attack(Drazbo et al.,
2018). The IgM is produced as the first antibody isotype in the prirfn“&d” response
(Drazbo et al., 2018). There are several possible mechanis ‘w theUI increased the
serum concentrations of total anti-SRBC, IgG, and IgM. The fo ation of small-sized
peptides and bioactive compounds during the fermen of feecbcan improve the humoral
immune response of animals by stimulating B#eel olifération and the production of
immunoglobulins (Zhu et al., 2020; Xie‘ a.@l). (2) Additionally, the microbial
fermentation process can produce a Varietgti adv.‘a geous compounds, including organic acids,
vitamins, and exoenzymes, all ofaw an @tre’flgthen an animal's immune function (Gu et al.,
2021). (3) As well as increa{g la\agid bacteria in the gut due to using of fermented protein
feeds can stimulate imfune @ells to produce Th2 cytokines like interleukin-4 (IL-4) and IL-10,

which in turn promote BElldvelopment and antibody production (Chang et al., 2022). (4) The

immun‘a(ot\imals is highly related to antioxidant capacity. The FFM has strong

ath ac‘vity and this property helps to improve immune functions and reduce oxidative

stress by eliminating harmful free radicals that are produced by environmental stressors or
normal cellular activity (Huang et al., 2022).

Antibody titer against NDV
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Similar outcomes to the findings of the present study have been reported in previous studies,
which have indicated that fermented feed significantly increased antibody titer against NDV in
broilers (Salehi et al., 2021; Elbaz et al., 2023). The generally suggested mechanisms of action in
improving antibody titer against NDV by FFM may be due to the following reasons. (1) Since
FFM has an antioxidant capacity, antioxidase can enhance immunity by encouraging bacterial

clearance and controlling phagocyte numbers (Gu et al., 2021). (2) Lactigfand acetic acid

produced by bacteria in fermented feed results in an acidic pH 4 environ’qe\\ﬁc ‘nolecules

can permeate pathogen bacteria's cell membranes and incét‘r acithich disrupts

the imm\e response of poultry

N
(Jazi et al., 2019). (3) Live microbes in fermented fee function as probiotics and stabilize

enzymatic processes, kills the pathogen bacteria and modulat

intestinal inflammation by balancing the intestinal®mic ora,\)reserving the mucosal barrier,

and regulating and improving the intestinaMucc@nune system response (Chang et al.,

2022; Shihab & Nafea, 2023). ( g

By

Heterophil and lymphocyte S .

In agreement with the cur{t st% it has been reported that fermented feed significantly
decreases the heter&l—&lymphocyte ratio, and increases antibody titer against

=N

phytohaemagglutini injéiCAAshayerizadeh et al., 2017; Jazi et al., 2019). The heterophil-to-
lympho‘w i0 i%le indicator for showing nutritional or environmental stress, as well as
the iency‘f the body's immune response in poultry, and this ratio is increased during stress
and/or illnesses (Ashayerizadeh et al., 2017; Jazi et al., 2019). Heterophils are poultry
polymorphonuclear cells and are an essential part of the innate immune system (Jazi et al.,
2019). Increasing the number of heterophils indicates the induction of innate immune responses

to combat pathogenic bacteria via phagocytosis and antimicrobial activities, which include the
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production of proteolytic enzymes, reactive oxygen and nitrogen species, and antimicrobial
peptides (Jazi et al., 2019). The majority of white blood cells under normal circumstances are
lymphocytes, which are produced in lymphoid tissues including the spleen, thymus, and lymph
glands, and are involved in both humoral immunity and cells (Ashayerizadeh et al., 2017).
Improvement in heterophil count and heterophil-to-lymphocyte ratio by FFM mi due to the

following reasons. (1) The fermented feed has the potential to boost intestinal mti€esal immunity

and induce recirculating antibodies in broilers, which can lower the heyrmlﬁphocyte

ratio and reduce oxidative stress (Chang et al., 2022). (2) Iriéiﬂlactiw bacteria in the

gut due to using of fermented feeds stimulate mucin production an&activate the immune

