تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,509 |
تعداد مشاهده مقاله | 124,128,772 |
تعداد دریافت فایل اصل مقاله | 97,236,036 |
تاثیر استفاده از شکلهای مختلف کروم بر فراسنجههای هماتولوژی و وضعیت آنتیاکسیدانی میشهای افشار در دورهی انتقال و برههای آنها تحت تاثیر تنش گرمایی | ||
علوم دامی ایران | ||
دوره 55، شماره 3، مهر 1403، صفحه 547-563 اصل مقاله (1.23 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijas.2024.364592.653965 | ||
نویسندگان | ||
محمد اسدی1؛ تقی قورچی* 2؛ عبدالحکیم توغدری3 | ||
1گروه تغذیه دام و طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
2گروه تغذیه دام طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
3گروه تغذیه دام طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران | ||
چکیده | ||
پژوهش حاضر به منظور بررسی تاثیر استفاده از شکلهای مختلف کروم (کروم معدنی، کروم-متیونین و نانو ذرات کروم) بر فراسنجههای خونی، وضعیت آنتیاکسیدانی و ایمونوگلوبین میشهای افشار در دورهی انتقال و برههای آنها تحت تاثیر تنش گرمایی انجام شد. چهل رأس میش افشاری آبستن از 2±42 روز پیش از زایش مورد انتظار در قالب طرح کاملا تصادفی به چهار تیمار آزمایشی با ده تکرار اختصاص یافتند. تیمارهای آزمایشی شامل جیره پایه بدون مکمل کروم (شاهد)، جیره پایه حاوی 3 میلیگرم کروم به شکل معدنی به ازای هر کیلوگرم ماده خشک، جیره پایه حاوی 3 میلیگرم کروم به شکل کروم-متیونین به ازای هر کیلوگرم ماده خشک و جیره پایه حاوی 3 میلیگرم کروم به شکل نانو ذرات کروم به ازای هر کیلوگرم ماده خشک بودند. نتایج نشان داد که، افزودن شکلهای مختلف کروم به جیره میشها سبب افزایش معنیدار غلظت گلبولهای قرمز، هموگلوبین و هماتوکریت خون نسبت به گروه شاهد شده است (05/0>P). افزودن شکلهای مختلف کروم به جیره میشها سبب کاهش معنیدار گلبولهای سفید شد (05/0>P). در تیمارهای آزمایشی اختلاف معنیداری از نظر پلاکت، حجم متوسط گلبول قرمز خون، میانگین غلظت هموگلوبین گلبولهای قرمز، نوتروفیل، لنفوسیت، مونوسیت و ائوزینوفیل خون مشاهده نشد. غلظت سوپراکسید دسموتاز، گلوتاتیون پراکسیداز، کاتالاز، ترییدوتیرونین و تترا یدوتیرونین خون در تیمارهای دریافتکننده شکلهای مختلف کروم نسبت به گروه شاهد نیز افزایش یافت (05/0>P). نتایج نشان داد که، غلظت مالون دی آلدئید و ظرفیت آنتیاکسیدانی تام در میش و برههای دریافتکننده مکمل کروم کمتر از تیمار شاهد بوده است (05/0>P). هرچند اختلاف معنیداری بین تیمارهای مختلف آزمایشی از نظر غلظت سرولوپلاسمین و نسبت T4 به T3 وجود نداشت (05/0<P). غلظت IgG و IgM در برههای دریافتکننده شکلهای مختلف کروم نسبت به گروه شاهد نیز افزایش یافت (05/0>P). بهطورکلی دریافت کروم بهویژه به شکلهای کروم-متیونین و نانوذرات کروم در دورهی انتقال میشها تحت تاثیر تنش گرمایی قابل توصیه میباشد. | ||
کلیدواژهها | ||
تنش گرمایی؛ دورهی انتقال؛ کروم؛ وضعیت آنتیاکسیدانی؛ میش افشاری | ||
مراجع | ||
معینی، م، م. کاکی سومار، س. هژبری، ف و نیکوصفت، ز. (1397). اثر مخلوط مکمل آلی کروم و روی با سیاهدانه بر فراسنجههای خونی، ظرفیت آنتی اکسیدانی و عملکرد برههای سنجابی تحت استرس حمل و نقل. پژوهش در نشخوارکنندگان. 100-85 :(1)6. REFERNSES Abdelnour, S. A., Abd El-Hack, M. E., Khafaga, A. F., Arif, M., Taha, A. E., & Noreldin, A. E. (2019). Stress biomarkers and proteomics alteration to thermal stress in ruminants: A review. Journal of thermal biology, 79, 120-134. Arthington, J. D., Corah, L. R., Minton, J. E., Elsasser, T. H., & Blecha, F. (1997). Supplemental dietary chromium does not influence ACTH, cortisol, or immune responses in young calves inoculated with bovine herpesvirus-1. Journal of Animal Science, 75(1), 217-223. Bach, A., Huntington, G. B., Calsamiglia, S., & Stern, M. D. (2000). Nitrogen metabolism of early lactation cows fed diets with two different levels of protein and different amino acid profiles. Journal of Dairy Science, 83(11), 2585-2595. Bagath, M., Krishnan, G., Devaraj, C., Rashamol, V. P., Pragna, P., Lees, A. M., & Sejian, V. (2019). The impact of heat stress on the immune system in dairy cattle: A review. Research in Veterinary Science, 126, 94-102. Bernabucci, U., Ronchi, B., Lacetera, N., & Nardone, A. (2002). Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season. Journal of Dairy Science, 85(9), 2173-2179. Bernhard, B. C., Burdick, N. C., Rounds, W., Rathmann, R. J., Carroll, J. A., Finck, D. N., & Johnson, B. J. (2012). Chromium supplementation alters the performance and health of feedlot cattle during the receiving period and enhances their metabolic response to a lipopolysaccharide challenge–. Journal of Animal Science, 90(11), 3879-3888. Besong, S., Jackson, J. A., Trammell, D. S., & Akay, V. (2001). Influence of supplemental chromium on concentrations of liver triglyceride, blood metabolites and rumen VFA profile in steers fed a moderately high fat diet. Journal of Dairy Science, 84(7), 1679-1685. Broucek, J., Kisac, P., & Uhrincat, M. (2009). Effect of hot temperatures on the hematological parameters, health and performance of calves. International Journal of Biometeorology, 53, 201-208. Burton, J. L., Mallard, B. A., & Mowat, D. N. (1993). Effects of supplemental chromium on immune responses of periparturient and early lactation dairy cows. Journal of Animal Science, 71(6), 1532-1539. Cao, J., Guo, F., Zhang, L., Dong, B., & Gong, L. (2014). Effects of dietary Selenomethionine supplementation on growth performance, antioxidant status, plasma selenium concentration, and immune function in weaning pigs. Journal of Animal Science and Biotechnology, 5(1), 1-7. Caroprese, M., Marzano, A., Entrican, G., Wattegedera, S., Albenzio, M., & Sevi, A. (2009). Immune response of cows fed polyunsaturated fatty acids under high ambient temperatures. Journal of Dairy Science, 92(6), 2796-2803. Chang, X., Mallard, B. A., & Mowat, D. N. (1996). Effects of chromium on health status, blood neutrophil phagocytosis and in vitro lymphocyte blastogenesis of dairy cows. Veterinary Immunology and Immunopathology, 52(1-2), 37-52. Chang, X., & Mowat, D. N. (1992). Supplemental chromium for stressed and growing feeder calves. Journal of Animal Science, 70(2), 559-565. Choi, S. J., Oh, J. M., & Choy, J. H. (2010). Biocompatible nanoparticles intercalated with anticancer drug for target delivery: pharmacokinetic and biodistribution study. Journal of Nanoscience and Nanotechnology, 10(4), 2913-2916. Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., & Kumar, R. (2016). Impact of heat stress on health and performance of dairy animals: a review. Vet World 9: 260–268. Depew, C. L., Bunting, L. D., Fernandez, J. M., Thompson Jr, D. L., & Adkinson, R. W. (1998). Performance and metabolic responses of young dairy calves fed diets supplemented with chromium tripicolinate. Journal of Dairy Science, 81(11), 2916-2923. Domínguez-Vara, I. A., González-Muñoz, S. S., Pinos-Rodríguez, J. M., Bórquez-Gastelum, J. L., Bárcena-Gama, R., Mendoza-Martínez, G. & Landois-Palencia, L. L. (2009). Effects of feeding selenium-yeast and chromium-yeast to finishing lambs on growth, carcass characteristics, and blood hormones and metabolites. Animal Feed Science and Technology, 152(1-2), 42-49. Duffield, T. F., Merrill, J. K., & Bagg, R. N. (2012). Meta-analysis of the effects of monensin in beef cattle on feed efficiency, body weight gain, and dry matter intake. Journal of Animal Science, 90(12), 4583-4592. Faldyna, M., Pechova, A., & Krejci, J. (2003). Chromium supplementation enhances antibody response to vaccination with tetanus toxoid in cattle. Journal of Veterinary Medicine, Series B, 50(7), 326-331. Gehrig, S. M., van der Poel, C., Sayer, T. A., Schertzer, J. D., Henstridge, D. C., Church, J. E., ... & Lynch, G. S. (2012). Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature, 484(7394), 394-398. Gentry, L. R., Fernandez, J. M., Ward, T. L., White, T. W., Southern, L. L., Bidner, T. D. & Sahlu, T. (1999). Dietary protein and chromium tripicolinate in Suffolk wether lambs: effects on production characteristics, metabolic and hormonal responses, and immune status. Journal of Animal Science, 77(5), 1284-1294. Ghasemi Kasmaei, F., & Safari Manjegh Tappeh, S. (2022). Comparison of the effect of organic, inorganic and nano-chromium supplements on growth performance and blood parameters of Mehraban fattening lambs. International