
Journal of Computational Applied Mechanics 2024, 55(-): PP-PP 

DOI: 10.22059/JCAMECH.2024.373641.995 

 

          RESEARCH PAPER   

 

Analyzing the Buckling Behavior of In-plane Bidirectional 

Functionally Graded Porous Plates 
 

Bathini Sidda Reddy a*, K. Vijaya Kumar Reddy b 

a Department of Mechanical Engineering, Rajeev Gandhi Memorial College of Engineering and Technology, 

Nandyal-518501, A.P, India 
b Department of Mechanical Engineering, Jawaharlal Nehru Technological University, Hyderabad, India 

Abstract 

The spacecraft and space shuttles demand novel engineering materials to meet 

the required properties. This can be accomplished by altering the material 

properties in more than one direction. The introduction of inplane 

bidirectional functionally graded materials with porosity are expected to 

exhibit these properties. This paper presents the buckling analses of inplane 

bidirectional (2-D) functionally graded porous plates (IBFGPPs) considering 

uniform porosity distribution in uni-axial and bi-axial compression. The 

effective modulus of elasticity of the material is varied in in x-and y-axes by 

employing the rule of mixtures. The higherorder theory used for the study of 

buckling response meets the nullity requirements at plate’s upper and lower 

surface and derived the equations of motion thru Lagrange equations. The 

displacement functions are formulated in simple algebraic polynomials, 

incorporating admissible functions to satisfy the simply supported conditions 

in both axial and transverse directions. The components of admissible 

functions are derived by Pascal’s triangle. Accurateness of this theory is 

judged by comparing it to existing numerical data in the literature. The effect 

of thickness ratio’s (a/h), aspect ratio’s (b/a), exponents (𝜻𝟏and 𝜻𝟐) in 𝜼𝟏 and 

𝜼𝟐 -direction, and the porosity on the buckling response of IBFGPPs are 

examined comprehensively. The numerical findings provided here serve as 

reference solutions for evaluating diverse plate theories and for comparing 

them against results obtained through alternative analytical and finite 

element techniques. From the obtained results, it can be inferred that the 

proposed theory facilitates the assessing of buckling tendencies of in-plane bi-

directional porous FG plates produced through sintering process and could 

be deemed as a pivotal in the process of optimizing he design of the IBFGPPs. 

Keywords: Inplane bidirectional FGP’s; Buckling analyses;Rule of Mixtures;Lagrange 

Equations;Porosity coefficient; 

1. Introduction 

Functionally graded materials (FGMs) are novel materials, first found by researchers from Japan in the mid-1980s 

[1]. These are engineered with at least two dissimilar constituents and alter the material properties continuously in 

spatial directions to attain specific properties that are markedly differ from those of its individual constituents. Thus, 
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reduces the failures caused by stress and strain discontinuities at the interface. Furthermore, porosity improves the 

stiffness and decreases structure’s density. Therefore, porous materials have found extensive use in numerous 

engineering domains such as aerospace, space exploration, and defense applications. Hence, by the fusion of the FGMs 

with porous materials, results in the creation of a unique material termed "porous FGMs" [2, 3]. Novel materials of 

this nature are developed by manipulating the pore coefficient and the microstructure of the materials. 

Moreover, the usage of a combination of materials is on the rise, because traditional engineering materials fall 

short of meeting the required characteristics by the various industries. Plates serve as fundamental elements 

extensively employed across various structures, including but not limited to aircraft and space vehicles to automotive, 

ship-building, civil engineering, energy production, the chemical industry, optical systems, biomedical applications, 

and mechanical engineering [4, 5].  

Buckling in IBFGPPs holds significant importance in structural engineering and materials science. These plates, 

which possess varying material properties through their thickness and in two orthogonal directions, are increasingly 
employed in aerospace, automotive, and civil engineering applications. If the applied inplane loads exceeds critical 

buckling load in these applications, the structure results in instability. Understanding their buckling behavior is critical 

for optimizing their structural performance and preventing catastrophic failures. By comprehending the buckling 

characteristics of these plates, engineers can design lightweight and resilient structures that make efficient use of 

advanced materials, ultimately enhancing safety, performance, and cost-effectiveness in various industries. 

Therefore, it is important to examine the buckling analyses of FGPs under both uniaxial and biaxial compressive 

loads.  In the past, many researchers investigated the buckling behavior of unidirectional FGPs. Mohammadi et al. [6, 

7] studied the buckling response of thin and reasonably thick unidirectional FG rectangular plates. The material 

properties were varied in the thickness.  Farajpour et al. [8-10], analyzed the buckling of nanoplates by utilising 

nonlocal continuum mechanics. They considered the variable thickness in rectangular plates, circular graphene sheets 

and micro/nanoscale plates subjected to linearly in-plane load that vary linearly. The shear buckling analysis of 
orthotropic graphene sheets with a single layer has been investigated by Mohammadi et al [11] under a temperature 

environment by utilising nonlocal elasticity theory. Abdollahi et al. [12] analyzed thick FG rectangular piezoelectric 

plates for buckling by higher order plate theory.  

Mohammadi and Mahani [13] analyzed the buckling response of rectangular microplates by means of the 

sizedependent Kirchhoff plate model. Modified version of strain gradient theory and modified version of couple stress 

theory was adopted to obtain the critical buckling loads. Also investigated the effect of dimensions, length-scale 

parameters and loading condition states on the buckling loads. Moreover Farajpour et al. [14] developed a 

sizedependent plate model using higher-order non-local strain-gradient theory to investigate the buckling behaviour 

of three distinct types of graphene sheets in varying aspect ratios, different scale parameters composed with elastic 

medium coefficients, change in temperature and change in the nanoplate length. Farajpour et al. [15] used piezoelectric 

nanoshell to investigate the dynamics of microtubules (MTs) within an elastic medium subjected to thermal conditions 

encompassing vibration, buckling, and smart control. It delved into the effect of different factors, including elastic 
properties of the surrounding medium, characteristics of the internal filament matrix, scaling coefficient, applied 

electric voltage, the ratio of radius to thickness in a piezoelectric nanoshell, and temperature variations on the smart 

control of MTs. 

Buckling behavior of unidirectional FGPs was examined by Sidda Reddy et al. [16, 17] using higher order theory. 

The influence of thickness ratio, aspect ratio and also modulus ratio on the critical buckling load was investigated. 

Kim et al. [5, 18] reported numerical findings regarding the static characteristics of functionally graded micro plates 

including porosity. The plate analysis theories employed did not meet the nullity requirements. Furthermore, the study 

examined the impact of porosity, exponent index, and material length-scale factor on these properties. 

Vinh et al. [19] analysed the static bending and buckling analyses of bidirectional FGPs with porosity using 

improved first order theory. Yang et al. [20] conducted a comparative analysis of the bending and buckling behavior 

exhibited by various types of porous functionally graded plates in comparison to a conventional sandwich plate. The 
solutions were derived through the application of the Ritz method with Chebyshev polynomials. 

The authors in Refs. [6, 20] altered the properties of the materials in only one particular direction which may not 

provide desirable properties for components utilized in propulsion systems and space related applications. These 

applications frequently experience significant temperature variations in multiple directions [21]. To achieve this 

objective, 2-D FGMs are introduced, playing a significant role in the design and advancement of cutting-edge 

engineering applications, such as space crafts and space shuttles. These applications demand highly effective high-

temperature-resistant materials. Consequently, the development of 2-D or multidirectional FGMs becomes 

indispensable and valuable while designing the advanced structures. In light of this, the literature provides a brief 

overview of bi-directional FGMs e.g., see [21, 22]. 

