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A B S T R A C T 

 

Slope stability analysis is widely recognized as a crucial aspect in rock mechanics engineering, playing a fundamental role in the design of 
various rock and soil structures like mining slopes, roads, and tunnels. Over time, several methods have been proposed to address stability 
concerns, including limit equilibrium methods, numerical approaches, and artificial intelligence techniques. In this study, we conducted 
stability analysis of mine wall slopes using a neuro-fuzzy integrated approach (ANFIS). Using data from the Choghart iron mine, we developed 
two neuro-fuzzy networks to analyze the safety and stability of circular failures under static loading conditions. Six parameters were identified 
as the most significant inputs in the circular failure model, with safety factor (SF) and stability (S) state as outputs, analyzed under two 
different scenarios. The results obtained indicate that the stability and safety analysis networks exhibit low error and high correlation, with 
an average error for the safety factor and stability of 0.05 and 0.013, respectively, demonstrating the network's high generalization capability. 
Additionally, the artificial intelligence outputs of test data identified the southern wall of the mine as the most critical section, calculating the 
safety factor and stability of this area to be 0.81 and 0.66, respectively. 
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1. Introduction 

Open-pit mining is a notably economical approach in mining, 
facilitating the utilization of maximum equipment capacity, enhanced 
extraction rates, and lower-grade minerals. Determining the pit wall 
slopes represents a crucial design parameter in open-pit mining. If the 
wall slope is considered too shallow, the amount of waste extraction 
increases significantly. On the other hand, selecting steeper wall slopes 
reduces safety and increases the likelihood of collapse. Consequently, 
choosing an optimal slope to prevent excessive waste extraction and 
reduce the risk of wall failure is essential. Slopes can be classified into 
two categories based on the type of failure that may occur: translation 
and rotation. Failure in high-strength rocks typically starts as translation 
and in low-strength rocks as rotation, which can subsequently continue 
in various forms. Slope failure is also known as slide and landslide, which 
can occur gradually. 

Based on conducted studies, numerous factors influence the stability 
of both natural and artificial slopes, including the geometry of the failure 
plane, the homogeneity or heterogeneity of soil layers, tensile cracks, 
seismic or dynamic loads, and water pressure. Various methods have 
been proposed to address slope stability, including conventional (limit 
equilibrium) methods, numerical methods, and artificial intelligence 
techniques. Conventional methods widely used in stability analysis 
include the Fellenius Method, Bishop Method, Janbu Method, Spencer 
Method, and Morgenstern-Price Method, all sharing common 
characteristics and limitations. Among these methods, those considering 
lateral forces between segments, such as the Janbu Method, can lead to 
numerical instability of the problem under certain conditions. When 
numerical instability occurs, the selected method may struggle with 
convergence or yield inappropriate results. Methods accounting for the 
sum of forces across all segments can render manual safety factor 
calculations laborious, time-intensive, and repetitive. With the advent of  

 
 
 
various computer codes based on limit equilibrium methods, this 
calculation process has been greatly simplified and expedited. In all 
approaches except for the Fellenius Method, the safety factor is defined 
as the ratio of the actual shear resistance at a point to the shear resistance 
at that point, and it is assumed to remain constant along the entire slip 
surface [1]. 

Numerical methods play a crucial role in analyzing slope stability, 
with both the finite element and finite difference methods serving as 
solutions for nonlinear issues. While these numerical methods are more 
complex compared to conventional techniques, they provide a 
comprehensive understanding of slope deformation and collapse. The 
insights offered by these methods, including details on the safety factor 
and the slip surface, offer substantial advantages when combined with 
results from traditional methods. 

Moreover, considering the uncertainties involved in this matter, such 
as those arising from the inherent characteristics of slope materials, the 
time-dependent variability of these properties, and uncertainties linked 
to inadequate and inappropriate data, along with the impact of various 
factors and their interactions in slope stability modeling, physical 
models encounter difficulties in accurately representing actual 
conditions and accounting for these significant factors. Physical models 
typically necessitate data on slope geometry and soil characteristics, 
which are often unavailable. In such situations, artificial intelligence 
methods can be appropriate and efficient. As these methods rely on 
laboratory or in-situ data, analyzing the impact of different factors on 
the safety factor in these models becomes more straightforward. 
Intelligent networks with learning capabilities, such as smart neural 
networks and hybrid intelligent systems, can accurately model slopes 
even in the absence of certain data related to soil characteristics and 
slope geometry. 
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Researchers employ soft computing methods to tackle complex issues 
characterized by insufficient and uncertain information. These methods 
encompass a range of computational techniques, including fuzzy 
algorithms, intelligent neural networks, Support Vector Machine 
(SVM), evolutionary approaches, machine learning, and probabilistic 
reasoning. The first neural network model was designed by McCulloch 
& Pitts, which is recognized as the pioneering study in artificial 
intelligence. Subsequently, numerous researchers have proposed 
various methods and algorithms based on this initial artificial neural 
network model. In 1994, soft computing was formally recognized as a 
part of computer science, leading to the introduction of a variety of new 
algorithms, including ANFIS and swarm intelligence. 

