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Abstract 

In this inspection, the control of the magnetic power on the onset of Casson 

fluid convection formed by purely inner warming in a porous medium layer 

is examined. The modified Darcy model is employed to designate the 

rheological arrival of Casson liquid flow in a porous matrix. Two types of 

thermal boundaries are exploited, namely, type (I) both isothermal and type 

(II) lower insulated and top isothermal boundaries. Using the linear stability 

inspection and Galerkin technique, the approximate analytical solution and 

numerical solution correct to one decimal place are offered. It is detected 

that for type (I) boundary conditions, the convective wave concentrates in 

the upper layer if it occurs, whereas for type (II) boundary conditions, it 

emphases in the whole layer. The magnetic Chandrasekhar number 

postpones the convection movement while the Casson constraint accelerates 

it. The facet of the convective cells drops with enhancing the magnetic 

strength and the Casson constraint. In the absenteeism of magnetic field, the 

Casson constraint has no regulation on the dimension of convective cells. It is 

also found that the presented analytical result with two term Galerkin 

process has overall 5% error, while with one term Galerkin process the 

error was overall 19%. 

Keywords: Casson fluid; Convective motion; Magnetic field; Porous medium; Internal Rayleigh 

number; 

1. Introduction 

Internally warmth convective flow, in which the flow of a liquid is motivated by buoyancy force produced by 

inner causes of heat, is detected in an extensive range of natural and engineering environments, and exhibits a vital 

role in many areas for example geophysics, astrophysics, metal casting, pharmacological, chemical and cosmetic 

industries. For in case, convection in the Earth’s mantle engendered by radioactive deterioration, which in turn 

impacts on plate tectonics and the planet’s magnetic force and convection in porous layer generated by own heat 
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source of porous material [1-4]. Consequently, the role of interior heat generation becomes very significant in 

numerous such applications. Gasser and Kazimi [5] examined the convection in a permeable medium layer 

engendered by interior heat production and derived the conditions for the beginning of convective drive in term of 

the critical internal Rayleigh number. The weight of rotation and Darcy number on the arrival of convective wave 

persuaded by only inner heating in a permeable  matrix was inspected by Yadav et al. [6]. They established that the 

result of growing rotation parameter constrains the start of convection, whereas Darcy number displays dual 

behaviour. The addition with nanofluid is also finished by Yadav et al. [7]. Mahajan et al. [8] inspected the 

penetrative convective movement caused by only interior warming in a flat ferrofluid saturated porous layer by 

taking four diverse kinds of heat resource functions. The influence of steady interior warmth source and changeable 

descendent gravity power on the arrival of convective drive in an anisotropic permeable matrix was examined by 

Yadav [9]. He found that both the heat anisotropy constraint and gravity disparity constraint postponed the start of 

convection. Recently, Jain and Solomatov[10] examined the effect of viscosity on the onset of convection in inner 
heated fluids and derived the asymptotic scaling relations for the critical Rayleigh number and other parameters. The 

more works with inner heating effects were made by Akbarzadeh  [11], Capone et al. [12], Gaikwad and Kouser [13], 

and Nield and Kuznetsov [14]. 

In the past few years, non-Newtonian fluids have worldwide utilizations in science and engineering such as 

processing and mining industries, petroleum production and pharmacological, chemical and cosmetic industries. The 

Casson model is a non-Newtonian model and well determines the shear thinning consequences [15-20]. The blood, 

ink and molten chocolate are commonly categorized to Casson materials. Aghighi et al. [21] analysed the convective 

flow in a Casson fluid and detected that the yield stress has a stabilizing consequence by declining the convection 

asset. Devi et al. [22] inspected the heat source impact on the thermosalinity motion of Casson nanofluids and 

detected that the Casson factor accelerates the convection. Qadan et al. [23] analysed the mixed convective boundary 

layer movement on a flat circular cylinder engrossed in a Casson liquid and they noticed that the temperature profile 
declines as surge the Casson parameter. Reddy et al. [24] calculated the thermohaline convective flow of a Casson 

liquid in a permeable layer and established that the Casson element weakens the movement. Lately, Yadav et al. [25] 

examined the chemical reaction outcome on the thermohaline Casson liquid convective drive in a permeable layer. 