Nemat-Alla [21], introduced two-directional Functionally Graded Materials (FGMs), demonstrating through 

numerical analysis that they exhibit superior capabilities in lowering temperature stresses when compared to 1-D 
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FGMs. Recent research efforts have delved into the realm of bi-directional FGMs, with notable contributions in the 

open source. For instance, Nemat-Alla [23] enhanced material compositions, employing finite element models to 

mitigate temperature-induced stresses in 2-D FGMs subjected to severe temperature condition cycles featuring ZrO2 

/ 6061 - T6 / Ti – 6 Al - 4V materials. 

vibrational analyses of bidirectional Functionally Graded thick hollow cylinders were explored by formulating 3-

D elasticity equations [24] and differential and integral quadrature methods [25]. 

Numerous research endeavors have been undertaken concerning 2-D FG Euler-Bernoulli/Timoshenko beams, 

nanobeams, and their nonlinear bending [26], vibrational characteristics [27, 28], and buckling analyses [29, 30], to name 

just a few examples. 

Karamanli [31] employed a quasi-3dimensional shear deformation theory to investigate the bending of 2-D 

Functionally Graded sandwich beams, whereas LezgyNazargah [32] utilized NURBS based isogeometric analyses to 

examine the thermomechanical properties of 2-Dimensional FG beams. In line with the observations of Apalak and 
Demirbas [33], gradient exponents may not significantly impact temperature distributions but notably influence heat 

transfer durations in bidirectional FGMs. 

The bending and buckling behavior of 2-D FGP structures were investigated by Van Do et al. [34] using third order 

plate theory and finite element methods. Their findings revealed that obtaining results for bi-directional FGPs is more 

intricate than unidirectional counterparts due to the material gradation in two distinct directions. The bending and free 

vibration characteristics of in-plane bi-directional FGPs, accounting for variable thickness adopting Iso-geometric 

analysis were explored by Lieu et al. [35]. Furthermore, Lieu et al. [36] delved into the free vibration and buckling 

analyses of in-plane bidirectional FGPs, employing nonuniform rational Bspline based material mesh and generalized 

shear deformation plate theory. 

Chen et al. [37] combined the first-order plate theory with isogeometric analysis to examine the natural frequency 

of sector cylindrical shells crafted from 2-D FGMs by restrained edges. Esmaeilzadeh and Kadkhodayan [38] tackled 
dynamic analysis of 2-D FGPs reinforced by eccentrically positioned outside stiffeners with moving loads at a constant 

velocity. 

Abbas Barati et al. [39] explored various aspects of bi-directional functionally graded nanobeams under a 

longitudinal magnetic field, incorporating small-scale effects through nonlocal elasticity theory. The impact of general 

boundary restraints and geometrical imperfections on the vibration of bidirectional functionally graded rectangular 

plates was investigated by Chen et al. [40]. 

Additionally, Vinh [22] conducted an extensive study on the static behavior of 2-D FG sandwich plates. This 

investigation utilized a higher order theory in combination of finite element methods. The study found that the change 

in material composition, properties, boundary conditions, and layer thickness ratios play significant roles in the 

structural behavior. 

FGMs are fabricated using various techniques. However, in the sintering process used for FGM production, 

porosities and microvoids may arise due to the differing temperature requirements of the metal and ceramic phases. 
These pores can significantly compromise material strength [41]. Therefore, it is imperative to judge the impact of 

porosity in the design of bi-directional FGM components. Sidda Reddy et al. [42] conducted for the free vibration 

analyses of 2-D FGPs with porosities, employing a refined first order theory. 

Reza Kolahchi et al. [43] investigated the nonlinear dynamic stability of temperature-dependent viscoelastic plates 

reinforced by single-walled carbon nanotubes (SWCNTs) considering both uniform and functionally graded 

distribution patterns. The viscoelastic properties of the plate are based on Kelvin–Voigt theory, and the surrounding 

elastic medium is modelled orthotropically. The dynamic buckling optimization of laminated nanocomposite conical 

aircraft shells in varied environmental conditions, incorporating moisture, temperature, and magnetic fields was 

explored by Behrooz Keshtegar et al. [44]. This optimization employs an enhanced Grey Wolf optimization (GWO) 

algorithm, integrating instability and frequency considerations as subjective and objective functions, respectively. 

Reza Kolahchi et al. [45] investigated the dynamic stability of nanocomposite sandwich truncated conical shells with 
a graphene platelets (GPLs)-reinforced core and magneto-strictive face sheets. Various parameters including boundary 

conditions, controller, damping, and GPLs volume percentage were analyzed, and showed that increase of GPLs 

volume percentage raises the excitation frequency.  

Wave propagation and vibration in a porous beam embedded with nanocomposite piezoelectric layers, utilizing 

various non-uniform graphene nanoplatelet (GPL) reinforcement patterns was investigated in Ref. [46]. In this study, 

the structure's viscoelastic properties were modeled using a Kelvin-Voigt model with a Kerr viscoelastic foundation. 
The seismic response of underwater fluid-conveying concrete pipes reinforced with nano-fiber reinforced polymer 

(NFRP) layers during the Kobe earthquake was investigated by Hadi Golabchi et al. [47] on fluid velocity analysis on 

the instability of pipes reinforced by silica nanoparticles (SiO2). Their Results indicated that increase in volume 

fractions of SiO2 nanoparticles, the frequency and critical fluid velocity of the structure were increased. Furthermore, 

considering SiO2 nanoparticles agglomeration, decreased the frequency and critical fluid velocity of the pipe. The 
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seismic response of underwater fluid-conveying concrete pipes reinforced with nano-fiber reinforced polymer (NFRP) 

layers was studied by Reza Kolahchi et al. [48].  The results showing that increase of NFRP layer thickness and volume 

percentage decreases the dynamic deflection, while factors such as inner and outer fluids and agglomeration of nano 

fibers increase it, along with increasing length to thickness ratio. Al-Furjan et al. [49] studied the dynamic stability of 

an Aluminum beam embedded with nanocomposite piezoelectric layers reinforced with Carbon nanotubes (CNTs), 

considering agglomeration effects via the Mori-Tanaka model. Their findings revealed that a 14 % reduction in 

instability region due to CNT agglomeration. Reza Kolahchi et al. [50] explored low-velocity impact on nanocomposite 

sandwich truncated conical shells (NSTCS) with graphene platelets (GPLs)-reinforced core and magneto-strictive face 

sheets. They employed higher-order shear deformation theory (HSDT) and Kelvin–Voigt model and found that 

increase of GPLs volume percentage enhances deflection and maximum contact force while reduces contact duration.  
A mathematical model was presented for dynamic response of sandwich plates under blast loads using a numerical 

approach [51]. This study revealed that magnetic field on face sheets and hygro-thermal conditions significantly 
influenced 24% increase in dynamic displacement. Reza Kolahchi and Farzad Kolahdouzan [52] assessed the dynamic 

stability of a viscoelastic defective single-layered graphene sheet (SLGS), considering various defects (SV, DV, SW) 

and their reconstruction effects, under hygrothermal loads and in-plane magnetic forces and observed that, increase 

of defect degree shifts stability region to lower excitation frequencies. 

The dynamic buckling of viscoelastic sandwich truncated nanocomposite conical shells under moisture, 

temperature, and magnetic field effects, crucial for aerospace applications addressed in Ref. [53]. They observed that 

the increase of moisture and temperature lead to dynamic instability at lower excitation frequencies. 

BehroozKeshtegar et al. [54] investigated dynamic buckling in viscoelastic carbon nanocones (CNCs) under 

magnetic and thermal loads, relevant for nano-electro-mechanical systems (NEMS) like scanning probe microscopy. 