Reviews of past studies indicate that artificial intelligence methods 
used to address slope stability issues include fuzzy logic, intelligent 
neural networks, genetic algorithms, adaptive neuro-fuzzy inference 
systems, hybrid and metaheuristic algorithms such as bee colony and 
ant optimization algorithms, and particle swarm optimization. Most 
models presented utilize the geotechnical properties of slope-forming 
materials and the filler materials in joints as input parameters. However, 
some studies, like the model suggested by Chen et al. [2], have 
considered parameters such as rock type, slope aspect, number of joint 
sets, joint spacing, and the bedding-slope relationship as inputs.  
 

Although the majority of studies predominantly focus on the safety 
factor, the condition of stability, and the characteristics of the slip 
surface as outputs, there are exceptions, such as the model proposed by 
Chen and Zhen [3], where displacement is considered as the output. 
Typically, these methodologies address both circular and non-circular 
failure mechanisms in static conditions. However, some researchers 
have expanded their analysis to dynamic situations, incorporating the 
impact of horizontal seismic accelerations on slope stability. In this 
study, the stability and safety factor of mine walls at the Choghart iron 
mine have been assessed using an adaptive artificial intelligence 
approach employing data from the mine. The input parameters 
considered include unit weight, cohesion, internal friction angle, and 
geometrical slope parameters such as slope height and slope angle, along 
with external forces, including the ratio of pore water pressure. For the 
first scenario (ANFIS1), the safety factor was analyzed as the output, 
while the stability condition was the focus for the second scenario 
(ANFIS2). It should be mentioned that the desired stability and safety 
factor level of the mine wall is defined between 0-1 and 0.97-2.05 
respectively, the upper banks of the mentioned interval indicate the 
stability (S) and high safety factor of the mine wall, and the lower bank 
indicates the instability (IS) and low safety factor. In Table (1), a 
summary of the researches carried out in this field is given. 

 

Table 1: Summary of research records in slope stability analysis. 
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*                *    Sah et al (1994) [4] 

 *                 *  Goh (1999,2000) [5,6] 

 *                 *  [7]McCombie (2002)  

  *              *    [8]Lu (2003)  

 *               * *   [9]Yang et al (2004)  

  *                *  [10]Sakellariou (2005)  

  *   *             * * [11]Ferentinou (2007)  

 *  * *  * *  *       *    [12]Cheng et al (2007)  

        *          *  [13]Park et al (2008)  

 *                 *  [14]Li et al (2008)  

 *               *    [15]Choobbasti et al (2009)  

  *               *   [16]Zhou et al (2009)  

  *              *    Chen et al (2009) [2] 

  *                *  [17]Shangguan et al (2010)  

          *       *   [18]Ahangar et al (2010)  

       *          *   [19]Daftaribesheli et al (2011)  

           *     * *   Chen et al (2011) [20] 

            *    *    [21]Das et al (2011)  

       *         *    Park et al (2012) [22] 

  *                *  [23]Erzin et al (2012)  

             *    *   [24]Kang et al (2013)  

              *     *   [25] Samui (2013) 

  *              *    Chen et al (2013) [3] 

  *              *    [26]Erzin et al (2013)  

 *               *    [27]Manouchehrian et al (2014)  

               * *    [28]Liu et al (2014)  

     *              *   [29]Xue et al (2017)  

 
 
* MLE (Maximum Likelihood Estimation of Slope Stability), GA (Genetic Algorithm), ANN (Artificial Neural Network), SAM (Simulated Annealing Method), PSO 

(Particle Swarm Optimization), SOM (Kohonen Self-Organizing Maps, HS (Harmony Search), TS (Tabu Search), FS (Fuzzy Search), AC (Artificial Bee Colony), EPR 
(Evolutionary Polynomial Regression), ANFIS (Adaptive Neuro-Fuzzy Inference System), DENN (Differential Evolution Neural Networks), BC (Bee Colony), SVM 
(Support Vector Machine), ELM (Extreme Learning Machine). 
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2. Project Introduction 