Journal of Plant, Animal and Environmental Science, 14(3), 95-102. Ghorbani, A., Sadri, H., Alizadeh, A. R., & Bruckmaier, R. M. (2012). Performance and metabolic responses of Holstein calves to supplemental chromium in colostrum and milk. Journal of Dairy Science, 95(10), 5760-5769. Gong, J., & Xiao, M. (2016). Selenium and antioxidant status in dairy cows at different stages of lactation. Biological Trace Element Research, 171, 89-93. Haldar, S., Mondal, S., Samanta, S., & Ghosh, T. K. (2009). Effects of dietary chromium supplementation on glucose tolerance and primary antibody response against pestedespetitsruminants in dwarf Bengal goats (Capra hircus). Animal, 3(2), 209-217. Harvey, K. M., Cooke, R. F., & Marques, R. D. S. (2021). Supplementing trace minerals to beef cows during gestation to enhance productive and health responses of the offspring. Animals, 11(4), 1159. Hassan, F. A., Mahmoud, R., & El-Araby, I. E. (2017). Growth performance, serum biochemical, economic evaluation and IL6 gene expression in growing rabbits fed diets supplemented with zinc nanoparticles. Zagazig Veterinary Journal, 45(3), 238-249. Hill, E. K., & Li, J. (2017). Current and future prospects for nanotechnology in animal production. Journal of Animal Science and Biotechnology, 8(1), 1-13. Kafilzadeh, F., Shabankareh, H. K., & Targhibi, M. R. (2012). Effect of chromium supplementation on productive and reproductive performances and some metabolic parameters in late gestation and early lactation of dairy cows. Biological Trace Element Research, 149, 42-49. Kargar, S., Mousavi, F., & Karimi-Dehkordi, S. (2018). Effects of chromium supplementation on weight gain, feeding behaviour, health and metabolic criteria of environmentally heat-loaded Holstein dairy calves from birth to weaning. Archives of Animal Nutrition, 72(6), 443-457. Kargar, S., Mousavi, F., Karimi-Dehkordi, S., & Ghaffari, M. H. (2018). Growth performance, feeding behavior, health status, and blood metabolites of environmentally heat-loaded Holstein dairy calves fed diets supplemented with chromium. Journal of Dairy Science, 101(11), 9876-9887. Kegley, E. B., Spears, J. W., & Brown Jr, T. T. (1996). Immune response and disease resistance of calves fed chromium nicotinic acid complex or chromium chloride. Journal of Dairy Science, 79(7), 1278-1283. Kegley, E. B., Spears, J. W., & Brown Jr, T. T. (1997). Effect of shipping and chromium supplementation on performance, immune response, and disease resistance of steers. Journal of Animal Science, 75(7), 1956-1964. Kegley, E. B., & Spears, J. W. (1995). Immune response, glucose metabolism, and performance of stressed feeder calves fed inorganic or organic chromium. Journal of Animal Science, 73(9), 2721-2726. Keshri, A., Roy, D., Kumar, V., Kumar, M., Kushwaha, R., Vaswani, S. & Choudhury, S. (2021). Effect of chromium supplementation on rhythmic alterations in growth performance and nutrient utilization of growing cattle during heat stress. Biological Rhythm Research, 52(7), 1064-1072. Khansari, D. N., Murgo, A. J., & Faith, R. E. (1990). Effects of stress on the immune system. Immunology Today, 11, 170-175. Kumar, M., Kaur, H., Deka, R. S., Mani, V., Tyagi, A. K., & Chandra, G. (2015). Dietary inorganic chromium in summer-exposed buffalo calves (Bubalus bubalis): effects on biomarkers of heat stress, immune status, and endocrine variables. Biological Trace Element Research, 167, 18-27. Kumar, N., Garg, A. K., Dass, R. S., Chaturvedi, V. K., Mudgal, V., & Varshney, V. P. (2009). Selenium supplementation influences growth performance, antioxidant status and immune response in lambs. Animal Feed Science and Technology, 153(1-2), 77-87. Lashkari, S., Habibian, M., & Jensen, S. K. (2018). A review on the role of chromium supplementation in ruminant nutrition—effects on productive performance, blood metabolites, antioxidant status, and immunocompetence. Biological Trace Element Research, 186, 