Bolotin's method and differential quadrature method (DQM) are used to analyze dynamic instability regions (DIRs), 

and revealed the study that increasing strain gradient parameter shifts DIR to higher frequencies, with magnetic loads 
positively impacting CNCs' DIR. 

 To summarize, the analysis of bi-directional FGPs is a complex undertaking, necessitating accurate predictions 

of their buckling behavior and consideration of the effects of porosity. This paper explores the buckling behavior of 

inplane bi-directional FGPs with uniform porosity using higher order theory with only five unknowns. 

In this investigation, the inplane 2-D FG plate material properties are gradually varying in two directions (𝜂1 and 

𝜂2), while maintaining a constant Poissons ratio. The Lagrange's equations are used to derive the equations of motion, 

and both inplane and transverse displacements are articulated as algebraic polynomial series, incorporating admissible 

functions to satisfy boundary conditions. These admissible functions are derived using Pascal's triangle. The 

accurateness of this theory is judged against numerical results found in existing literature. The study delves into the 

impact of thickness ratio’s, aspect ratio’s, gradation indexes, and porosity on the buckling behavior of in-plane bi-

directional FGPs under both uniaxial and biaxial compression. 

 

2. Problem Formulation 

Fig 1 shows an IBFGP Pate with physical dimensions’ length, a; width, b; and thickness, h. The plate modulus of 

elasticity is assumed to alter both in  𝜂1 and 𝜂2-directions by means of the rule of the mixture as.  

𝐸(𝜂1, 𝜂2) = (𝐸𝑐 −𝐸𝑚) (
𝜂1

𝑎
)
𝜁1
(
𝜂2

𝑏
)
𝜁2
+ 𝐸𝑚 −

Φ

2
(𝐸𝑐 + 𝐸𝑚)                                             (1) 

The porosities can be distributed evenly in the plate.  

 
Fig 1: Representation of an in-plane bi-directional FGP with even porosity distribution 

Where, 𝐸𝑐  and 𝐸𝑚, are Young’s Modulus of the Ceramic and metallic materials, respectively, while 𝜁1and 𝜁2  are 

the gradation indexes along the 𝜂1-direction and 𝜂2 direction respectively, and Φ is the porosity volume fraction. Φ =
0 represents the perfect in-plane bi-directional Functionally Graded plate. The effective Young’s modulus (Eeff) of in-

plane bi-directional FGP varied with the constituent component material properties presented in Table 1. The Eeff is 
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calculated by the Eqs. (1) and is shown in Figs 2-3 for the specific case of 𝜁1 = 5, 𝜁2 = 2 thickness ratio, a/h=10 

and Φ = 0, 0.1 and 0.2. 

 

𝐸𝑒𝑓𝑓 =
∫ 𝐸(𝜂1,𝜂2)𝑑𝑉𝑉

𝑉
                                                                        (2) 

Table 1:  Properties of material [55]. 

Properties of the material Al2O3 

(Ceramic) 

SiC  

(Ceramic) 

Al 

(Metal) 

E (GPa) 380 420 70 

µ 0.3 0.3 0.3 

 

Fig 2: Young’s Modulus of in-plane bi-directional FGP with even porosity for different volume fraction of porosity 

In addition, Fig 3 shows the alteration of effective Young’s modulus, E (𝜂1, 𝜂2) of in-plane bi-directional FG 

porous plate (from Eq. (2)).  From Fig 3, it is evident that the Young’s modulus decreases as the volume fraction of 

porosity increases and gradation index𝑒𝑠   𝜁1and 𝜁2  . 

 
Fig 3: Young’s modulus of the in-plane bi-directional FGP with even porosity as a function of 𝜻𝟏, 𝜻𝟐  𝐚𝐧𝐝 𝚽 

2.1. Kinematics 

This paper uses the generalized shear deformation theory proposed by Zenkour [56]. The displacement field of this 

theory can be written as: 
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�̅� (𝜂1, 𝜂2) = 𝑢 − 𝜂3
𝜕𝑤

𝜕𝜂1
 +  ∅(𝜂3) ∅𝜂1                            (3a) 

�̅� (𝜂1, 𝜂2) = 𝑢 − 𝜂3  
𝜕𝑤

𝜕𝜂2
 +  ∅(𝜂3) ∅𝜂2                            (3b) 

 �̅� = 𝑤                                                                      (3c) 

Where ∅(𝜂3) =
5

4
𝜂3 (1 −

4

3
[
𝜂3

ℎ
]
2

)                                                  (3d) 

The kinematic  realtions can be derived as follows: 

𝜖𝜂1 =
𝜕𝑢(𝜂1,𝜂2) 

𝜕𝜂1
= 

𝜕𝑢

𝜕𝜂1
− 𝜂3

𝜕2𝑤

𝜕𝜂1
2 +∅(𝜂3)

𝜕∅𝜂1

𝜕𝜂1
                    (4a) 

𝜖 𝜂2  =  
𝜕�̅�(𝜂1 ,𝜂2)

𝜕 𝜂2
 =  

𝜕𝑣

𝜕 𝜂2
 −  𝜂3  

𝜕2𝑤

𝜕 𝜂2
2  +  ∅(𝜂3) 

𝜕∅ 𝜂2

𝜕 𝜂2
                              (4b) 

  𝜖𝜂1𝜂2  =  
𝜕𝑢(𝜂1,𝜂2)

𝜕𝜂2
 +  

𝜕�̅�(𝜂1,𝜂2)

𝜕𝜂1
 

=
𝜕𝑢

𝜕𝜂2
+

𝜕𝑣

𝜕𝜂1
− 2𝜂3

𝜕2𝑤

𝜕𝜂1𝜕𝜂2
+∅( 𝜂3)( 

𝜕∅𝜂1

𝜕𝜂2
 +  

𝜕∅𝜂2

𝜕𝜂1
 )             

                                                                                                            (4c) 

𝜖𝜂1𝜂3  =
  𝜕∅(𝜂3)

𝜕𝜂3
 ∅𝜂1                                    (4d) 

𝜖𝜂2𝜂3  =   
𝜕∅(𝜂3)

𝜕𝜂3
 ∅𝜂2                      (4e) 

Transverse shear strains are integrated into Equation (3d), which accounts for the transverse shear strain 

distribution across the plate's thickness. Consequently, the current theory eliminates the necessity for a shear correction 

factor. 

We will compute the gradients of �̅�, and  �̅� with respect to 𝜂1 𝑎𝑛𝑑 𝜂2 respectively the gradients will give us the 

components of the infinitesimal rotation vector�⃗⃗�  

�⃗⃗� = [

𝜔𝑥
𝜔𝑦
𝜔𝑧

] 

Now, let us derive the expressions for 𝜔𝑥 , 𝜔𝑦 , 𝑎𝑛𝑑  𝜔𝑧 using the displacement equations 

𝜔𝑥: 

From the displacement equations 

𝜔𝑥 = −
𝜕�̅�

𝜕𝜂2
= −

𝜕

𝜕𝜂2
(𝑢 − 𝜂3

𝜕𝑤
𝜕𝜂1

 +  ∅(𝜂3) ∅𝜂1) 

Simplifying the terms, we get 

 

𝜔𝑥 = 𝜂3
𝜕2𝑤

𝜕𝜂1𝜂2
−

𝜕

𝜕𝜂2
( ∅(𝜂3) ∅𝜂1) 

𝜔𝑦 : 

𝜔𝑦 = −
𝜕�̅�

𝜕𝜂1
= −

𝜕

𝜕𝜂1
(𝑢 − 𝜂3

𝜕𝑤
𝜕𝜂2

 +  ∅(𝜂3) ∅𝜂2) 