The Choghart iron mine is situated 120 kilometers southeast of the 
Yazd city, 75 kilometers southwest of the city of Bahaabad, on the fringe 
of the central desert of Iran. It is characterized by a hot and dry climate 
with low humidity. Initially, the elevation of the Choghart deposit was 
approximately 1,286 meters above sea level, standing about 150 meters 
above the surrounding area. With a geological reserve of 193 million tons 
and an extractable reserve of 177.2 million tons, this mine is considered 
one of the largest in the country. Mining operations began in September 
1971 and continued until the end of 2011, during which over 131 million 
tons of iron ore were extracted. Originally operating as a quarry, the 
mine transitioned to an open-pit operation in 1995, once it reached 
ground level (elevation 1140). According to the latest proposed plan, the 
final elevation of the mine is expected to be 820 meters, resulting in a 
final wall height of 340 meters. Field observations have revealed 
instability in parts of the mine, with numerous collapses occurring 
annually. This situation necessitates serious consideration and analysis 
of wall stability, especially considering the increasing depth of the mine. 

 

 

 
Figure 1. aerial photo and fault map of Choghart iron mine [38]. 

 
Due to the limited area of the investigation zone and the homogeneity 

of rock types, a diverse range of geological structures cannot be observed 
and analyzed. In other words, the presence of specific lithology restricts 
the observation of structures to those such as faults, small-scale folding, 
and joint systems at the outcrop level. Geologically, the structures in this 
region fall within the mesoscopic scale, considering their scale and the 
degree of deformation. This includes features such as folds spanning 
several centimeters, joints, and faults extending over several meters. 

3. Materials and Methods 

Over the past few decades, soft computing has emerged as an 
approximate solution methodology for problems requiring precise 

formulations or addressing indistinct issues, distinguishing it from 
traditional methods known as classical modeling. It has found particular 
application in tasks such as decision-making, system modeling, and 
control. These systems function by modeling the human mind's ability 
to process information in parallel, adeptly analyzing and learning in 
situations characterized by uncertainties and imprecise data. Key 
components of this approach include fuzzy logic, intelligent neural 
networks, and adaptive neuro-fuzzy inference systems. The term ANFIS 
was first introduced by Jang in 1993 [30]. In that year, Jang presented a 
new model based on fuzzy theory, which integrated certain 
characteristics of neural networks, such as learning and parallelization. 
This system also harnesses the adaptive properties of neural networks 
to determine the parameters of the fuzzy system, fuzzy rules, and the 
type of membership function. For this purpose, network partitioning 
and clustering methods can be employed. In these networks, fixed and 
linear outputs can be used to achieve subsequent parameters, where 
linear functions are known as first-degree Sugeno fuzzy inference 
systems and fixed functions are recognized as zero-degree [31]. Initially 
utilized in the field of neuro-fuzzy control, the application of these 
systems has since expanded and is now used in fields such as control, 
data analysis, and decision support [32]. 

ANFIS functions as a fuzzy inference system, operating similarly to a 
standard fuzzy system [33]. Thus, it requires initial organization. The 
initial network structure identification involves tasks such as selecting 
independent input variables, segmenting the input space, deciding the 
number of membership functions for each input, establishing the 
number of fuzzy rules, defining the hypothesis part of each rule, 
determining the consequent part of each fuzzy rule, and setting initial 
parameters for the membership functions. Typically, there are two 
methods for deriving fuzzy rules: network partitioning and clustering. In 
the present study, the emphasis is on the clustering method. 

3.1. Fuzzy Clustering 

Clustering plays a vital role in modern data mining methods. The 
fundamental concept of clustering is to partition the initial dataset into 
homogeneous groups based on their shared characteristics. In classical 
clustering, each cluster exhibits a distinct pattern, but in practice, some 
patterns may belong to more than one cluster with varying degrees of 
membership. This concept is captured through fuzzy clustering as 
opposed to classical clustering. Fuzzy clustering itself is divided into two 
types: the Subtractive Clustering Method (SCM) and clustering based 
on Fuzzy C-Means (FCM). 

3.1.1. Fuzzy Clustering Using the Fuzzy C-Means Algorithm 

This algorithm aims to minimize the objective function, which 
represents the distance of each data point from the cluster center. This 
distance is weighted using the membership degree of the data. In this 
algorithm, the cluster center shifts among different clusters through 
successive iterations until the objective function reaches its minimum 
value. The outcome is a set of clusters that are as dense as possible while 
maintaining an appropriate distance from each other [34]. Challenges 
associated with this algorithm include the potential for stopping at a 
local minimum and sensitivity to initial values such as the number and 
initial centers of the clusters [35, 36]. There are two general methods for 
validating clusters. The first method involves running and iterating the 
algorithm, incrementing the number of clusters from 1 to n-1, and 
examining the algorithm's characteristics and the partitioning space 
using specific indices. The second method involves executing an 
algorithm that calculates the optimal number of clusters itself, such as 
the Subtractive Clustering Method. 