A
responses to create a barrier of defense against pat ic bacteria (Jazi et al., 2019). (3)
Furthermore, Bacillus subtilis and Bacillus licheniformi wbh bactericidal and bacteriostatic

properties compete with pathogens, balanc te@icrobiota, and enhance immunity in
broilers (Xu et al., 2021). (4) It has been sc:vn tliﬁeding fermented feeds to broilers increases

not only antibody-mediated immune nses but also cell-mediated immune responses (Chang

etal., 2022). ‘ \ s

\ 4
NUSI‘I '
In vitro experiments of the current study demonstrated that the fermentation of FM increased its
antioxidant activity, with a high performance recorded in DPPH and ABTS assays for free

radical scavenging activity. In vivo experiment also showed that FFM also improved the broiler's

body anti-oxidative status and contributed to the improved antioxidant enzymes, and immune
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response of broilers, which resulted in increasing antibody titer against NDV, and SRBC, as well
as decreasing heterophil count, and decreasing heterophil-to-lymphocyte ratio. Additionally, this
study illustrated that the inclusion of FFM in broilers' diet led to an increase in the meat quality
by increasing WHC, and pH, as well as reducing the lipid oxidation of meat, which reflected in
the decreased MDA and increased shelf life of the product. The current stu ethod also

suggested the fermentation process through the bioreactor on an industrial scalé®isya sustainable

method to remove the huge feather waste biomass and upgrade its fe’ii\& t& produce

valuable feed ingredients from unconventional and cheaper w* u
A
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Table 1. Ingredients and nutrient composition of the starter (1-10 days) diets

Treatments'
Ingredients (%)
Control  RFM __ Au-HFM  BI-FFM Bs-FFM An-FFM _ Co-FFM _ En-HFM
Com 5297 59.98 59.83 5893 58.99 58.04 58.76 59.03
Soybean meal 40.12 30.58 30.71 3158 3156 31.6 30.65
(CP: 44%) : ' : ' '
Soybean oil 2.44 0.82 0.86 0.99 0.95 0.97 1. 0.83
RFM 0 4 0 0 0 0 g N 0
Au-HFM 0 0 4 0 0 0 \\ 0
BI-FFM 0 0 0 4 { < d 0
Bs-FFM 0 0 0 0 < ¥ o 0 0
An-FFM 0 0 0 0 0 ‘ 0 0
Co-FFM 0 0 0 0 b o 4 0
En-HFM 0 0 I 0 0 4
Dicalcium 19 1.89 (’ { 1866 1.86 1.86 1.88
phosphate \
Calcium .
0.95 | | | | | |
carbonate O -
2 b
. ‘
Sodium 02 3 023 021 02 02 0.19 0.23
bicarbonate
Sodium chloride 023 ‘ \5 0.15 0.16 0.16 0.16 0.16 0.15
C \ J
Mineral and 0.5 05 05 05 0.5 05
Vitamin Premix?
DL—Met \ 0.32 031 03 03 03 03 031
L-Lys ) 0.24 0.44 043 04 039 039 037 0.43
L-Thr 0.11 0.1 0.1 0.08 0.08 0.08 0.05 0.1
Nutrient
composition
ME? (kcal/kg) 2900 2900 2900 2900 2900 2900 2900 2900
Crude protein (%) 22.23 2223 2223 223 2223 2223 2223 2223
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786
787
788
789
790
791
792
793
794

Lys (%) 1.39 1.39 1.39 1.39 1.39 1.39 1.39 1.39

Met + Cys (%) 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.04

Thr (%) 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

Calcium (%) 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

shvjsi;ti:us - 0.46 0.46 0.46 0.46 0.46 0.46 0.46

Sodium (%) 0.15 0.15 0.15 0.15 0.15 0.15 0.1 0.15
FeoN

! Control: a diet based on corn and soybean meal, without FM; RFM: raw feather meal; Au- : hy oléd feather
meal by autoclave; BI-FFM: fermented feather meal by Bacillus licheniformis; Bs-FFMs
Bacillus subtilis; An-FFM: fermented feather meal by Aspergillus niger; Co-FFM: fe ted

licheniformis + Bacillus subtilis + Aspergillus niger; En-HFM: hydrolyzed feather méal by.an enzyme.
2 Supplied per kg diet: vitamin A, 11 000 U; vitamin D3, 5000 U; Vita@a}“ U; v in K3, 3.4 mg; vitamin
vitami

eal by Bacillus

B1,1.98 mg; vitamin B2, 5.25 mg; pantothenic acid, 10.5 mg; niacin, 31. ; 6, 2.87 mg; folic acid, 1.2 mg;
vitamin B12, 0.024 mg; biotin, 0.105 mg; choline, 800 mg; manganese, 120'mg;/zinc, 1 g; iron, 50 mg; copper, 12
mg; I, 1.3 mg; selenium, 0.3 mg; antioxidant, 100 mg.