They identified that the over stable nature of convective measure arises only if the valuation of the solutal Rayleigh-

Darcy number is smaller than zero. 

The outcome of magnetic power can postponement or can advance the arrival of convective drive. The magnetic 

field in an arrangement of electrically conducting fluids generates the Lorentz force and this force disturbs the 

convection pointedly. Rudraiah and Vortmeyer [26] examined the value of magnetic forte on the convective motions 

of a conducting fluid in a porous bed. They created that the magnetic arena postpones the convective drive. Abd-el-

Malek and Helal [27] calculated the time dependent laminar flow subjected to a magnetic field. They instituted that 

the velocity edge-layer wideness converts lesser for the upsurge in the magnetic effect number. Recently, Devi and 

Gupta [28] examined the Casson nanofluid movement problem in the occurrence of upright magnetic force, heated 
from bottom. They found that the Chandrasekhar number affects the critical wave number largely whereas the 

Casson factor affects it slightly. Some other examinations on convective motion with numerous diverse conditions 

were accomplished by Mahajan and Sharma [29], Sheikholeslami [30], Deepika  et al. [31] and Umavathi et al. [32]. 

The literature review demonstrates that no examination has been established in the literature which studies the 

effect of magnetic power on the convective flow caused by purely inner heating in a regular fluid or a non-

Newtonian Casson fluid. Owing to the potential applications, the intention of the present work is to inspect the 

influence of magnetic power on the onset of Casson fluid convective movement produced by purely inner warming 

in a porous matrix. Utilizing the linear stability standard, the purebred equations are produced and assessed 

analytically as well as numerically by operating the progressive order Galerkin procedure. 

 

 

2. Problem statement 

Let us consider a Casson fluid convection, formed by purely inner warming of power 0S , in a flat porous layer 

restricted among two planes at 0z = and z H= as shown in Fig.1. It is estimated that a continuous magnetic field 

( )00,0, F=F is executed to the flow. On using the Casson fluid form of Darcy's rule as executed by Shuaib et al. 

[33], Khan et al. [34] and Makinde and Reddy [18], the suitable leading equations subjected to this model are [25] : 
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Fig. 1: Graphic depiction of the considered problem. 

 

Here, ( ), ,D D D Du v wv signifies the Darcy’s velocity of the Casson fluid, g  displays the gravity acceleration, 

  shows the temperature,    indicates time, 
0  wealth the  basic density at 

0 , = P  shows the pressure,   is 

the warmth extension extent, sk  displays for the  warmth conductivity, K  means the permeability, 
Fm expresses 
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the magnetic permeability of the Casson liquid, ( )c and ( )
s

c  appearance for the thermal capacities of Casson 

liquid and effectually porous matrix,   is the Casson constraint and   terms the plastic dynamic viscosity of the 

Casson liquid. Two types of  boundary specious are taken as [7, 35]: 

Type (I) both boundaries' isothermals 
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Now, the following non-dimensional variables are introduced as: 
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Here ( )ss k c = . Hence, Eqs. (1)-(6) are transformed to dimensionless arrangement as:  
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Type (I) both boundaries' isothermals 
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The basic state of the framework is supposed as: 
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(14) 

 

Thus Eq. (10) gives the gradient of basis state temperature distribution as: 
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Here the assessment of   is one for type (I) and zero for type (II) boundary conditions. Eqs. (15) is the same as 

found by Hamabata and Takashima [35]. 

 

3. Perturbed equations 

Assuming that the basic flow is triggered to some degree so that the variables adapted as:  

., ˆ, ,b b zbD D P P P     = +  + + = += =v v v F e F  (16) 

 

where   is a minor dimensionless amplitude characteristic. On using the Eq. (16) into Eqs.  (8)–(13) and 

considering ( )O  , the perturbed equations can be written as: 
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On Eradicating P  and 
zF   by taking ˆ ze  on Eq. (18) with Eqs. (17), (20) and (21), we have: 
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It is supposed that the design of the convective signal is stationary for the deliberated problem. This statement is 

legal if the assessment of PF
 is more than one as detected by Chandrasekhar [36]. Consequently, for the inspection 

of natural stable system, considering the normal mode as: 
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Here, 
2 2

x ya a = +  is overall plane wave number. Then, by using Eq.  (23), Eq. (22) and Eq. (19) converted to 

two ordinary differential equations with boundary condition as: 
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Here D d dz .  