3.1.2. Subtractive Clustering Method 

In this method, each data point, rather than grid points, is regarded 
as a potential cluster center. Using this approach, the effective "grid 
points" to be examined are simply equal to the number of data points, 
independent of the dimensions of the problem. A key aspect of this 
method is its speed, derived from the fact that no form of nonlinear 
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optimization is repeated in this algorithm. Furthermore, calculations are 
linearly related to the dimensions of the problem [37]. If a set consisting 
of n data points in an M-dimensional space is considered, and it is 
assumed that the data points are normalized in each dimension, the 
coordinate range in each dimension will be consistent. In this method, 
each data point is regarded as a potential center, and its potential is 
calculated as follows: 

 

𝑃𝑖 = ∑ 𝑒−𝛼‖𝑥𝑖−𝑥𝑗‖
2

𝑛
𝑗=1                                                                                  (1) 

 

In this Equation: 
 

𝛼 =
4

𝑟𝑎
2                                                                                                              (2) 

 

In Equation (2),  𝑟𝑎 is a positive constant representing the effective 
neighborhood radius. According to the equations mentioned, each data 
point's potential is a function of its distance relative to other points. In 
this algorithm, a point with many other points in its vicinity has the 
highest potential, and data points outside the effective radius have the 
least impact on the potential value [34]. After calculating the potential 
of each point, the data point with the highest value is identified as the 
first data center. If 𝑥1 is the location of the first cluster center and 𝑝1 is 
its potential value, the potential of other points is calculated using the 
following formula: 

 

𝑃𝑖 = 𝑝𝑖 − 𝑝1𝑒−𝛽‖𝑥𝑖−𝑥1‖2
                                                                                   (3) 

 

In this Equation: 
 

𝛽 =
4

𝑟𝑏
2                                                                                                       (4) 

In Equation (4), 𝑟𝑏  represents a positive number denoting the 
effective neighborhood radius. According to Equation (3), the potential 
value of each data point as a center diminishes. Data points near the 
center of the first cluster will have the lowest potential and are unlikely 
to be chosen as the next cluster center. Typically, 𝑟𝑏 is set to be 1.5 times 
larger than 𝑟𝑎 to prevent the cluster centers from being too close. Once 
the potentials of the points are adjusted according to Equation (3), the 
point with the highest potential is selected as the center of the first 
cluster. Subsequently, after determining the 𝑘 -th cluster center, the 
potential of each point is adjusted using Equation (5). 

 

𝑃𝑖 = 𝑝𝑖 − 𝑝𝑘𝑒−𝛽‖𝑥𝑖−𝑥𝑘‖2                                                                                    (5) 
 

In this equation, 𝑥𝑘  denotes the center of the 𝑘 -th cluster, and 
𝑝𝑘 represents its potential. The algorithm continues until a suitable 
number of cluster centers is found. When the cluster estimation method 
is applied to a set of input and output data, each cluster center represents 
the system's behavioral characteristics. Therefore, each cluster center 
can serve as the basis for a rule defining the system's behavior. 

3.2. ANFIS Network Structure 

The mentioned ANFIS network has the limitation of piecewise 
differentiability, and structurally, its only constraint is being 
feedforward. For simplicity, let's consider a feedforward neural network 
with two inputs, x and y, and one output, z Each input has two rules of 
the TSK type: 

 

Rule 1: If x is A1 and y is B1, then f1= p1x + q1y + r1                                    (6) 
 

Rule 2: If x is A2 and y is B2, then f2= p2x + q2y + r2                                  (7) 
 

The TSK fuzzy inference network and its corresponding neuro-fuzzy 
structure are depicted in Figure (2), which will be elucidated in detail 
later [4]. 

 

Layer One: Each node in this layer is a square node, with a function 
expressed as follows: 

 

𝑂𝑖
1 = 𝜇𝐴𝑖(𝑥)                                                                                            (8) 

 
In this Equation, x is the input data to node i, and Ai is the linguistic 

label associated with this node's function. Typically, 𝜇𝐴𝑖(𝑥)  is bell-
shaped or Gaussian, with maximum and minimum values of one and  
 

 
 

Figure 2. a) TSK fuzzy inference system, b) ANFIS network equivalent to the 
system [30]. 

 
zero, respectively. 