Simplifying the terms, we get 

𝜔𝑦 = −𝜂3
𝜕2𝑤

𝜕𝜂1𝜂2
−

𝜕

𝜕𝜂1
( ∅(𝜂3) ∅𝜂2) 

𝜔𝑧: 

𝜔𝑧 = −
𝜕�̅�

𝜕𝜂1
= 0   (𝑎𝑠 �̅� = 𝑤)  

2.2. Linear Constitutive Relations 

The stress and strain relationships for in-plane bidirectional FGPs are expressed as follows: 

𝜎𝜂1 = 𝑄11𝜖𝜂1 +𝑄12𝜖𝜂2                                                   (5a) 

𝜎𝜂2 = 𝑄12𝜖𝜂1 +𝑄11𝜖𝜂2                    (5b) 

[𝜎𝜂1𝜂2  𝜎𝜂1𝜂3  𝜎𝜂2𝜂3] = 𝑄44[𝜖𝜂1𝜂2  𝜖𝜂1𝜂3  𝜖𝜂2𝜂3]                   (5c) 

        𝑄11 =
𝐸(𝜂1 ,𝜂2)

1 − 𝜇2
, 𝑄12 = 𝜇𝑄11, 𝑄44 =

𝐸(𝜂1, 𝜂2)

2(1 + 𝜇)
 

In which, {𝜎𝜂1 , 𝜎𝜂2 , 𝜎𝜂1𝜂2 , 𝜎𝜂1𝜂3 , 𝜎𝜂2𝜂3} are the stresses  and  {𝜖𝜂1 , 𝜖𝜂2  , 𝜖𝜂1𝜂2 , 𝜖𝜂1𝜂3  , 𝜖𝜂2𝜂3} are the strains in regards 

to the plate’s coordinate system.   
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2.3. Formulation of Buckling problem 

The expression for the strain energy of the in-plane bidirectional functionally graded plate is as follows: 

𝑈 =
1

2
∫ [𝜎𝜂1𝜖𝜂1 + 𝜎𝜂2𝜖𝜂2 + 𝜎𝜂1𝜂2𝜖𝜂1𝜂2 +  𝜎𝜂1𝜂3𝜖𝜂1𝜂3 + 𝜎𝜂2𝜂3𝜖𝜂2𝜂3]𝑉

𝑑𝑉                            (6) 

By substituting equations (4-5) into equation (6), the strain energy equation can be expressed as: 

𝑈 =
1

2
∫ [𝑄11 ([

𝜕𝑢

𝜕𝜂1
]
2

+ [
𝜕𝑣

𝜕𝜂2
]
2

− 2𝜂3 [
𝜕𝑢

𝜕𝜂1
 
𝜕2𝑤

𝜕𝜂1
2 +

𝜕𝑣 

𝜕𝜂2   

𝜕2𝑤

𝜕𝜂2
2
] + 2 ∅(𝜂3) [

𝜕𝑢

𝜕𝜂1  
 
𝜕∅𝜂1

𝜕𝜂1
+

𝜕𝑣 

𝜕𝜂2
 
𝜕∅𝜂2

𝜕𝜂2
]+𝜂3

2 ( [
𝜕2𝑤

𝜕𝜂1
2
]
2

+
𝑉

[ 
𝜕2𝑤 

𝜕𝜂2
2
]
2

) − 2𝜂3∅(𝜂3) [
𝜕∅𝜂1

𝜕𝜂1
 
𝜕2𝑤

𝜕𝜂1
2 +

𝜕∅𝜂2

𝜕𝜂2

 𝜕2𝑤

𝜕𝜂2
2
] + (∅(𝜂3))

2
([
𝜕∅𝜂1

𝜕𝜂1
]
2

+ [
𝜕∅𝜂2

𝜕𝜂2
]
2

)) + 2𝑄12 (
𝜕𝑢

𝜕𝜂1
 
𝜕𝑣

𝜕𝜂2
− 𝜂3 [

𝜕𝑣

𝜕𝜂2
 
𝜕2𝑤

𝜕𝜂1
2 +

𝜕𝑢

𝜕𝜂1

 𝜕2𝑤

𝜕𝜂2
2
] + ∅(𝜂3) [

𝜕∅𝜂1

𝜕𝜂1
 
𝜕𝑣

𝜕𝜂2
+

𝜕𝑢

𝜕𝜂1
 
𝜕∅𝜂2

𝜕𝜂2
] + 𝜂3

2 [
𝜕2𝑤

𝜕𝜂1
2  
𝜕2𝑤

𝜕𝜂2
2
] − 𝜂3∅(𝜂3) [

𝜕∅𝜂1

𝜕𝜂1
 
𝜕2𝑤

𝜕𝜂2
2 +

𝜕∅𝜂2

𝜕𝜂2
 
𝜕2𝑤

𝜕𝜂1
2
] +

(∅(𝑧𝜂3))
2 𝜕∅𝜂1

𝜕𝜂1
 
𝜕∅𝜂2

𝜕𝜂2
) + 𝑄44 ([

𝜕𝑢

𝜕𝜂2
+

𝜕𝑣

𝜕𝜂1
]
2

− 4𝜂3
𝜕2𝑤

𝜕𝜂1𝜕𝜂2
[
𝜕𝑢

𝜕𝜂2
+

𝜕𝑣

𝜕𝜂1
] + 2∅(𝜂3) ([

𝜕∅𝜂1

𝜕𝜂2
+

𝜕∅𝜂2

𝜕𝜂1
] [

𝜕𝑢

𝜕𝜂2
+

𝜕𝑣

𝜕𝜂1
]) −

4𝑧∅(𝜂3)
𝜕2𝑤

𝜕𝜂1𝜕𝜂2
[
𝜕∅𝜂1

𝜕𝜂2
+

𝜕∅𝜂2

𝜕𝜂1
] + 4𝜂3

2 [
𝜕2𝑤

𝜕𝜂1𝜕𝜂2
]
2

+ (∅(𝜂3))
2
([
𝜕∅𝜂1

𝜕𝜂2
]
2

+ [
𝜕∅𝑦

𝜕𝜂1
]
2

)
2

+ (
𝜕∅(𝜂3)

𝜕𝜂3
)
2

[∅𝜂1
2
+ ∅𝜂2

2])]𝑑𝑉    

             (7) 

The work done by in-plane pre-buckling forces can be stated as: 

V =∫ ( 𝑁𝜂1
0

𝐴
(
𝜕𝑤

𝜕𝜂1
)
2

+𝑁𝜂2
0 (

𝜕𝑤

𝜕𝜂2
)
2

)𝑑𝜂1𝑑𝜂2                 (8) 

Where ( 𝑁𝜂1
0 , 𝑁𝜂2

0  are inplane prebuckling forces. 

Governing equations are derived through the application of the minimum potential energy principle, which can be 

stated analytically as follows. 