3ME: metabolizable Energy. ~

~\ )
R, ¢
Nl

3

L\
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Table 2. Ingredients and nutrient composition of the grower (11-24 days) diets

Treatments!
Ingredients (%)
Control RFM  Au-HFM  BI-FFM Bs-FFM An-FFM  Co-FFM  En-HFM
Corn 56.51 62.96 63.05 62.43 62.52 62.48 62.15 63.22
Soybean meal 3525 26.74 26.42 26.74 26.69 26.73 2722 2622
(CP: 44%) ) ) . . ) ) i )
Corn gluten meal 1 0.31 0.62 | 1 1 0. 0.71
Soybean oil 3.18 1.82 1.74 1.74 1.70 1.72 %\ N, 168
RFM 0 4 0 0 0 0 ‘ \\ ’ 0
Au-HFM 0 0 4 0 0 ﬁ AN '0 0
BI-FFM 0 0 0 4 < ~ \ 0 0
Bs-FFM 0 0 0 0 4 \ ~0 0 0
An-FEM 0 0 0 0 4 0 0
Co-FFM 0 0 0 7N h 0 4 0
En-HFM 0 0 0 x w 0 0 0 4
Dicalcium y
1.7 1.69 68 16 1.66 1.65 1.65 1.69
phosphate
> - 4

Caleium 0.88 0.91% Y 0.93 0.93 0.93 0.92
carbonate {
Sodium

. 0.19 rQ\ 0.21 0.19 0.19 0.18 0.17 0.21
bicarbonate ®

e \

Sodium chloride o<4 0.16 0.17 0.17 0.17 0.17 0.16
Mineral a
Vitamin PrIN 2( \ 0.5 0.5 0.5 0.5 0.5 0.5 0.5
DL-Me ) 0.28 0.26 0.25 0.24 0.24 0.24 0.24 0.25
L-Lys 0.2 0.37 0.38 0.35 0.36 0.36 0.33 0.38
L-Thr 0.07 0.07 0.06 0.04 0.04 0.04 0.02 0.06
Nutrient
composition
ME? (kcal/kg) 3000 3000 3000 3000 3000 3000 3000 3000
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797
798
799
800
801
802
803
804

Crude protein (%) 20.81 20.81 20.81 20.81 20.81 20.81 20.81 20.81

Lys (%) 125 125 125 125 125 125 125 125
Met + Cys (%) 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
Thr (%) 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85
Calcium (%) 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.84
Available 0.42 0.42 0.42 042 0.42 042 0. 0.42
phosphorus (%)
&

Sodium (%) 0.15 0.15 0.15 0.15 0.15 0.15 0.15

! Control: a diet based on corn and soybean meal, without FM; RFM: raw feather meal
meal by autoclave; BI-FFM: fermented feather meal by Bacillus licheniformis; ferm ted feather meal by
Bacillus subtilis; An-FFM: fermented feather meal by Aspergillus Niger; %en er meal by Bacillus
licheniformis + Bacillus subtilis + Aspergillus niger; En-HFM: hydrolyzed feather meal’by an enzyme.

2 Supplied per kg diet: vitamin A, 11 000 U; vitamin D3, 5000 U; vitamin‘E, 36.75 tamln K3, 3.4 mg; vitamin
B1,1.98 mg; vitamin B2, 5.25 mg; pantothenic acid, 10.5 mg; niac 1.5 mg; min B6 2.87 mg; folic acid, 1.2 mg;
vitarnin B12, 0.024 mg; biotin, 0.105 mg; choline, 800 mg; mangane 20 mg 1& 100 mg; iron, 50 mg; copper, 12

mg; [, 1.3 mg; selenium, 0.3 mg; antioxidant, 100 mg.
3ME: metabolizable Energy.

g,
( b
__d
p 5

L\
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Table 3. Ingredients and nutrient composition of the finisher (25—42 days) diets.