For the bell-shaped function: 
 

𝜇𝐴𝑖(𝑥) =
1

1+[(
𝑥−𝑐𝑖

𝑎𝑖
)2]𝑏𝑖

                                                                                   (9) 

 

For the Gaussian function:  
 

𝜇𝐴𝑖(𝑥) = 𝑒𝑥𝑝 {−(
𝑥−𝑐𝑖

𝑎𝑖
)2}                                                                               (10) 

 

Various forms of membership functions can be employed in the 
linguistic label 𝐴𝑖. In fact, any continuous and differentiable function, 
such as triangular and trapezoidal functions, is suitable for use as a node 
function. It's important to note that the parameters of this layer are 
regarded as premise parameters.  

 

Layer Two: Each node in this layer is circular, denoted by ∏ in the 
diagram. Nodes in this layer receive input signals and transmit the 
output to the next layer. The output of each node in this layer represents 
the strength of the rule. Essentially, any operator capable of performing 
the AND operation can be used in this layer. 

 

𝜔𝑖 = 𝜇𝐴𝑖(𝑥) ∗ 𝜇𝐵𝑖(𝑥),      𝑖 = 1,2                                                               (11) 
 

Layer Three: Each node in this layer is circular, denoted by 𝑁 in the 
diagram. The ith node in this layer calculates the ratio of the strength of 
the 𝑖th rule to the sum of the strengths of all rules. For convenience, the 
outputs of this layer are called normalized weights. 

 

𝜔𝑙̅̅ ̅ =
𝜔𝑖

𝜔1+𝜔2
,      𝑖 = 1,2                                                                                  (12) 

 

Layer Four: Nodes of this layer are square, and its function is as 
follows: 

 

𝑂𝑖
4 = 𝜔𝑙̅̅ ̅𝑓𝑖 = 𝜔𝑙̅̅ ̅(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)                                                                (13) 

 

Where 𝜔𝑙̅̅ ̅ is the output of the third layer, and {𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖} are sets of 
parameters. The parameters of this layer are known as consequent 
parameters. 

 

Layer Five: The only node in this layer is circular, denoted by ∑, and 
the overall output is calculated based on Equation (14).  

 

𝑂𝑖
5 = 𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 = ∑ 𝜔𝑙̅̅ ̅𝑓𝑖 =

∑ 𝜔𝑙̅̅̅̅ 𝑓𝑖

𝜔𝑖
                                                       (14) 

 

Given the TSK fuzzy inference system, based on the values given as 
premise parameters, the overall output can be expressed as a linear 
combination of the consequent parameters. 

 

𝑓 =
𝑤1

𝑤1+𝑤2
𝑓1 +

𝑤2

𝑤1+𝑤2
𝑓2 = 𝜔1̅̅̅̅ 𝑓1 + 𝜔2̅̅ ̅̅ 𝑓2  

 

= (𝜔1̅̅̅̅ 𝑥1)𝑝1 + (𝜔1̅̅̅̅ 𝑦1)𝑞1 + (𝜔1̅̅̅̅ 𝑟1) + (𝜔2̅̅ ̅̅ 𝑥2)𝑝2 + (𝜔2̅̅ ̅̅ 𝑦2)𝑞2 + (𝜔2̅̅ ̅̅ 𝑟2)            (15) 
 

In the framework of the system's dynamics, during the forward 
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propagation phase, operational signal transitioning from the input layer 
(Layer One) to the fourth layer. Within this phase, the consequent 
parameters are estimated utilizing the least squares error methodology. 
Conversely, in the backward propagation phase, the error gradient is 
computed in a reverse direction, facilitating the update of the premise 
parameters through the application of the gradient descent algorithm. 
The key parameters involved in this process are systematically 
summarized in Table (2). 

 

Table 2. ANFIS algorithm steps [30]. 

4. Data Collection and Interpretation 

The primary goal of employing intelligent networks is to offer a 
model for data that cannot be defined by a specific function. Therefore, 
in this section, the implementation of the ANFIS algorithm requires 
sufficient and categorized data that represent and illustrate the 
characteristics and features of the study's subject so that they can 
undergo training (learning). Network training necessitates two sets of 
data: input data and output data. In the current study, two scenarios 
labeled ANFIS1 and ANFIS2 have been developed and examined to 
calculate stability and safety factors for circular failure. The steps 
involved in working with adaptive neuro-fuzzy networks are depicted in 
Figure (3). 

 

 
 

Figure 3. Process steps of adaptive neural-fuzzy inference network [38]. 

4.1. Simulation of Circular Failure 

In this section, for implementing the adaptive neuro-fuzzy network, 
six input data parameters are considered: unit weight (γ), cohesion (C), 
internal friction angle (φ), geometric parameters of the slope including 

slope height (H), slope angle (β), and external forces comprising the 
pore water pressure ratio (ru). Additionally, two output datasets are 
included: the safety factor for the first scenario (ANFIS1) and the 
stability condition for the second scenario (ANFIS2). For constructing 
the network aimed at predicting circular failure, a dataset comprising 
103 data points gathered from diverse studies by Manouchehrian et al. 
has been utilized. A subset of these data points is illustrated in Table (3) 
to provide readers with concrete examples [37]. 