𝛿(𝑈 + 𝑉) = 0                                (9) 

Inplane and transverse displacement functions namely u  (𝜂1, 𝜂2) , v  (𝜂1, 𝜂2), 𝑤 (𝜂1, 𝜂2) ,  ∅𝜂1(𝜂1, 𝜂2) and 

∅𝜂2(𝜂1, 𝜂2) are represented using polynomial series that conform to boundary conditions is given as: 

𝑢(𝜂1, 𝜂2) = ∑ 𝐶𝑖
𝑛
𝑖=1 𝜙𝑖(𝜂1, 𝜂2);         

 𝜙
𝑖
(𝜂1, 𝜂2) =  𝜂1

𝑝𝑢𝜂2
𝑞𝑢(𝜂1 − 𝑎)

𝑟𝑢(𝜂2 − 𝑏)
𝑠𝑢  𝜓𝑖

𝑢(𝜂1, 𝜂2)             (10a) 

𝑣(𝜂1, 𝜂2) = ∑ 𝐶𝑗
𝑛
𝑖=1 𝜆𝑖(𝜂1, 𝜂2);   

𝜆𝑖(𝜂1, 𝜂2) = 𝜂1
𝑝𝑣𝜂2

𝑞𝑣(𝜂1 − 𝑎)
𝑟𝑣(𝜂2 − 𝑏)

𝑠𝑣  𝜓𝑗
𝑣(𝜂1, 𝜂2)            (10b) 

𝑤(𝜂1, 𝜂2) = ∑ 𝐶𝑘Δ𝑖(𝜂1, 𝜂2);
𝑛
𝑖=1             

Δ𝑖(𝜂1, 𝜂2) = 𝜂1
𝑝𝑤𝜂2

𝑞𝑤(𝜂1 − 𝑎)
𝑟𝑤(𝜂2 − 𝑏)

𝑠𝑤  𝜓𝑘
𝑤(𝜂1, 𝜂2)           (10c) 

∅𝜂1(𝜂1, 𝜂2) = ∑
1

𝑎
𝐶𝑙

𝑛
𝑖=1 Ω𝑖(𝜂1, 𝜂2);  

Ω𝑖(𝜂1, 𝜂2) = 𝜂1
𝑝∅𝜂1𝜂2

𝑞∅𝜂1(𝜂1 − 𝑎)
𝑟∅𝜂1(𝜂2 − 𝑏)

𝑠∅𝜂1  𝜓
𝑙

∅𝜂1(𝜂1, 𝜂2)           (10d) 

∅𝜂2(𝜂1, 𝜂2) = ∑
1

𝑏
𝐶𝑚

𝑛
𝑖=1 𝜉𝑖(𝜂1, 𝜂2);  

𝜉𝑖(𝜂1, 𝜂2) =  𝜂1
𝑝∅𝜂2𝜂2

𝑞∅𝜂2(𝜂1 − 𝑎)
𝑟∅𝜂2(𝜂2 − 𝑏)

𝑠∅𝜂2  𝜓𝑚
∅𝜂2(𝜂1, 𝜂2)           (10e) 

       𝜙𝑖(𝜂1, 𝜂2), 𝜆𝑖(𝜂1, 𝜂2), Δ𝑖(𝜂1, 𝜂2), Ω𝑖(𝑥, 𝑦) 𝑎𝑛𝑑 𝜉𝑖(𝜂1, 𝜂2)  are the shape functions, 𝑝Υ, 𝑞Υ, 𝑟Υ, 𝑠Υ  ( Υ =
u, v, w, ∅𝜂1 , ∅𝜂2)  are govern the imposition of different boundary conditions. For simple support, these exponents 

assume values of either 0 or 1 at the sides 𝜂1=0, a and 𝜂2=0, b. The specific boundary exponents are as follows: 

pu=0;ru=0;pv=1;rv=1;pw=1;rw=1;p𝜙𝜂1=0;r𝜙𝜂1=0;p𝜙𝜂2=1;r𝜙𝜂2=1; 

qu=1;su=1;qv=0;sv=0;qw=1;sw=1;q𝜙𝜂1=1;s𝜙𝜂1=1;q𝜙𝜂2=0;s𝜙𝜂2=0; 

The 21 admissible functions of 𝜓𝑖 (i=1, 2, 3……21) are derived using Pascal’s triangle and expressed as : 

𝜓1 = 1; 𝜓2 = 𝜂1;𝜓3 = 𝜂2; 𝜓4 = 𝜂1
2;𝜓5 = 𝜂1𝜂2;𝜓6 = 𝜂2

2;𝜓7 = 𝜂1
3; 𝜓8 = 𝜂1

2𝜂2;𝜓9 = 𝜂1𝜂2
2;𝜓10 = 𝜂2

3;𝜓11
= 𝜂1

4;𝜓12 = 𝜂1
3𝜂2; 

𝜓13 = 𝜂1
2𝜂2;𝜓14 = 𝜂1𝜂2

3;𝜓15 = 𝜂2
4;𝜓16 = 𝜂1

5;  𝜓17 = 𝜂1
4𝜂2 ;  𝜓18 = 𝜂1

3𝜂2
2 ; 𝜓19 = 𝜂1

2𝜂2
3 ;  𝜓20 =

𝜂1
1𝜂2

4;𝜓21 =
 𝜂2

5;                                (11) 

The closed form solution can be obtained by the substitution of Eqs. (7), (8) and (10) into Eqs. (9) as 

[
 
 𝑺] − 𝜒[𝑴]

{
 
 

 
 
{𝑢}
{𝑣}
{𝑤}

{∅𝜂1}

{∅𝜂2}}
 
 

 
 

= {𝟎}                           (12) 
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Where [S] is the stiffness matrices and [M] are the in-plane force matrix. The elements of [S] and [M] are given 

as 

𝑆11(𝑖, 𝑗) = ∫∫ ∫ (𝑄11∅𝑖,𝜂1∅𝑗,𝜂1 + 𝑄44∅𝑖,𝜂2∅𝑗,𝜂2)𝑑𝜂3𝑑𝜂2𝑑𝜂1

ℎ/2

−ℎ/2

𝑏

0

𝑎

0

 

𝑆12(𝑖, 𝑗) = ∫∫ ∫ (𝑄12∅𝑖,𝜂1𝜆𝑗,𝜂2 +𝑄44∅𝑖,𝜂2𝜆𝑗,𝜂1)𝑑𝜂3𝑑𝜂2𝑑𝜂1

ℎ/2

−ℎ/2

𝑏

0

𝑎

0

 

𝑆13(𝑖, 𝑗) = −∫∫ ∫ 𝜂3(𝑄11∅𝑖,𝜂1Δ𝑗,𝜂1𝜂1 + 𝑄12∅𝑖,𝜂1Δ𝑗,𝜂2𝜂2 + 2𝑄44∅𝑖,𝜂2Δ𝑗,𝜂1𝜂2)𝑑𝜂3𝑑𝜂2𝑑𝜂1

ℎ/2

−ℎ/2

𝑏

0

𝑎

0

 

𝑆14(𝑖, 𝑗) =
1

𝑎
∫∫ ∫ ∅(𝜂3)(𝑄11∅𝑖,𝜂1Ω𝑗,𝜂1 +𝑄44∅𝑖,𝜂2Ω𝑗,𝜂2)𝑑𝜂3𝑑𝜂2𝑑𝜂1

ℎ/2

−ℎ/2

𝑏

0

𝑎

0

 

𝑆15(𝑖, 𝑗) =
1

𝑏
∫∫ ∫ ∅(𝜂3)(𝑄12∅𝑖,𝜂1ξ𝑗,𝜂2 + 𝑄44∅𝑖,𝜂2ξ𝑗,𝜂1)𝑑𝜂3𝑑𝜂2𝑑𝜂1

ℎ/2

−ℎ/2

𝑏

0

𝑎

0

 

 

𝑆22(𝑖, 𝑗) = ∫∫ ∫ (𝑄11𝜆𝑖,𝜂2𝜆𝑗,𝜂2 + 𝑄44𝜆𝑖,𝜂1𝜆𝑗,𝜂1)𝑑𝜂3𝑑𝜂2𝑑𝜂1

ℎ/2

−ℎ/2

𝑏

0

𝑎

0

 