Treatments!
Ingredients (%)
Control RFM __ Auw-HFM BLFFM Bs-FFM AnFFM  Co-FFM  En-HFM
Comn 6024 6724 67.08 66.18 6626  66.19 66.02 67.14
Soybeanmeal (CP: 5y o o5 15 22.29 2316 2312 2317 2336 2223
44%)
Soybean oil 434 272 276 2.89 2.85 2.88 2k 275
RFM 0 4 0 0 0 0 Vo N0
o
Au-HFM 0 0 4 0 0 0 ’ \\ ’ 0
BI-FFM 0 0 0 4 0 ,) 0
Bs-FFM 0 0 0 0 o \ 0 0
An-FFM 0 0 0 0 0 ‘ 4 0 0
Co-FFM 0 0 0 0 > 0 4 0
En-HFM 0 0 0 0, h 0 0 4
Dicalcium 1.52 15 15 x mw 148 148 1.48 15
phosphate ( \
Calcium carbonate 0.82 0.86 10.87 0.87 0.86 0.86 0.86
-

Sodium 0.3 0.33 24 02 029 0.3 0.28 0.34
bicarbonate \‘
Sodium chloride 0.13r$1i 0.06 0.07 0.07 0.06 0.07 0.06
Mineral

neraland Qs 0.5 0.5 0.5 0.5 0.5 0.5
Vitamin Premix
DL-Met ( 023 023 0.22 0.22 022 021 0.23

037 036 032 032 032 03 036
0

L-Thr ) 0.04 0.04 0.02 0.02 0.02 0 0.04
Nutrient
composition
ME? (kcal/kg) 3100 3100 3100 3100 3100 3100 3100 3100
Crude protein (%)  18.89  18.89 18.89 18.89  18.89 18.89 18.89 18.89
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808
809
810
811
812
813
814

Lys (%) 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12

Met + Cys (%) 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88
Thr (%) 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76
Calcium (%) 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77
Available

0.38 0.38 0.38 0.38 0.38 0.38 0.38
phosphorus (%)
Sodium (%) 0.16 0.16 0.16 0.16 0.16 0.16 0.16

0.1
£y,
! Control: a diet based on corn and soybean meal, without FM; RFM: raw feather meal; Au- : hydrolyzed feather
ed
t
e

meal by autoclave; BI-FFM: fermented feather meal by Bacillus licheniformis; Bs-FFMzs ther meal by
Bacillus subtilis; An-FFM: fermented feather meal by Aspergillus niger; Co-FFM: femltex cal by Bacillus
licheniformis + Bacillus subtilis + Aspergillus niger; En-HFM: hydrolyzed feather méal by an enzyme.

2 Supplied per kg diet: vitamin A, 11 000 U; vitamin D3, 5000 U; vitami 6%U; \% i K3, 3.4 mg; vitamin
B1,1.98 mg; vitamin B2, 5.25 mg; pantothenic acid, 10.5 mg; niacin, 31.@mi , 2.87 mg; folic acid, 1.2 mg;
vitamin B12, 0.024 mg; biotin, 0.105 mg; choline, 800 mg; manganese, 120'mg;zinc, 1 g; iron, 50 mg; copper, 12
mg; I, 1.3 mg; selenium, 0.3 mg; antioxidant, 100 mg.

3ME: metabolizable energy. ~

~\ )
X
Nl

L\
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815 Table 4. Antioxidant potential and physiochemical characteristics of various fermented feather meals at different
816  times of fermentation.

Fermentation times (days)
SEM P-Value

Treatments! 04 4 8 12

Antioxidant potential

BI-FFM
DPPH? scavenging, (%) 3.17¢ 1320¢  24.70° 39.44 2 2.19 0.001
ABTS? scavenging, (%) 4284 1524¢  29.24° 47354 2.604 QOI
Bs-FFM ‘ \ ’

DPPH scavenging, (%) 3.174¢ 13.52¢ 24.81° 38.58 ¢ 2.1 0.001
ABTS scavenging, (%) 4284 14.72°¢ 27.73° @* 2.526 0.001

An-FFM
DPPH scavenging, (%) 3.17¢ 12.87 ¢ 37. 92 2.104 0.001
ABTS scavenging, (%) 4284 14.92 ¢ m h 96? 2.515 0.001

Co-FFM x

DPPH scavenging, (%) 3.174 3¢ wll b 40.11° 2.214 0.001
ABTS scavenging, (%) 4.28 "063 C) 30.36° 49.04 2 2.704 0.001
p 5
< o pH value
BI-FFM {7.00 a 6.68 2 5.63° 445¢ 0.168 0.001
R
Bs-FFM \6 982 6.732 5.71° 4.36°¢ 0.174 0.001
An-FFM J7 022 6.80? 5.61° 4.38°¢ 0.177 0.001
Co-FF ( 6.98 2 6.51° 5.55¢ 4254 0.175 0.001
% Microorganisms count, log CFU/g feed
BI-FF ) 6.73 4 7.94¢ 8.97° 9.832 0.185 0.0001
Bs-FFM 6.714 7.96°¢ 8.95° 9.84° 0.187 0.0001
An-FFM 6.72 4 7.95°¢ 8.99° 9.872 0.188 0.0001
Co-FFM 6.70 4 7.94¢ 8.98° 9.852 0.188 0.0001