 
Table 3. Data used to build the ANFIS model in predicting circular failure. 

 
         Stability (S), Instability (IS) 

 
Following this, the correlation coefficients between paired data and 

the statistical properties pertaining to the 103 analyzed data points are 
comprehensively outlined in Tables (4 and 5). 

 
Table 4. Statistical characteristics used to build the model. 

 
 
Table 5. Pairwise correlation coefficient matrix of model input parameters. 

 
 
In this phase, two distinct ANFIS networks, referred to as ANFIS1 and 

ANFIS2, were developed to estimate the safety factor and assess stability 
conditions, assisting in categorizing slopes as stable or unstable. Input 
data for these networks is normalized to a range of zero to one. Key 
parameters in adaptive neuro-fuzzy networks include the type and 
quantity of membership functions, as well as the number of rules 
applied. The Subtractive Clustering Method algorithm was employed in 
this research to determine these parameters. Thus, the variable 
parameter in this network is the influence range of each membership 
function, defined by the radii parameter in the SCM algorithm. The 
network's stopping criterion is set to achieve either zero error or 
complete 500 iterations. Overtraining, a potential issue during extensive 
network training, can be prevented by monitoring the trend of Mean 
Squared Error (MSE) changes in the test data. Thus, identifying the 
saturation point occurs when the training data error decreases while the 
test data MSE begins to increase. In both models (Safety Factor and 
Stability State), determining the optimal network involved 
incrementally increasing the influence range of the membership 
function from 0.2 to 0.5 in steps of 0.05. The algorithm was iterated on 
ten randomly selected data sets during each step of expanding the range. 
The outcomes at each increment were assessed based on various 
metrics, including regression analysis, training MSE, test MSE, training 
RMSE, and test RMSE, detailed in Tables 6 and 7. Based on the 
comparison, an influence range of 0.2 was selected as the optimal range 
for the models. 

 

γ(KN/m3) c(kpa) φ(°) β(°) H(m) ur SF Stability Number 

8.68 26.34 15 35 8.23 0 1.11 IS 1 

16.5 11.49 0 30 3.66 0 1 IS 2 

18.84 14.36 25 20 30.5 0 1.88 S 3 

28.44 29.42 35 35 100 0 1.78 S 4 

28.44 39.23 38 35 100 0 1.99 S 5 

20.6 16.28 27 30 40 0 1.25 IS 6 

14.8 0 17 20 50 0 1.13 IS 7 

14 11.97 26 30 88 0 1.02 IS 8 

18.5 25 0 30 6 0 1.09 IS 9 

18.5 12 0 30 6 0 0.78 IS 10 

 
SF ru H(m) β(°) φ(°) c(kpa) γ(KN/m3) Parameter 

0.63 0 3.6 16 0 0 12 Min 

2.31 0.5 214 53 45 50 28.44 Max 

1.28 0.21 40.73 33.26 26.63 10.48 19.96 Average 

1.19 0.25 25.75 30.5 30 8.33 19.98 Median 

0.4 0.18 42.96 9.5 10.8 10.8 3.54 Standard Deviation 

0.16 0.03 1845.94 90.23 116.57 116.73 12.53 Variance 

 
SF ru H(m) β(°) φ(°) c(kpa) γ(KN/m3)  

0.26 -0.01 0.47 0.14 0.34 0.42 1 γ(KN/m3) 

0.18 -0.19 0.31 0.21 0.06 1  c(kpa) 

0.32 0.08 0.21 0.53 1    φ(°) 

-0.2 -0.1 0.11 1     β(°) 

-0.17 -0.16 1     H(m) 

-0.21 1      ru 

1       SF 

Backward Movement Forward Movement Component 
Gradient descent algorithms constant Preceding parameters 

constant least squares Tally parameters 

Error rates Output nodes signals 
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4.1.1. Training of the ANFIS Network for Determining the Safety Factor 
and Its Results 

The inputs of the network comprise the geotechnical parameters of 
the slope-forming materials and the geometric characteristics of the 
slope, while its output is the safety factor. During the training of ANFIS1 
network, both input and output data (safety factor) were fed into the 
system for modeling. The network structure for the input parameters is 
outlined in Table (8) and illustrated in Figure (4). 

At first, the network's training was scheduled for 500 iterations, but 
analysis of the test data error trend, depicted in Figure (4), indicated that 
stability was achieved after 384 iterations. No significant changes in the 
test data error were observed beyond this point. Hence, 384 iterations 
were identified as the optimal training period. 