 

4. Solution technique 

The system of Eqs. (24) and (25) forms an eigenvalue problem and solved it by considering the Galerkin 

process. Consequently, the solutions of Eqs. (24) and (25) are taken as: 
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Here pA  and pB  are unidentified coefficients. Here, pW  and p  accomplish the boundary conditional (Eq. 

(26)) and considered as:  
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Relating Eq. (27) into Eqs. (24) and (25) and sighted the orthogonal rule, the following system of algebraic 

equations is obtained: 
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The Eq. (29) makes an eigenvalue problem and resolved it by utilizing the “eig” function in Matlab. Here, the 

“eig” function is used with QZ algorithm to calculate the internal Rayleigh number 
IR as an eigenvalue. The 

estimations of ,I cR and c  are found with the application of the golden search practice. 

 

5. Results and discussion 

5.1. Analytical result 

For type (1) boundary conditions, the analytical results are derived by considering 2S = . Thus, from Eq. (29) 

for a non-trivial solution condition, the internal Rayleigh number 
IR  and the correspondent critical wave 

number c  are obtained as:   
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For type (II) boundary conditions, the analytical results are presented by taking 1S = . Thus, from Eq. (29), the 

internal Rayleigh number
IR  and the correspondent critical wave number c  for type (II) boundary conditions, are 

derived as:  
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To estimate the impact of the Casson constraint  and the magnetic Chandrasekhar number QF
 on the onset of 

convective movement analytically, the behaviour of 
IR






 and 

QF

IR


are examined. Now, Eq. (32) gives: 
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From Eqs. (34) and (35), it is establish that the Casson constraint  accelerates the onset of convective motion 

whereas, the magnetic Chandrasekhar number QF
 has the opposite impact on it.  

5.2. Numerical result and discussion 

For the studied problem, it is not feasible to get a precise analytical solution. Therefore, the higher-order (six-

order) Galerkin process is also used to solve the consequential eigenvalue problem for diverse valuations of the 

Casson constraint   and the magnetic Chandrasekhar number FQ .  

 

Table 1. Assessment of the critical internal Rayleigh number ,I cR  and critical wave number c  with 

numerous levels of the Galerkin estimation S , the Casson constraint  and the magnetic Chandrasekhar 

number QF
 for type (1) both boundaries isothermals and for type (II) lower insulated and upper isothermal 

at Q 5F = . 

 

 

 

 

S  

1 =  3 =  5 =
 

Regular fluid 

( ) →
 

,I cR
 c  ,I cR

 c  ,I cR
 c  ,I cR

 c  

Type 

(1)  

2 2011.34 6.08 1636.27 6.56 1558.20 6.70 1438.167 6.95 

3 1923.74 6.38 1564.13 6.89 1489.25 7.04 1374.08 7.31 

4 1920.58 6.40 1561.46 6.91 1486.68 7.06 1371.66 7.33 

5 1920.38 6.40 1561.30 6.91 1486.52 7.06 1371.51 7.33 

6 1920.35 6.40 1561.27 6.91 1486.50 7.06 1371.49 7.33 

Type 
(1I) 

1 342.76 3.05 291.78 3.29 281.24 3.36 265.10 3.49 

2 292.18 3.65 243.65 4.04 233.48 4.15 217.77 4.37 

4 288.07 3.63 240.35 4.01 230.36 4.13 214.94 4.33 

5 288.06 3.63 240.35 4.01 230.35 4.13 214.93 4.33 

6 288.07 3.63 240.35 4.01 230.35 4.13 214.93 4.33 

 

The convergence of the Galerkin technique with several terms of the Galerkin routine is offered in Table 1 with the 

variation of the Casson constraint    at 5FQ = . From Table 1, it is distinguished that the analytical result 

presented by Eq. (30) with two terms Galerkin process has overall 5% error and the analytical result presented by 

Eq. (32) with single term Galerkin process has nearly overall 19% error. From Table 1, it is also established that 

overall one decimal place precision on the valuations of the critical internal Rayleigh I,cR  obtained spending six 

terms of Galerkin technique. Therefore, the numerical results are presented here by taking the six terms Galerkin 
process.  