817 =d Means within a row with different superscripts differ significantly (P < 0.05).
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818
819
820
821

IBI-FFM: fermented feather meal by Bacillus licheniformis; Bs-FFM: fermented feather meal by Bacillus subtilis;
An-FFM: fermented feather meal by Aspergillus niger; Co-FFM: fermented feather meal by Bacillus licheniformis+
Bacillus subtilis+ Aspergillus niger. 2DPPH: 22-diphenyl-1-picrylhydrazl; 3ABTS: 2, 2'-azino-bis-3-
ethylbenzthiazoline-6-sulfonic acid; *0-day: initial condition.
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822 Table 5. Antioxidant potential of various hydrolyzed feather meals (The 12th day of fermentation in fermented
823 feather meals).

Parameters
Treatments' DPPH? free radical scavenging activity, (%) ABTS? free radical scavenging activity, (%)
RFM 3.17° 428"
Au-HFM 423° 5.15°
BI-FFM 39.44 @ 47.35¢2
Bs-FFM 38.58¢ 46.14550%, X
N
An-FFM 37922 ‘ & ’
Co-FFM 40.112 < %
En-HFM 5.07° °<\6.11
SEM 2.1 ‘ 2.514
P-value 0.001 \ 0.001

824  *°Means within a column with different superscripts differ s P, R.OS).

825 ! RFM: raw feather meal; Au-HFM: hydrolyzed feath a autoclave; BI-FFM: fermented feather meal by
826  Bacillus licheniformis; Bs-FFM: fermented feather by illus subtilis; An-FFM: fermented feather meal by
illus ticheniformis+ Bacillus subtilis+ Aspergillus niger;

827  Aspergillus niger; Co-FFM: fermented feather me
828  En-HFM: hydrolyzed feather meal by an enzyme.
829 2 DPPH: 2,2-diphenyl-1-picrylhydrazl; *ABTS: ino—his— -ethylbenzthiazoline-6-sulfonic acid.
- 4
P 2

N
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830 Table 6. Effects of various hydrolyzed feather meals on antioxidant enzyme activities in serum of broilers at 42 d of
831  age.

Antioxidant enzyme activities? (U/mL)

Treatments' TAC GPX SOD CAT
Control 9.93° 210.429 124.93 4 4.12°
RFM 10.23 " 215.22 < 128.06 < 4220
Au-HFM 10.41° 223.54 be 133.4] be 425"
BI-FFM 13.822 285.66 * 173.48 2 47y,

Bs-FFM 13.70 ¢ 288.30° 173?4\\ ’92 a

An-FFM 13.61 2 279.40 2 0.08° ' 6.712
Co-FFM 14.01 2 290.26 2 o 176.24 @ 7.022
230065 ° \

En-HFM 10.72° 139.08 ° 430°

SEM 0.226 3. ~2.100 0.126

P-Value 0.001 Ny b 0.001 0.001
832 a¢ Means within a column with different superscripfs ‘ 0 W y (P <0.05).

833 ' Control: diet based on corn and soybean m with ather meal; RFM: raw feather meal; Au-HFM:
834 hydrolyzed feather meal by autoclave; BI-FFM: fermente ather meal by Bacillus licheniformis; Bs-FFM:
835 fermented feather meal by Bacillus subtilis; M: fermented feather meal by Aspergillus niger; Co-FFM:
836 fermented feather meal by Bacillus liche @ +“Bagcillus subtilis + Aspergillus niger; En-HFM: hydrolyzed
837 feather meal by an enzyme. 3 I

838 2 TAC: total antioxidant capacity; GPX: %'ne peroxidase; SOD: superoxide dismutase; CAT: catalase.

\N

\~

®

Q
N
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839  Table 7. Effects of various hydrolyzed feather meals on malondialdehyde concentrations in serum at 42 d of age and breast meat quality of broilers during
840 14 d of storage.

Breast meat
Serum

MDA?2, (nmol/mg of protein) pH WHC(%)

0d 7d 14d 0d 7d 0d \ 14d MDA,

(nmol/mL)
Control 0.456 * 0.764 * 1.211° 6.11° 5.86° 5.53° o " 65.46° 6.12°
RFM 0.451 @ 0.762 * 1.196® 6.12° 5.88° 5 56° 82.18 76.12° 66.49 ° 6.10°

Treatments!