Table (9) presents the desired and predicted outputs for the test 
dataset, while Figure (5) displays the simulation results based on the 
correlation coefficient between the desired outputs and the outputs of 
the ANFIS1 network. In Figure (5), R is used to denote the correlation 
coefficient between the actual and predicted results of the network for 

both training and testing datasets (where Y represents the predicted 
values and T indicates the actual values). The outcomes reveal that the 
correlation coefficient for both data groups is nearly 1, indicating the 
effective performance of the network. 

Also, In Figures (6 and 7), the network's predicted values for the 
training and test datasets are compared with the desired network 
outputs. As depicted in Figure (6), the mean error for the training data 
is close to zero, and the standard deviation of the measured errors is 
0.005, indicating the network's outstanding performance for the training 
data. Furthermore, as shown in Figure (7), the network's Mean Squared 
Error for the test data is 0.025, with an average error of 0.05 and a 
standard deviation of the measured errors at 0.1, highlighting the 
network's strong generalization capability. 

In Table (9), among the 19 tested data points, it is evident that data 
number 18 exhibits the greatest disparity in terms of safety factor, 
marking it as the most critical point in the mine wall. The error in data 
number 18 amounts to 35%, a discrepancy clearly visible in Figure 7. 

 

Table 6. Results from ANFIS for different influence ranges to determine safety factor. 

 
 

Table 7. Results from ANFIS for different influence ranges to determine the stability state. 

 
 

Table 8. Specifications and structure of ANFIS1 network. 

 
 

 

 

 

 
Figure 4. Error changes of training and testing data during 500 training periods 
related to ANFIS1 network. 

  
(a)                                                    (b) 

Figure 5. Correlation coefficient of actual values and output of ANFIS1 for a) 
training and b) test data. 

 

4.1.2. Training of the ANFIS Network for Determining Stability State and 
Its Results 

The input parameters for this network include the geotechnical 
properties of the slope-forming materials and the geometric 
characteristics of the slope. The network yields a value of zero to denote 
a failure state and one to indicate stability. Information regarding the 
chosen optimal network configuration, along with the network 
structure pertaining to the input parameters, is presented in Table (10) 
and depicted in Figure (9). 

During this phase, the initial plan for the network involved 500 

 

influence 
range 

sum of squares of 
training error 

The square of the sum of 
squares of the training error 

Correlation coefficient 
of education 

The sum of squares 
of the test error 

The square of the sum of 
squares of the test error 

Test correlation 
coefficient 

0.2 5-e * 2.61 0.005 1 0.025 0.15 0.938 

0.25 5-e * 2.61 0.005 1 0.032 0.17 0.907 

0.30 5-e * 2.61 0.005 1 0.1 0.32 0.72 

0.35 5-e * 2.61 0.005 1 0.083 0.29 0.76 

0.40 5-e * 2.61 0.005 1 0.063 0.25 0.81 

0.45 5-e * 2.61 0.005 1 0.054 0.23 0.84 

0.50 5-e * 2.61 0.005 1 0.089 0.29 0.77 

 
influence 

range  

sum of squares of 
training error 

The square of the sum of 
squares of the training error 

Correlation coefficient 
of education 

The sum of squares 
of the test error 

The square of the sum of 
squares of the test error 

Test correlation 
coefficient 

0.2 13-e* 2.35 7-e* 4.8 1 0.006 0.08 0.987 

0.25 13-e* 2.35 7-e* 8.23 1 0.045 0.21 0.91 

0.3 13-e* 2.35 7-e* 7.18 1 0.021 0.14 0.96 

0.35 12-e* 1.01 6-e* 1.00 1 0.014 0.11 0.97 

0.4 11-e* 2.13 6-e* 4.6 1 0.034 0.19 0.93 

0.45 12-e* 1.86 6-e* 1.36 1 0.054 0.23 0.88 

0.50 12-e* 3.31 5-e* 1.82 1 0.069 0.26 0.86 

 

Number of nodes 1143 

Number of linear parameters

  

567 

Number of nonlinear parameters 972 

Total number of parameters 1539 

Number of training data 84 

Number of test data 19 

Number of fuzzy rules 81 

Number of courses (Epoch) 384 
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training iterations. However, upon analyzing the test data error trend 
illustrated in Figure (8), it became evident that the network stabilized 
after 300 iterations, with no notable changes in the test data error 
thereafter. As a result, 300 iterations were identified as the optimal 
training period. 