𝑆23(𝑖, 𝑗) = −∫∫ ∫ 𝜂3(𝑄12𝜆𝑖,𝜂2Δ𝑗,𝜂1𝜂1 +𝑄11𝜆𝑖,𝜂2Δ𝑗,𝜂2𝜂2 + 2𝑄44𝜆𝑖,𝜂1Δ𝑗,𝜂1𝜂2)𝑑𝜂3𝑑𝜂2𝑑𝜂1

ℎ/2

−ℎ/2

𝑏

0

𝑎

0

 

𝑆24(𝑖, 𝑗) =
1

𝑎
∫∫ ∫ ∅(𝜂3)(𝑄12𝜆𝑖,𝜂2Ω𝑗,𝜂1 + 𝑄44𝜆𝑖,𝜂1Ω𝑗,𝜂2)𝑑𝜂3𝑑𝜂2𝑑𝜂1

ℎ/2

−ℎ/2

𝑏

0

𝑎

0

 

𝑆25(𝑖, 𝑗) =
1

𝑏
∫∫ ∫ ∅(𝜂3)(𝑄11𝜆𝑖,𝜂2ξ𝑗,𝜂2 +𝑄44𝜆𝑖,𝜂1ξ𝑗,𝜂1)𝑑𝜂3𝑑𝜂2𝑑𝜂1

ℎ/2

−ℎ/2

𝑏

0

𝑎

0

 

𝑆33(𝑖, 𝑗) = ∫∫ ∫ 𝜂3
2(𝑄11(Δ𝑖,𝜂1𝜂1Δ𝑗,𝜂1𝜂1 + Δ𝑖,𝜂2𝜂2Δ𝑗,𝜂2𝜂2) + 2𝑄12Δ𝑖,𝜂1𝜂1Δ𝑗,𝜂2𝜂2

ℎ/2

−ℎ/2

𝑏

0

𝑎

0

+ 4𝑄44Δ𝑖,𝜂1𝜂2Δ𝑗,𝜂1𝜂2)𝑑𝜂3𝑑𝜂2𝑑𝜂1 

𝑆34(𝑖, 𝑗) = −
1

𝑎
∫∫ ∫ 𝜂3∅(𝜂3)(𝑄11Δ𝑖,𝜂1𝜂1Ω𝑗,𝜂1 +𝑄12Δ𝑖,𝜂2𝜂2Ω𝑗,𝜂1 + 2𝑄44Δ𝑖,𝜂1𝜂2Ω𝑗,𝜂2)𝑑𝜂3𝑑𝜂2𝑑𝜂1

ℎ/2

−ℎ/2

𝑏

0

𝑎

0

 

𝑆35(𝑖, 𝑗) = −
1

𝑏
∫∫ ∫ 𝜂3∅(𝜂3)(𝑄12Δ𝑖,𝜂1𝜂1ξ𝑗,𝜂2 +𝑄11Δ𝑖,𝜂2𝜂2ξ𝑗,𝜂2 + 2𝑄44Δ𝑖,𝜂1𝜂2ξ𝑗,𝜂1)𝑑𝜂3𝑑𝜂2𝑑𝜂1

ℎ/2

−ℎ/2

𝑏

0

𝑎

0

 

 

𝑆44(𝑖, 𝑗) =
1

𝑎2
∫∫ ∫ (∅(𝜂3))

2
(𝑄11Ω𝑖,𝜂1Ω𝑗,𝜂1 + 𝑄44Ω𝑖,𝜂2Ω𝑗,𝜂2) + 𝑄44 [

𝜕∅(𝜂3)

𝜕𝜂3
]
2

Ω𝑖Ω𝑗𝑑𝜂3𝑑𝜂2𝑑𝜂1

ℎ/2

−ℎ/2

𝑏

0

𝑎

0

 

𝑆45(𝑖, 𝑗) =
1

𝑎𝑏
∫∫ ∫ (∅(𝜂3))

2
(𝑄12Ω𝑖,𝜂1ξ𝑗,𝜂2 + 𝑄44Ω𝑖,𝜂2Ω𝑗,𝜂2) + 𝑄44Ω𝑖,𝜂2ξ𝑗,𝜂1𝑑𝜂3𝑑𝜂2𝑑𝜂1

ℎ/2

−ℎ/2

𝑏

0

𝑎

0

 

𝑆55(𝑖, 𝑗) =
1

𝑏2
∫∫ ∫ (∅(𝜂3))

2
(𝑄11ξ𝑖,𝜂2ξ𝑗,𝜂2 +𝑄44ξ𝑖,𝜂1ξ𝑗,𝜂1) + 𝑄44 [

𝜕∅(𝜂3)

𝜕𝜂3
]
2

ξ𝑖ξ𝑗𝑑𝜂3𝑑𝜂2𝑑𝜂1

ℎ/2

−ℎ/2

𝑏

0

𝑎

0
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𝑀11(𝑖, 𝑗) = 𝑀12(𝑖, 𝑗) = 𝑀13(𝑖, 𝑗) = 𝑀14(𝑖, 𝑗) = 𝑀15(𝑖, 𝑗) = 𝑀22(𝑖, 𝑗) = 𝑀23(𝑖, 𝑗) = 𝑀24(𝑖, 𝑗) = 𝑀25(𝑖, 𝑗)
= 𝑀34(𝑖, 𝑗) = 𝑀35(𝑖, 𝑗) = 𝑀44(𝑖, 𝑗) = 𝑀45(𝑖, 𝑗) = 𝑀55(𝑖, 𝑗)0 

𝑀33(𝑖, 𝑗) = ∫ ∫ ς1Δ𝑖,𝜂1Δ𝑗,𝜂1 + ς2Δ𝑖,𝜂2Δ𝑗,𝜂2)𝑑𝜂1𝑑𝜂2
𝑏

0

𝑎

0
, i,j=1, 2.. 

ς1 = 1 and ς2 = 0 for uni − axial compression; ς1 = 1 and ς2 = 1 for bi − axial compression are considered 

for the analysis. To obtain the critical buckling loads Eq. (12) is solved by taking |[𝑺] − 𝜒[𝑴]| = 0  

 

3. Results and Discussion 

This section addresses the impact of a/h, b/a,, 𝜁1, 𝜁2 and , Φ, and in-plane loads on the buckling analyses of 

bidirectional FGPs. 

The numerical study is carried for simple support beam conditions and are set as. v=0, w = 0, ∅𝜂2  = 0 @ 𝜂1= 0,  a; 

u =0,  w = 0, ∅𝜂1= 0 @ 𝜂2 = 0, b considering plate material properties given in Table 1. The critical buckling load 

results are portrayed in dimensionless form as: 

Dimensionless buckling load, 𝑁 = 𝑁𝑐𝑟
𝑎2

𝐸𝑚ℎ
3 

 To validate the present higher order theory, comparison studies are performed. Results are potrayed in 

dimensionless form in Table 2 and assessed with Sidda Reddy et al. [16], Thai and Chai. [55], Thai and Kim [57]. 

From an accurateness point, 21 admissible functions of 𝜓𝑖 are considered in examining the buckling behaviour of 

simply supported bidirectional FG porous plates. From Table 2, it is seen that the present theory results with 21 number 

of admissible functions are well agreeing with the results of Thai and Chai. [55], Thai and Kim [57]. Therefore, the 

findings from the present theory should serve as the reference results for future comparative analyses. 