305-321. Marcén, M., Ruiz, V., Serrano, M. J., Condón, S., & Mañas, P. (2017). Oxidative stress in E. coli cells upon exposure to heat treatments. International Journal of Food Microbiology, 241, 198-205. Meyer, A. M., Reed, J. J., Neville, T. L., Thorson, J. F., Maddock-Carlin, K. R., Taylor, J. B., ... & Caton, J. S. (2011). Nutritional plane and selenium supply during gestation affect yield and nutrient composition of colostrum and milk in primiparous ewes. Journal of animal science, 89(5), 1627-1639. Moeini, M. M., Kaki Soumar, S., Hozhabri, F., & Nikousefat, Z. (2018). The effect of black seed with chromium-methionine or zinc-methionine on the blood parameters, antioxidant capacity and performance of Sanjabi lambs under transport stress. Journal Ruminat Research, 6(1), 85-100. (In Persian). Moezzi, A., McDonagh, A. M., & Cortie, M. B. (2012). Zinc oxide particles: Synthesis, properties and applications. Chemical Engineering Journal, 185, 1-22. Moonsie-Shageer, S., & Mowat, D. N. (1993). Effect of level of supplemental chromium on performance, serum constituents, and immune status of stressed feeder calves. Journal of Animal Science, 71(1), 232-238. Moreira, P. S. A., Palhari, C., & Berber, R. C. A. (2020). Dietary chromium and growth performance animals: a review. Scientific Electronic Archives, 13(7), 59-66. Mousaie, A., Valizadeh, R., Naserian, A. A., Heidarpour, M., & Mehrjerdi, H. K. (2014). Impacts of feeding selenium-methionine and chromium-methionine on performance, serum components, antioxidant status, and physiological responses to transportation stress of Baluchi ewe lambs. Biological Trace Element Research, 162, 113-123. Mousavi, F., Karimi-Dehkordi, S., Kargar, S., & Ghaffari, M. H. (2019). Effect of chromium supplementation on growth performance, meal pattern, metabolic and antioxidant status and insulin sensitivity of summer-exposed weaned dairy calves. Animal, 13(5), 968-974. Mousavi, F., Karimi-Dehkordi, S., Kargar, S., & Khosravi-Bakhtiari, M. (2019). Effects of dietary chromium supplementation on calf performance, metabolic hormones, oxidative status, and susceptibility to diarrhea and pneumonia. Animal Feed Science and Technology, 248, 95-105. Arruda, A. G., Godden, S., Rapnicki, P., Gorden, P., Timms, L., Aly, S. S & Champagne, J. (2013). Randomized noninferiority clinical trial evaluating 3 commercial dry cow mastitis preparations: I. Quarter-level outcomes. Journal of Dairy Science, 96(7), 4419-4435. Munck, A., Guyre, P. M., & Holbrook, N. J. (1984). Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocrine Reviews, 5(1), 25-44. National Research Council. (2007). Nutrient Requirements of Small Ruminants. Sheep, goats, cervide and new world camelids. Washington, DC: National Academy Press. Ohh, S. J., & Lee, J. Y. (2005). Dietary chromium-methionine chelate supplementation and animal performance. Asian-Australasian Journal of Animal Sciences, 18(6), 898-907. Pantelić, M., Jovanović, L. J., Prodanović, R., Vujanac, I., Đurić, M., Ćulafić, T. & Kirovski, D. (2018). The impact of the chromium supplementation on insulin signalling pathway in different tissues and milk yield in dairy cows. Journal of Animal Physiology and Animal Nutrition, 102(1), 41-55. Phan, T. T. V., Huynh, T. C., Manivasagan, P., Mondal, S., & Oh, J. (2019). An up-to-date review on biomedical applications of palladium nanoparticles. Nanomaterials, 10(1), 66. Qi, Z., Gao, J., Zhao, C., Zhang, Y., Liu, Y., Wang, X., & Li, H. (2018). PSXVII-30 Effects of dietary supplementation of yeast chromium and dihydropyridine on serum biochemical indices and HSP70 mRNA expression of lactating dairy cows in summer. Journal of Animal Science, 96(suppl_3), 448-449. Regoli, F., & Principato, G. (1995). Glutathione, glutathione-dependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metals under field and laboratory conditions: implications for the use of biochemical biomarkers. Aquatic Toxicology, 31(2), 143-164. Robinson, J. J., McDonald, I., Fraser, C., & Crofts, R. M. J. (1977). Studies