Table (11) provides the desired and predicted outputs for the test 
dataset, and Figure (9) depicts the simulation results based on the 
correlation coefficient between the desired outputs and the outputs of 
the ANFIS2 network. In this figure, R is employed as the correlation 
coefficient between the actual results and the network's predictions for 
both the training and test data (where Y denotes the predicted value, 
and T signifies the desired value). As per the findings, the correlation 
coefficient for both the training and test data is close to 1, indicating a 
strong performance by the network. 

 

 

Table 9. The output of the ANFIS1 network related to the test data set. 

 
 

 
Figure 6. Results of ANFIS1 network for training data. 

 

 
Figure 7. Results of ANFIS1 network for test data. 

 

19 tested data in Table (11) clearly shows that data number 10 has the 
highest error in terms of stability and this point is identified as the most 
critical point in the mine wall.  

In Figures (10 and 11), the network's predictions for both the training 
and test datasets are contrasted with their respective desired outputs. As 
depicted in Figure (10), both the mean error and the standard deviation 
of the measured errors for the training data are zero. This underscores 
the network's exceptional performance in handling the training data. 
Moreover, Figure (11) illustrates that the network's predictions were 
consistently accurate, with only a single data point exhibiting a slight 

deviation, where the prediction was close to but not exactly 1. The Mean 
Squared Error (MSE) of the network for the test data is computed to be 
0.006, with an average error of 0.013 and a standard deviation for the 
measured errors at 0.08. Taken together, these metrics indicate a high 
generalization ability of the network. 

 
Table 10. Specifications and structure of the ANFIS2 network.

 
 

 
Figure 8. Error changes of training and testing data during 500 training periods 
related to ANFIS2 network. 
 

  
(a)                                                             (b) 

Figure 9. Correlation coefficient of actual values and ANFIS2 output for a) training 
and b) test data. 

 

Table 11. ANFIS2 network output related to the test data set. 

 

 
Desired outputs Predicted outputs Number 

0.97 0.92 1 
0.99 0.91 2 
1.2 0.92 3 
1 0.85 4 

0.9 1.16 5 
2.05 2.04 6 

2 1.75 7 
1.01 1.01 8 
1.63 1.73 9 
1.7 1.74 10 

1.25 1.24 11 
1.12 0.91 12 
2 2 13 

1.11 1.14 14 
1.46 1.18 15 
0.96 1.08 16 
1.99 1.92 17 
1.09 0.81 18 
1.78 1.87 19 

 

Number of nodes 1059 

Number of linear parameters

  

525 

Number of nonlinear parameters 900 

Total number of parameters 1425 

Number of training data 84 

Number of test data 19 

Number of fuzzy rules 75 

Number of courses (Epoch) 300 

 
Desired outputs Predicted outputs Number 

0 0 1 
0 0 2 
1 1 3 
1 1 4 
1 1.04 5 
0 0.02 6 
0 0.02 7 
1 0.99 8 
0 0 9 
1 0.66 10 
1 1.01 11 
1 0.98 12 
1 1 13 
1 1 14 
0 0 15 
0 0 16 
0 0.05 17 
0 0 18 
1 0.97 19 
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Figure 10. Results of ANFIS2 network for training data. 

 

 
Figure 11. Results of ANFIS2 network for test data. 

5. Conclusion 

Determining the slope of pit walls is a critical aspect in open-pit mine 
design. Setting wall slopes too low leads to increased waste removal 
volume, while steeper slopes may compromise safety and raise collapse 
risks. Hence, selecting an optimal slope angle is vital to minimize waste 
excavation and reduce wall failure risks. In this study, two adaptive 
neuro-fuzzy inference networks were established to analyze slope static 
stability, focusing on estimating safety factors and stability conditions 
for circular failure scenarios. The models' inference systems follow the 
Sugeno methodology, with network parameters determined using the 
Subtractive Clustering Method. A dynamic learning algorithm was 
employed for effective network training. During the training process, 
103 data points were used, with 80% for training and 20% for testing. 
Geotechnical parameters, slope geometry, and external forces were 
selected as inputs, including unit weight, cohesion, internal friction 
angle, slope angle, slope height, and pore water pressure ratio. Safety 
factor (ANFIS1) or stability state (ANFIS2) served as outputs. Metrics 
such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), 
and Correlation Coefficient (R) were utilized for evaluation. The 
ANFIS1 model exhibited MSE, RMSE, and R values of (2.61e-5, 0.005, 
and 1) for training data and (0.025, 0.15, and 0.938) for test data. For 
ANFIS2, these values were (2.35e-13, 4.8e-7, and 1) for training and 
(0.006, 0.08, and 0.987) for test data. The low error and high correlation 
coefficients demonstrate the networks' strong generalization capability, 
indicating their effectiveness in mapping relationships influencing slope 
stability analysis. 
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