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Abstract 

Cancer is an abnormal cell growth that occurs uncontrollably within the human body and has 

the potential to spread to other organs. One of the primary causes of mortality and morbidity 

for people is cancer, particularly lung cancer. Lung cancer is one of the non-communicable 

diseases (NCDs), causing 71% of all deaths globally, and is the second most common cancer 

diagnosed worldwide. The effectiveness of treatment and the survival rate of cancer patients 
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can be significantly increased by early and exact cancer detection. An important factor in 

specifying the type of cancer is the histopathological diagnosis. In this study, we present a 

Simple Convolutional Neural Network (CNN) and EfficientNetB3 architecture that is both 

straightforward and efficient for accurately classifying lung cancer from medical images. 

EfficientnetB3 emerged as the best-performing classifier, acquiring a trustworthy level of 

precision, recall, and F1 score, with a remarkable accuracy of 100%, and superior 

performance demonstrates EfficientnetB3’s better capacity for an accurate lung cancer 

detection system. Nonetheless, the accuracy ratings of 85% obtained by Simple CNN also 

demonstrated useful categorization. CNN models had significantly lower accuracy scores than 

the EfficientnetB3 model, but these determinations indicate how acceptable the classifiers are 

for lung cancer detection. The novelty of our research is that less work is done on 

histopathological images. However, the accuracy of the previous work is not very high. In this 

research, our model outperformed the previous result. The results are advantageous for 

developing systems that effectively detect lung cancer and provide crucial information about 

the classifier’s efficiency. 

Keywords: Lung Cancer, Convolutional Neural Network (CNN), Histopathological Images, 

Transfer Learning, Lung Cancer Detection 
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Introduction 

The primary organs of respiration are the lungs. In the human body, one lung is situated on 

each side of the chest. The lungs are responsible for oxygenating the blood. The heart pumps 

blood to the lungs, which contain a significant amount of carbon dioxide and little oxygen 

(Dimililer, 2017).  Some of the most common malignancies are lung, breast, stomach, and 

prostate cancers, which, if not caught early, can cause serious complications or, in many 

cases, death. In the human body, cancer is a manifestation of aberrant cell proliferation 

(Singh, 2019). Nearly 25% of all cancer-related deaths occur from lung cancer, making it a 

common malignancy in both men and women. The leading cause of death from malignant 

tumors in males is lung cancer and breast cancer in females. Lung cancer can be quite 

harmful, and one of the main reasons for this is that it is latent, and its early-stage signs are 

difficult to recognize. Most individuals progress to the intermediate and severe stages when 

clear-cut clinical symptoms appear. At this point, the prognostic impact is also very poor, the 

effect of therapy is very limited, and the cure rate is severely reduced. As a result, patients’ 
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response to treatment can be greatly enhanced by detecting and diagnosing lung cancer at an 

early stage (Rong, 2021). 

There are over 1.8 million new cases of lung cancer each year, which causes 1.6 million 

fatalities globally. Abnormal growth and development of cells in tumors is the reason for lung 

cancer and the highest mortality rate among all cancers. With a mortality rate of 19.4%, lung 

cancer is among the most terrible diseases in poor nations. With the lowest success rate after 

diagnosis and an annual increase in casualties, lung cancer is the deadliest cancer globally 

(Kalaivani, 2020).  Additionally, Nearly 80% of lung cancer deaths were caused by smoking. 

Nonsmokers are at increased risk of lung cancer due to other factors such as radon, 

secondhand smoke, air pollution or exposure to asbestos at work, exposure to diesel exhaust, 

or exposure to certain chemicals (Viale, 2020). 

Non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) are the two 

principal types of lung cancer. The growth and spread of each type of lung cancer varies, as 

does how it is handled. Assorted small cell/large cell cancer refers to cancer with traits from 

both types. Comparatively more prevalent and often growing and dispersing more slowly than 

SCLC is non-small cell lung cancer. The expansion rate of SCLC and the shape of large 

tumors, which can disseminate widely throughout the body, are directly associated with 

cigarette smoking. In the bronchi towards the chest’s center, they frequently begin. Lung 

cancer mortality is completely influenced by cigarette smoking (Krishnaiah, 2013). 

When a patient has a chest X-ray or CT scan for any other valid cause, lung cancer is 

frequently detected. When the remaining 75% of people exhibit or acquire symptoms, they 

are diagnosed. As cutting-edge algorithms and Artificial Intelligence (AI) systems are 

combined to empower clinicians, a transformative wave is expected to reshape the healthcare 

landscape over the decade. These technologies include Higher-Order Statistics (HOS) (de la 

Rosa, 2013), Fuzzy logic (FL) (Bhaktavastalam, 2016), Artificial Neural Networks (ANN) 

(Prisciandaro, 2023), Genetic Algorithms (GA), and Computer-Aided Diagnosis (CAD) 

among others (AlZubaidi, 2017). Their harmonious collaboration should improve patient care 

by increasing the accuracy of diagnoses and the effectiveness of treatments. Machine 