on reproduction in prolific ewes: I. Growth of the products of conception. The Journal of Agricultural Science, 88(3), 539-552. Sahin, K., Sahin, N., & Kucuk, O. (2003). Effects of chromium, and ascorbic acid supplementation on growth, carcass traits, serum metabolites, and antioxidant status of broiler chickens reared at a high ambient temperature (32 C). Nutrition Research, 23(2), 225-238. SAS. (2004). Institute. User’s Guide. Version 9.1: Statistics. SAS Institute, Cary, NC. Sordillo, L. M., & Aitken, S. L. (2009). Impact of oxidative stress on the health and immune function of dairy cattle. Veterinary Immunology and Immunopathology, 128(1-3), 104-109. Spears, J. W. (2019). Boron, chromium, manganese, and nickel in agricultural animal production. Biological Trace Element Research, 188(1), 35-44. Spears, J. W. (2000). Micronutrients and immune function in cattle. Proceedings of the nutrition society, 59(4), 587-594. Stahlhut, H. S., Whisnant, C. S., Lloyd, K. E., Baird, E. J., Legleiter, L. R., Hansen, S. L., & Spears, J. W. (2006). Effect of chromium supplementation and copper status on glucose and lipid metabolism in Angus and Simmental beef cows. Animal Feed Science and Technology, 128(3-4), 253-265. Subiyatno, A., Mowat, D. N., & Yang, W. Z. (1996). Metabolite and hormonal responses to glucose or propionate infusions in periparturient dairy cows supplemented with chromium. Journal of Dairy Science, 79(8), 1436-1445. Sun, L. L., Gao, S. T., Wang, K., Xu, J. C., Sanz-Fernandez, M. V., Baumgard, L. H., & Bu, D. P. (2019). Effects of source on bioavailability of selenium, antioxidant status, and performance in lactating dairy cows during oxidative stress-inducing conditions. Journal of Dairy Science, 102(1), 311-319. Sun, P., Wang, J., Liu, W., Bu, D. P., Liu, S. J., & Zhang, K. Z. (2017). Hydroxy-selenomethionine: A novel organic selenium source that improves antioxidant status and selenium concentrations in milk and plasma of mid-lactation dairy cows. Journal of Dairy Science, 100(12), 9602-9610. Travan, A., Pelillo, C., Donati, I., Marsich, E., Benincasa, M., Scarpa, T. & Paoletti, S. (2009). Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules, 10(6), 1429-1435. Uyanik, F. (2001). The effects of dietary chromium supplementation on some blood parameters in sheep. Biological Trace Element Research, 84, 93-101. WANG, H. F., YANG, W. R., WANG, Y. X., YANG, Z. B., & CUI, Y. H. (2011). The study on the effects of Chinese herbal mixtures on growth, activity of post-ruminal digestive enzymes and serum antioxidant status of beef cattle. Agricultural Sciences in China, 10(3), 448-455. Wang, M. Q., Xu, Z. R., Zha, L. Y., & Lindemann, M. D. (2007). Effects of chromium nanocomposite supplementation on blood metabolites, endocrine parameters and immune traits in finishing pigs. Animal Feed Science and Technology, 139(1-2), 69-80. Yan, L. J., Christians, E. S., Liu, L., Xiao, X., Sohal, R. S., & Benjamin, I. J. (2002). Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. The EMBO Journal, 21(19), 5164-5172. Yari, M., Nikkhah, A., Alikhani, M., Khorvash, M., Rahmani, H., & Ghorbani, G. R. (2010). Physiological calf responses to increased chromium supply in summer. Journal of Dairy Science, 93(9), 4111-4120. Yuan, K., Vargas-Rodriguez, C. F., Mamedova, L. K., Muckey, M. B., Vaughn, M. A., Burnett, D. D., ... & Bradford, B. J. (2014). Effects of supplemental chromium propionate and rumen-protected amino acids on nutrient metabolism, neutrophil activation, and adipocyte size in dairy cows during peak lactation. Journal of Dairy Science, 97(6), 3822-3831. Zhang, F. J., Weng, X. G., Wang, J. F., Zhou, D., Zhang, W., Zhai, C. C., ... & Zhu, Y. H. (2014). Effects of temperature–humidity index and chromium supplementation on antioxidant capacity, heat shock protein 72, and cytokine responses of lactating cows. Journal of Animal Science, 92(7), 3026-3034. | ||
آمار تعداد مشاهده مقاله: 145 تعداد دریافت فایل اصل مقاله: 254 |