Table 2: Dimensionless critical buckling load (�̅�) of simply supported Al/Al2O3 plate subjected to both uni-axial and bi-axial 

compression for a/h =10, b/a =1 

Uniaxial Compression 

 Volume fraction Exponents 

No. of 

admissible 

functions 

Theory 0 1 2 5 10 

21 Present 18.5785 9.3391 7.2631 6.0353 5.4529 

 Ref. [16] 18.54 9.299 7.21 5.99 5.42 

 Ref. [55] 18.5785 9.3391 7.2631 6.0353 5.4528 
 

Ref. [57] 18.5785 9.3391 7.2631 6.0353 5.4528 
 

Ref. [58], n = 3 18.5785 9.3391 7.2631 6.0353 5.4528 
 

Ref. [58], n = 5 18.5983 9.3476 7.2744 6.0593 5.47 
 

Ref. [58],  n = 7 18.6224 9.3578 7.2855 6.078 5.4869 
 

Ref. [58],  n = 9 18.6409 9.3657 7.2938 6.0911 5.4999 

 

No. of admissible functions                                                                   Biaxial compression 

21 Present 9.2893 4.6696 3.6315 3.0177 2.7264 

 Ref. [16] 9.273 4.650 3.608 2.998 2.715 

 Ref. [55] 9.2893 4.6696 3.6315 3.0177 2.7264 

 Ref. [57] 9.2893 4.6695 3.6315 3.0177 2.7264 
 

Ref. [58], n = 3 9.2893 4.6695 3.6315 3.0177 2.7264 
 

Ref. [58], n = 5 9.2992 4.6738 3.6372 3.0297 2.735 
 

Ref. [58], n = 7 9.3112 4.6789 3.6427 3.039 2.7435 
 

Ref. [58],  n = 9 9.3205 4.6829 3.6469 3.0455 2.7499 

3.1. In-plane bi-directional critical buckling loads under uni-axial compression 

In Table 3, the dimensionless critical buckling loads are presented for rectangular plates, b/a =2 with, a/h =10, 

gradation indexes ζ_1 and ζ_2= {0,1,2,5}, the volume fraction of porosity Φ= {0,0.1,0.2}, under uniaxial compression. 

From Table 3, it is observed that, the dimensionless critical buckling loads of in-plane bidirectional functionally 

graded plates are decreasing with the increase of gradation indexes and porosity volume fraction. The reason can be 
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attributed to the variation in material properties like effective Young’s modulus drastically in the 𝜂1 and 𝜂2 directions 

as shown in Fig 3. As the gradation index and porosity volume fraction increase, the material within the plate becomes 

more heterogeneous and porous. This leads to reduction of structural integrity and plate’s stiffness and resistance to 

buckling, making it more susceptible to critical loads.  

The effect of a/h, 𝜁1 , 𝜁2 , and Φ on the dimensionless critical buckling loads under uniaxial compression are 

presented in Table 4 and Fig 4.  

From the Table 4 and Fig 4, it is seen that, the increase of a /h, increases the critical buckling loads and decreases 

with the increase of 𝜁1 , 𝜁2, and Φ. This is because, a larger a/h results in a slenderer and less stocky structure. This 

increased slenderness allows the structure to better distribute and resist applied loads, reducing the risk of buckling. 

On the other hand, as the gradation index and porosity volume fraction increase, the material within the structure 

becomes more heterogeneous and porous, which weakens its overall structural integrity. So, the combined effect is 

that while an increased side-to-thickness ratio enhances stability, higher gradation indexes and porosity diminish it 

due to weakened material properties. 

Table 5 and Fig 5 shows the changes in the dimensionless critical buckling load when subjected to uniaxial 

compression for various b/a ratio, 𝜁1 , 𝜁2, and Φ. From the Table 5 & Fig 5, it is noticed that, the increase of aspect 

ratio decreases the critical buckling loads and decreases with the increase of gradation indexes and porosity volume 

fraction. The reason is, the increase of b/a ratio, 𝜁1 , 𝜁2, and Φ, decreases the overall plate’s stiffness, create material 

heterogeneity and hence more prone to buckling. This increased heterogeneity results in non-uniform stress 

distribution, particularly in the longitudinal direction, which magnifies the buckling susceptibility. Furthermore, the 

presence of porosity decreases the plate’s load carrying capacity, as porous regions act as stress concentration points 

and introduce local instabilities. Collectively, these effects lead to a significant reduction in the critical buckling loads 

as b/a ratio, 𝜁1 , 𝜁2, and Φ increase, making the plate more vulnerable to buckling under critical loads. The critical 

buckling load is same at two points b/a ≅0.75 for Φ =0.2; 𝜁₁=1; 𝜁₂ =1 & Φ =0.1; 𝜁₁=2; 𝜁₂ =5 and b/a ≅0.53 for Φ 

=0; 𝜁₁=2; 𝜁₂ =5 & Φ =0.1; 𝜁₁=1; 𝜁₂ =1. 

Table 3: Dimensionless critical buckling loads of rectangular plates, a/h=10 and b/a=2   under uniaxial compression 

𝜁2 Φ 𝜁1 

0 1 2 5 

0 0 8.18484 4.15133 2.77344 1.87645 
 

0.1 7.70739 3.56367 2.1649 1.33927 
 

0.2 7.22994 2.89736 1.45822 0.76009 

1 0 4.1801 2.68134 2.10432 1.64783 
 

0.1 3.61013 2.12537 1.56081 1.14091 
 

0.2 2.99136 1.50908 0.96317 0.60985 

2 0 2.77988 2.10714 1.82144 1.55995 
 

0.1 2.18362 1.56595 1.3004 1.06378 
 

0.2 1.50975 0.97376 0.74385 0.55094 

5 0 1.82525 1.6329 1.55144 1.46361 
 

0.1 1.28533 1.12496 1.05448 0.97735 
 

0.2 0.70603 0.59279 0.54061 0.48266 

 

3.2. In-plane bi-directional critical buckling loads under bi-axial compression 

The effect of a/h, 𝜁1 , 𝜁2 , and Φ on the dimensionless critical buckling load under bi-axial compression are 

presented in Tables 6-8 and shown in Figs 6-8. 

From the Table 6 and Fig 6, it is seen that, the increase of side to thickness ratio, increases the critical buckling 

loads and decreases with the increase of gradation indexes and volume fraction of porosity. The similar behaviour is 

observed in uniaxial compression also. Moreover, the dimensionless critical buckling load of plate subjected to 

uniaxial compression is greater compared to biaxial compression. The reason is, uniaxial compression allows the plate 

to deform in only one direction, which is more resistant to buckling compared to biaxial compression, where the plate 

is subjected to deformation in two orthogonal directions. In uniaxial compression, the plate can distribute the 

compressive load more efficiently, with less risk of lateral instability, while in biaxial compression, the load is applied 

in two directions, leading to a higher likelihood of buckling due to the increased stress and deformations in both 

directions. Therefore, the critical buckling load is higher in uniaxial compression because it offers a more stable load-
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bearing configuration. 
 