 

To endorse the exactitude of the numerical route used in this analysis, first sample calculations are succeeded for 

the normal fluid with the nonattendance of magnetic force ( )0,  FQ = →  and outcomes are connected with 

the outcomes provided by Nouri-Borujerdi et al. [37] in Table 2. 



Journal of Computational Applied Mechanics 2024, 55(-): pp-pp 9 
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From the Table 2, it is recognized that the contract is marvellous and thus recommend the accurateness of the 

routine used in this paper. For the normal fluid and in the nonappearance of magnetic power ( )0,  FQ = → , 

Table 2 shows , 471.39I cR =  and 4.68c = . These are nearly same to the values detected by Nouri-Borujerdi et 

al. [37] ( )I,c 471.3846, 4.6751cR = = . 

 

 

 

Fig. 2: Effect of internal Rayleigh number IR on the distribution of basic temperature gradient bd

zd


. 

Fig. 2 displays the circulation of the basic temperature gradient bd

zd


 under the impact of internal Rayleigh 

number IR  for both types of boundary conditions. From this graph, it is recognized that for type (I) boundary 

FQ  1 =  3 =  5 =
 

Regular fluid 

( ) →
 

,I cR
 c  ,I cR

 c  ,I cR
 c  ,I cR

 c  
0 942.77 4.68 628.52 4.68 565.66 4.68 471.39 

[37]  

4.68 

[37] 

5 1920.35 6.40 1561.27 6.91 1486.50 7.06 1371.49 7.33 

10 2742.98 7.33 2337.15 8.01 2250.96 8.20 2116.98 8.55 

15 3505.73 8.01 3059.28 8.78 2963.40 9.00 2813.53 9.40 

20 4233.97 8.55 3751.37 9.40 3646.97 9.64 3483.18 10.07 

25 4939.01 9.00 4423.57 9.91 4311.48 10.17 4135.15 10.63 

30 5627.06 9.40 5081.34 10.36 4962.18 10.63 4774.36 11.11 
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conditions, the convective wave concentrates (negative basic temperature gradient) in the upper layer if it arises, 

whereas for type (II) boundary conditions, it emphases in the whole layer. From Fig. 2, it is also found that the 

circulation of the basic temperature gradient increases with internal Rayleigh number
IR  and therefore the system is 

less stable with increasing
IR .  

Fig. 3 and Fig. 4 show the neutral plots for varied assessments of the magnetic Chandrasekhar number FQ   and 

the Casson constraint  , respectively. From these plots, it is distinguished that the neutral plots are analogous in a 

topological aptitude. This allows that the linear stability standard can be specified in state of the critical internal 

Rayleigh number ,I cR , smaller which the structure is stable and not-stable above. From these graph, it is also 

established that on rising the value of  , the assessment of 
IR  tends to decay, i.e., the arrangement pushes to 

destabilize, while FQ has a stabilizing inspiration on the stability of the structure. 

Fig. 5 (5a,b) and Fig. 6 (6a,b) show the distinctions of ,I cR  and c  with the magnetic Chandrasekhar number 

FQ  for several estimates of the Casson constraint  , respectively with both types of boundary surroundings. The 

imports are also disclosed in Table 2 for type (I) and Table 3 for type (II) boundary conditions. From Table 2, Table 

3 and Fig. 5, it is recognized that the estimates of ,I cR  falls with the Casson constraint   while it upsurges with the 

magnetic Chandrasekhar number FQ . This demonstrates that the stability of the arrangement upsurges with FQ .  

 

 

 
type (I) 

 

type (II) 

 

 

Fig. 3. Neutral stability plots with disparity of FQ  at 5 = . 
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type (I) 

 

type (II) 

 
 

Fig. 4. Neutral stability plots with disparity of   at 5FQ = . 

 

 

The stabilizing control of FQ  on the arrangement is found because increasing FQ  increases the strength of 

Lorentz force, and the Lorentz force offers more fight for the transport of the Casson fluid flow. The destabilizing 

effect of   on the system is detected because raising the Casson constraint   reduces the yield stress of the Casson 

lequid; this creates the arrangement more unstable. 

 
 

Table 3: Disparity of ,I cR  and c  with diverse values of FQ  and 
 
for type (II) lower insulated and 

upper isothermal boundaries. 