Au-HFM 0.445 @ 0.753 2 1.178 ¢ 6.15° 5.89° 76.42° 68.27° 598
BI-FFM 0.280°¢ 0.442° 0.668 ° 6.84° 89.17% 86.19* 2.88°
Bs-FFM 0.278 ¢ 0.446° 0.664 ° 6.85° 90.41+* 85.66* 2.83°
An-FFM 0.283°¢ 0.452° 0.678° 6.81° 89.04* 85.73* 2.94°
Co-FFM 0.275°¢ 0.439° 0.653° 6.87.2 91.11% 88.55* 2.80°
En-HFM 0.441° 0.745* 1.171¢ 6.0 2.92"{ 5.60° 85.58® 78.20° 70.73® 598
SEM 0.007 0.014 0.024 ( % T 0.034 0.036 0.697 0.790 1.073 0.146

0.00 0.001 0.001 0.001 0.001 0.001 0.001

P-Value 0.001 0.001 0. Or \ R

841  *°Means within a column with different supef§eti lﬂffer 'gmﬁcantly (P <0.05).
842 ! Control: diet based on corn and soybean eal, wi feather meal; RFM: raw feather meal; Au-HFM: hydrolyzed feather meal by autoclave; Bl-FFM:
Bs-FFM: fermented feather meal by Bacillus Subtllls An-FFM: fermented feather meal by Asperglllus niger;

843 fermented feather meal by BaCIIIUS ;
844 Co-FFM: fermented feather cill ormis + Bacillus subtilis + Aspergillus niger; En-HFM: hydrolyzed feather meal by an enzyme.
845  2MDA: malondialdehyde; * WH oldi apacity.
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848
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Table 8: Effects of various hydrolyzed feather meals on antibody response against sheep red blood cell (SRBC, logz) Newecastle disease virus (NDV, logy),
heterophil, and lymphocyte in broilers.

SRBC? titer at 35 d of age SRBC titer at 42 d of age Antibodﬁgt\e/r agains leucocytes count 42 d of age’
Treatments! A5
Tost;lggﬁ' gG*  IgM* Tost;l;gﬁ' IgG IgM \ (‘ L,(%) H:L ratio

Control 3.13° 1.53° 1.60° 433¢ 2.20° u 33.20° 51.33 0.654°
RFM 3.33° 1.66° 1.66° 4.66 2330 36.13° 52.26 0.696 *
Au-HFM 34° 1.66° 1.73° 4.66 2.46° 3.33° 3433 52.40 0.664 *
BI-FFM 7.33° 4.13*  3.20°? 9.33* 5.33¢ 5.53¢ 19.13° 55.13 0.353°
Bs-FFM 7.46° 4.13* 3332 9.33¢ 5.13¢ 5.46° 19.20° 54.33 0.357°
An-FFM 7.06° 426 2.80°? 9.00* 5l 533¢ 20.06 ° 54.06 0.374°
Co-FFM 7.60 ° 440 3.20°? 9.60° 533¢ 026 2 8.46* 5.60° 18.20° 55.13 0.336°
En-HFM 34° 1.66° 1.73° 5.00 O 2.663: 2.33° 5.20° 3.33° 34.26° 52.33 0.662 *
SEM 0.193 0.126 0.084 0.;20 s 0.‘135 0.105 0.157 0.115 0.736 0.556 0.015
P-Value 0.001 0.001 0.001 { 0.(& 0.001 0.001 0.001 0.001 0.001 0.307 0.001

N
#¢ Means within a column with different superscri[ﬁffe\.)ignﬂicantly (P <0.05).
! Control: diet based on corn and soybean 1, without' feather meal; RFM: raw feather meal; Au-HFM: hydrolyzed feather meal by autoclave; BI-FFM:
fermented feather meal by Bacillus licheniformis; Bs- : fermented feather meal by Bacillus subtilis; An-FFM: fermented feather meal by Aspergillus niger;
iformis + Bacillus subtilis + Aspergillus niger; En-HFM: hydrolyzed feather meal by an enzyme.

Co-FFM: fermented feather meal by lus
2 SRBC, sheep red blood cell;&IgG&immunoglo G; * IgM, immunoglobulin M.
SH: heterophile; L: lymphocyte; ratio: heterophile to lymphocyte ratio

4
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