 
 

Fig 4: Influence of side to thickness ratio (a/h), gradation indexes and volume fraction of porosity on inplane bidirectional plate, b/a=2 

 

Table 4: Influence of side-to- thickness ratio (a/h), gradation indexes and volume fraction of porosity on in-plane bi-directional 
rectangular plate (b/a=2) 

a/h Φ=0; 𝜁₁=1; 𝜁₂ =1 Φ =0.1; 𝜁₁=1; 𝜁₂ =1 Φ =0.2; 𝜁₁=1; 𝜁₂ =1 Φ =0; 𝜁₁=2; 𝜁₂ =5 Φ =0.1; 𝜁₁=2; 𝜁₂ =5 Φ =0.2;𝜁₁=2; 𝜁₂ =5 

2 1.28341 0.9364 0.53823 0.84571 0.57001 0.28529 

5 2.38312 1.86496 1.2724 1.40436 0.95307 0.48656 

10 2.68134 2.12537 1.50908 1.55144 1.05448 0.54061 

50 2.79132 2.22182 1.59734 1.6053 1.09168 0.56053 

100 2.79489 2.22495 1.60021 1.60704 1.09289 0.56118 

 

 
Table 5: Effect of aspect ratio (b/a), gradation exponents and porosity on in-plane bi-directional plate with thickness ratio, a/h =10. 

b/a Φ=0; 𝜁₁=1; 𝜁₂ =1 Φ =0.1; 𝜁₁=1; 𝜁₂ =1 Φ =0.2; 𝜁₁=1; 𝜁₂ =1 Φ =0; 𝜁₁=2; 𝜁₂ =5 Φ =0.1; 𝜁₁=2; 𝜁₂ =5 Φ =0.2;𝜁₁=2; 𝜁₂ =5 

0.5 17.64035 12.86434 7.75499 12.92137 8.59262 4.18174 

1 6.43608 4.99423 3.3757 4.00744 2.74773 1.43306 

1.5 3.56217 2.82248 1.99945 2.10558 1.44346 0.75601 

2 2.68134 2.12537 1.50908 1.55144 1.05448 0.54061 

3 2.07702 1.62917 1.1325 1.19203 0.79941 0.39619 
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Fig 5: Effect of aspect ratio (b/a), gradation exponents and porosity on in-plane bi-directional plate with  thickness ratio, a/h =10. 

 

 
Table 6: Effect of thickness ratio, gradation exponents and volume fraction of porosity on in-plane bidirectional square plate 

a/h 
Φ=0; 𝜁₁=1; 𝜁₂ =1 

Φ  =0.1;  𝜁 ₁=1; 
𝜁₂ =1 

Φ =0.2;  𝜁₁=1; 𝜁₂ 
=1 

Φ  =0;  𝜁 ₁=2; 𝜁 ₂ 
=5 

Φ =0.1; 𝜁₁=2; 𝜁₂ 
=5 

Φ =0.2;𝜁₁=2; 𝜁₂ =5 

2 1.24519 0.89968 0.51091 0.85524 0.57439 0.28336 

5 2.77574 2.14349 1.40881 1.71684 1.17291 0.60618 

10 3.32647 2.62088 1.83132 2.00568 1.37671 0.7211 

50 3.54702 2.81462 2.00919 2.11992 1.45773 0.76744 

100 3.55434 2.82108 2.01518 2.1237 1.46042 0.76899 

 

 
 Table 7: Effect of aspect ratio , gradation exponents and porosity on inplane bidirectional FGP’s with a/h =10 

b/a 
Φ=0; 𝜁₁=1; 𝜁₂ =1 

Φ =0.1; 𝜁₁=1; 𝜁₂ 
=1 

Φ =0.2; 𝜁₁=1; 
𝜁₂ =1 

Φ =0; 𝜁₁=2; 
𝜁₂ =5 

Φ =0.1; 𝜁₁=2; 
𝜁₂ =5 

Φ =0.2;𝜁₁=2; 
𝜁₂ =5 

0.5 7.34865 5.65776 3.73799 4.507 3.05843 1.56133 

1 3.32647 2.62088 1.83132 2.00568 1.37671 0.7211 

1.5 2.4249 1.90621 1.32756 1.44288 0.98205 0.50322 

2 2.07211 1.61593 1.10777 1.22468 0.82512 0.41262 

3 1.75881 1.34622 0.89235 1.05608 0.70214 0.34057 
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Fig 6: Effect of thickness ratio, gradation exponents and volume fraction of porosity on in-plane bidirectional square plate 

 

 
Fig 7: Effect of aspect ratio , gradation exponents and porosity on inplane bidirectional FGP’s with a/h =10 

The effect of b/a, 𝜁1 , 𝜁2, and Φ on the dimensionless critical load under biaxial compression is shown in Table 7 

and Fig 7. It is observed that the critical buckling loads are larger when the plate is subjected to uniaxial compression 

compared to bi-axial compression. This is due to the inherent differences in load distribution and stability. In uniaxial 

compression, the applied force acts in a single direction, leading to a more efficient load transfer along the axis of 

compression, allowing the material to withstand higher loads before buckling occurs. In contrast, in biaxial 

compression, the applied forces act in two perpendicular directions, leading to reduced load-carrying capacity as the 

material experiences stress in two directions simultaneously, making it more susceptible to buckling at lower loads. 

Therefore, the uniaxial scenario provides a more favourable stress distribution for resisting buckling, resulting in 

higher critical loads. 
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Table 8:  Influence gradation exponents and porosity on inplane bidirectional FG square plates with a/h =10 

Φ 𝜁1=1; 𝜁₂ =1 𝜁₁=1; 𝜁₂ =2 𝜁₁=1; 𝜁₂ =5 

0 3.32647 2.66212 2.11954 

0.04 3.04988 2.39195 1.86455 

0.08 2.7662 2.11577 1.60645 

0.1 2.62088 1.97472 1.47588 

0.12 2.47262 1.83114 1.34401 

0.16 2.16427 1.53375 1.07513 

0.2 1.83132 1.2149 0.79579 

 

The effect of gradient exponents and porosity volume fraction are given in Table 8 and shown in Fig 8. From the 

Fig 8, it is observed that the increase of porosity volume fraction and increase of gradient index in y direction, 
decreases the critical buckling loads. Higher porosity reduces the material's structural integrity by creating voids that 

weaken its ability to support compressive loads. Additionally, increase of gradient index in the 𝜂2-direction leads to 

decrease in material modulus of elasticity, causing uneven load distribution and reducing the material's overall stability 

and more vulnerable to structural failure under compression. 

 
Fig.8: Influence gradation exponents and porosity on in-plane bi-directional FG square plates with side to thickness ratio (a/h) =10 

 

4. Conclusions 

In this paper, a novel approach is introduced to analyze the buckling behavior of in-plane bidirectional FGPs with 

a generalized higher order theory. This theory has the advantage of satisfying the nullity conditions for transverse 

shear stresses at the top and bottom of the plate, eliminating the need for a shear correction factor. 
The properties of bidirectional porous FGPs in the in-plane direction can be modified by changing the gradation 

indices for both the material composition and the volume fraction of porosity. To derive the equilibrium equations 

governing their motion, the Lagrange equations are employed in conjunction with polynomials and additional 

admissible functions. These added functions are crucial for satisfying the imposed boundary conditions. 

Admissible functions in this study are generated using Pascal's triangle. The research examines a range of gradation 

index values for both the 𝜂1 and 𝜂2-directions, side-to-thickness ratios, aspect ratios, and volume fractions of porosity. 

The critical buckling loads, calculated dimensionlessly, are then compared to findings from previous studies. Notably, 

the results from our generalized higher-order shear deformation theory closely align with previously published results 

in the literature. To gain a deeper insight into the buckling behavior of in-plane bidirectional porous FGPs, we 
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conducted an extensive analysis by varying the gradation indexes, side-to-thickness ratios, aspect ratios, and volume 

fractions of porosity. 

The dimensionless critical buckling loads exhibit an increase with higher side-to-thickness ratios, while they 

decrease with increasing aspect ratios, gradation indexes in 𝜂1 and 𝜂2-directions,, and volume fraction of porosity in 

both uni-axial and bi-axial compression scenarios. Notably, critical buckling loads are more substantial in uniaxial 

compression when compared to bi-axial compression. These numerical findings serve as valuable benchmark 

solutions for evaluating different plate theories and for comparing them to results derived from alternative analytical 

and finite element methods. This study highlights the capability of the proposed theory to analyze the buckling 

behavior of bidirectional porous FG plates produced through the sintering process. 
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