 

 

 

 

 

 

 

 

 

 

 

FQ
 

1 =  3 =  5 =
 

Regular fluid 

( ) →
 

,I cR
 c  ,I cR

 c  ,I cR
 c  ,I cR

 c  
0 123.73 2.45 82.49 2.45 74.24 2.45 61.87 2.45 

5 288.07 3.63 240.35 4.01 230.35 4.13 214.93 4.33 

10 429.87 4.33 375.02 4.85 363.28 4.99 344.94 5.26 

15 562.53 4.85 501.42 5.44 488.18 5.60 467.39 5.90 

20 689.87 5.26 623.19 5.90 608.63 6.08 585.70 6.41 

25 813.63 5.60 741.89 6.29 726.16 6.48 701.31 6.83 

30 934.78 5.90 858.38 6.63 841.57 6.83 814.96 7.19 
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Fig 5a: Result of FQ  on 
,I cR  for diverse values of Casson constraint   for type (1) both boundaries 

isothermals. 

 

 

Fig 5b: Result of FQ  on 
,I cR  for diverse values of Casson constraint  for type (II) lower insulated 

and higher isothermal boundaries. 

 

 

 

 

Fig 6a: Result of FQ  on 
c   for diverse values of Casson constraint   for type (1) both isothermal 

boundaries 
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Fig 6b: Result of FQ  on 
c   for diverse values of Casson constraint   for type (II) lower insulated 

and higher isothermal boundaries. 

 

 

From Fig. 6, it is noticed that the critical wave number c  surges with and FQ . This shows that the extent of the 

convective cells declines by increasing and FQ . Also, it is detected that in the nonappearance of magnetic power, 

the Casson constraint  has no impact on c  . From these plots, it is also predicted that the structure is more stable 

for type (I) boundary conditions for which both boundary planes are isothermal. 

 

6. Conclusions 

In this examination, the magnetic power significance on the arrival of Casson liquid convective drive in a 

permeable medium is evaluated analytically as well as numerically. Two types of thermal boundaries are measured, 

namely, type (I) both isothermal and type (II) lower insulated and top isothermal boundaries. The numerical 

treatment for the problem is presented correctly to one decimal place using six terms Galerkin process whereas, the 

analytical results are presented with one and two terms Galerkin process. The analytical result presented by the 

single term Galerkin process has nearly overall 19% error while, with two terms Galerkin process the error was 

overall 5%. Results indicated that for type (I) boundary conditions, the convective wave concentrates in the upper 

layer whereas, for type (II) boundary conditions it emphases in the whole layer, if it occurs. The Casson constraint  

rushes the convective motion whereas; the magnetic Chandrasekhar number FQ  postpones it. The size of the 

convective cell declines with FQ . The Casson constraint  has no impact on the size of the convective cell without 

magnetic force while in the incidence of magnetic force it drops the size of convective cells. The arrangement shows 

more stability for type (I) boundary conditions for which both boundary planes are isothermal. 

 

Acknowledgement 

D. Yadav appreciatively recognizes the University of Nizwa Research Grant (Grant No.: A/2021-2022-

UoN/3/CAS/IF) for assisting this work. 

 

References 

[1] A. Arslan, G. Fantuzzi, J. Craske, A. Wynn, Bounds on heat transport for convection driven by internal 

heating, Journal of Fluid Mechanics, Vol. 919, pp. A15, 2021.  



14 Dhananjay Yadav et al. 

 

[2] P. H. Roberts, Convection in horizontal layers with internal heat generation. Theory, Journal of Fluid 

Mechanics, Vol. 30, No. 1, pp. 33-49, 1967.  

[3] M. Tveitereid, Thermal convection in a horizontal porous layer with internal heat sources, International 

Journal of Heat and Mass Transfer, Vol. 20, No. 10, pp. 1045-1050, 1977/10/01/, 1977.  

[4] D. A. Nield, A. Bejan, 2006, Convection in porous media, Springer,  

[5] R. Gasser, M. Kazimi, Onset of convection in a porous medium with internal heat generation, Journal of 

Heat Transfer, Vol. 98, No. 1, pp. 49-54, 1976.  

[6] D. Yadav, J. Wang, J. Lee, Onset of Darcy-Brinkman convection in a rotating porous layer induced by 

purely internal heating, Journal of Porous Media, Vol. 20, No. 8, pp. 691-706, 2017.  

[7] D. Yadav, J. Lee, H. H. Cho, Brinkman convection induced by purely internal heating in a rotating porous 

medium layer saturated by a nanofluid, Powder Technology, Vol. 286, pp. 592-601, 2015.  

[8] A. Mahajan, Sunil, M. K. Sharma, Linear stability analysis of penetrative convection via internal heating in 
a ferrofluid saturated porous layer, Fluids, Vol. 2, No. 2, pp. 22, 2017.  

[9] D. Yadav, The Onset of Convective Activity in an Anisotropic Porous Medium Layer with Internal Heating 

and Inconsistent Gravity Effects, Revista Cubana de Física, Vol. 37, No. 1, pp. 24-33, 2020.  

[10] C. Jain, V. S. Solomatov, Onset of convection in internally heated fluids with strongly temperature-

dependent viscosity, Physics of Fluids, Vol. 34, No. 9, pp. 096604, 2022.  

[11] P. Akbarzadeh, The onset of MHD nanofluid convection between a porous layer in the presence of purely 

internal heat source and chemical reaction, Journal of Thermal Analysis and Calorimetry, Vol. 131, No. 3, 

pp. 2657-2672, 2018/03/01, 2018.  

[12] F. Capone, M. Gentile, A. A. Hill, Penetrative convection via internal heating in anisotropic porous media, 

Mechanics Research Communications, Vol. 37, No. 5, pp. 441-444, 2010/07/01/, 2010.  

[13] S. N. Gaikwad, S. Kouser, Double diffusive convection in a couple stress fluid saturated porous layer with 
internal heat source, International Journal of Heat and Mass Transfer, Vol. 78, pp. 1254-1264, 

2014/11/01/, 2014.  

[14] D. Nield, A. Kuznetsov, Onset of convection with internal heating in a porous medium saturated by a 

nanofluid, Transport in porous media, Vol. 99, No. 1, pp. 73-83, 2013.  

[15] F. Ali, N. A. Sheikh, I. Khan, M. Saqib, Solutions with Wright function for time fractional free convection 

flow of Casson fluid, Arabian Journal for Science and Engineering, Vol. 42, pp. 2565-2572, 2017.  

[16] T. Anwar, P. Kumam, W. Watthayu, Unsteady MHD natural convection flow of Casson fluid incorporating 

thermal radiative flux and heat injection/suction mechanism under variable wall conditions, Scientific 

Reports, Vol. 11, No. 1, pp. 4275, 2021/02/19, 2021.  

[17] M. Hamid, M. Usman, Z. H. Khan, R. Ahmad, W. Wang, Dual solutions and stability analysis of flow and 

heat transfer of Casson fluid over a stretching sheet, Physics Letters A, Vol. 383, No. 20, pp. 2400-2408, 

2019/07/18/, 2019.  
[18] O. Makinde, M. Gnaneswara Reddy, MHD peristaltic slip flow of Casson fluid and heat transfer in channel 

filled with a porous medium, Scientia Iranica, Vol. 26, No. 4, pp. 2342-2355, 2019.  

[19] G. Rana, R. Chand, V. Sharma, On the onset of instability of a viscoelastic fluid saturating a porous 

medium in electrohydrodynamics, Revista Cubana de Física, Vol. 33, No. 2, pp. 89-94, 2016.  

[20] G. C. Rana, H. Saxena, P. K. Gautam, The Onset of Electrohydrodynamic Instability in a Couple-Stress 

Nano-fluid Saturating a Porous Medium: Brinkman Mode, 2019, Vol. 36, No. 1, pp. 9, 2019-07-14, 2019.  

[21] M. S. Aghighi, A. Ammar, C. Metivier, M. Gharagozlu, Rayleigh-Bénard convection of Casson fluids, 

International Journal of Thermal Sciences, Vol. 127, pp. 79-90, 2018.  

[22] M. Devi, U. Gupta, S. Bandari, Internal heat source effects on thermosolutal convection of Casson 

nanofluids embedded by Darcy-Brinkman model, Numerical Heat Transfer, Part B: Fundamentals, pp. 1-

16.  
[23] H. Qadan, H. Alkasasbeh, N. Yaseen, M. Z. Sawalmeh, S. ALKhalafat, A Theoretical Study of Steady 

MHD mixed convection heat transfer flow for a horizontal circular cylinder embedded in a micropolar 

Casson fluid with thermal radiation, Journal of Computational Applied Mechanics, Vol. 50, No. 1, pp. 165-

173, 2019.  

[24] G. Reddy, R. Ragoju, S. Shekhar, Thermohaline convection of a Casson fluid in a porous layer: Linear and 

non-linear stability analyses, Physics of Fluids, Vol. 35, No. 9, 2023.  

[25] D. Yadav, S. B. Nair, M. K. Awasthi, R. Ragoju, K. Bhattacharyya, Linear and nonlinear investigations of 

the impact of chemical reaction on the thermohaline convection in a permeable layer saturated with Casson 

fluid, Physics of Fluids, Vol. 36, No. 1, 2024.  



Journal of Computational Applied Mechanics 2024, 55(-): pp-pp 15 

 

[26] N. Rudraiah, D. Vortmeyer, Stability of finite-amplitude and overstable convection of a conducting fluid 

through fixed porous bed, Wärme-und Stoffübertragung, Vol. 11, No. 4, pp. 241-254, 1978.  

[27] M. B. Abd-el-Malek, M. M. Helal, Similarity solutions for magneto-forced-unsteady free convective 

laminar boundary-layer flow, Journal of Computational and Applied Mathematics, Vol. 218, No. 2, pp. 

202-214, 2008/09/01/, 2008.  

[28] M. Devi, U. Gupta, Magneto-Convection in Casson Nanofluids with Three Different Boundaries, Journal 

of Nanofluids, Vol. 12, No. 5, pp. 1351-1359, 2023.  

[29] A. Mahajan, M. K. Sharma, The onset of convection in a magnetic nanofluid layer with variable gravity 

effects, Applied Mathematics and Computation, Vol. 339, pp. 622-635, 2018/12/15/, 2018.  

[30] M. Sheikholeslami, New computational approach for exergy and entropy analysis of nanofluid under the 

impact of Lorentz force through a porous media, Computer Methods in Applied Mechanics and 

Engineering, Vol. 344, pp. 319-333, 2019/02/01/, 2019.  
[31] N. Deepika, P. Murthy, P. Narayana, The Effect of Magnetic Field on the Stability of Double-Diffusive 

Convection in a Porous Layer with Horizontal Mass Throughflow, Transport in Porous Media, Vol. 134, 

No. 2, pp. 435-452, 2020.  

[32] J. C. Umavathi, M. A. Sheremet, O. Ojjela, G. J. Reddy, The onset of double-diffusive convection in a 

nanofluid saturated porous layer: Cross-diffusion effects, European Journal of Mechanics - B/Fluids, Vol. 

65, pp. 70-87, 2017/09/01/, 2017.  

[33] M. Shuaib, M. Anas, H. u. Rehman, A. Khan, I. Khan, S. M. Eldin, Volumetric thermo-convective casson 

fluid flow over a nonlinear inclined extended surface, Scientific Reports, Vol. 13, No. 1, pp. 6324, 

2023/04/18, 2023.  

[34] A. Khan, D. Khan, I. Khan, F. Ali, F. u. Karim, M. Imran, MHD Flow of Sodium Alginate-Based Casson 

Type Nanofluid Passing Through A Porous Medium With Newtonian Heating, Scientific Reports, Vol. 8, 
No. 1, pp. 8645, 2018/06/05, 2018.  

[35] H. Hamabata, M. Takashima, The effect of rotation on convective instability in a horizontal fluid layer with 

internal heat generation, Journal of the Physical Society of Japan, Vol. 52, No. 12, pp. 4145-4151, 1983.  

[36] S. Chandrasekhar, 2013, Hydrodynamic and Hydromagnetic Stability, Dover Publication,  

[37] A. Nouri-Borujerdi, A. R. Noghrehabadi, D. A. S. Rees, Influence of Darcy number on the onset of 

convection in a porous layer with a uniform heat source, International Journal of Thermal Sciences, Vol. 

47, No. 8, pp. 1020-1025, 2008.  

 