Learning (ML) and Deep Learning (DL), an extraordinary subset of AI, are at the core of this 

symphony and orchestrate machines to glean insights without explicit programming, a 

metamorphosis achieved through immersion in varied datasets and skill-honed through 

experiential learning (Roy, 2021). Most of the authors’ earlier work used machine learning 

techniques with x-ray and CT scan images. Support Vector Machine (SVM) (Manju, 2021), 

Random Forest (RF) (Bhattacharjee, 2022), Bayesian Networks (BN), and Convolutional 

Neural Networks (CNN) (Shandilya, 2022) combine in this instance to create a ballet of 

illuminating approaches that reveal the secrets hidden in these photos and unleash their 

potential for lung cancer diagnosis and categorization. 
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Research Objectives and Motivation 

Two primary objectives drive this research: 

To significantly enhance lung cancer detection accuracy by implementing advanced DL 

techniques, specifically CNN and the state-of-the-art EfficientNetB3 architecture. 

Evaluating the consequence of innovative data augmentation techniques on improving the 

performance of DL models for the detection of lung cancer is a critical step toward improving 

patient outcomes. 

The motivation behind this study lies in the compelling need to address the global health 

burden caused by lung cancer. Early detection of lung cancer can guide to more satisfactory 

treatment and ultimately reduce survival. 

Contribution 

This study presents several significant contributions to lung cancer detection. It uses advanced 

DL techniques, including state-of-the-art architectures such as EfficientNetB3 and CNN, to 

accurately classify lung cancer based on histopathological images. Through a comparative 

analysis, we establish the suitability of these models for accurate lung cancer detection. 

Additionally, our research introduces innovative data augmentation methods to enhance 

model performance by expanding the dataset through augmentation, and this aims to improve 

the models' ability to predict previously unseen data. Our experimental results showcase the 

exceptional accuracy of the EfficientNetB3 model, achieving a remarkable 100% accuracy 

rate in lung cancer detection. This outstanding outcome underscores the potential for highly 

reliable diagnostic systems for lung cancer. Lastly, the clinical relevance of our findings is 

substantial, as they hold promise for the development of AI-powered tools that can aid 

healthcare professionals in early and precise lung cancer diagnosis.  

To structure this paper, we have separated it into multiple sections. Firstly, in Section 2, 

we will review the different approaches to detecting lung cancer. Observing this, we will 

summarize our methodology statement in Section 3. Section 4 will explain the experimental 

outcomes of our utilized models and compare our outcomes with existing work. Finally, we 

will conclude by proposing our findings. 

Literature Review   

To enhance the accuracy of lung cancer detection within CT scan images, the study (Makaju, 

2018) examined the use of computer-aided diagnosis (CAD) approaches, noting the 

difficulties doctors experience in making an accurate diagnosis. A unique model is put forth 

after a review of current CAD approaches, including watershed segmentation for nodule 
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detection and SVM for determining whether a nodule is cancerous or benign. With a superior 

92% detection accuracy compared to the current model and an 86.6% classification accuracy, 

it represented a significant step forward in improving the accuracy and reliability of lung 

cancer diagnosis. It also holds the potential to have a significant impact on medical imaging 

and diagnostics. Another study (Ahmed, 2022) presented the Genetic K-Nearest Neighbor 

(GKNN) Algorithm, which can identify early-stage lung cancer in CT lung images. The 

suggested model effectively and quickly categorizes cancer images by integrating the Genetic 

Algorithm with the K-Nearest Neighbor (K-NN) approach. The solution employed the image 

processing toolkit in MATLAB on CT lung pictures, focusing on performance measures like 

classification and false positive rates. This method, which chose K-nearest samples (50–100) 

using a Genetic Algorithm, allowed the model to attain a noteworthy 90% classification 

accuracy. 

   The study (Kumar, 2023) proposed a novel automated diagnostic method for lung CT 

images to address the urgent need for early lung cancer identification. This technique takes 

advantage of deep features recovered from CT lung images and uses LDA to minimize feature 

dimensionality by integrating Optimal Deep Neural Network (ODNN) and Linear 

Discriminant Analysis (LDA). The Modified Gravitational Search Algorithm (MGSA) is used 

to optimize the ODNN for lung cancer categorization further. Results showed a convincing 

sensitivity of 96.2%, a specificity of 94.2%, and an outstanding accuracy of 94.56%. This 

cutting-edge combination of methods highlighted a promising trend in lung cancer diagnosis 

and offers patients a better chance of surviving the disease. 

According to (Bhuvaneswari, 2015), the dataset from the Lung Image Database 

Consortium (LIDC) is used to analyze the usefulness of DL algorithms in detecting lung 

cancer. CNN, deep belief networks (DBNs), and stacked denoising autoencoders (SDAE) are 

three DL models that were applied and corresponded to a conventional computer-aided 

diagnosis (CADx) system using 28 image features and SVM. The acquired accuracies for 

CNN, DBNs, and SDAE were 0.7976, 0.8119, and 0.7929, whereas the accuracy of the 

conventional CADx was 0.7940, only somewhat lower than that of CNN and DBNs. 

The study (Lakshmanaprabu, 2019) concentrated on using ML approaches to build 

efficient models for early detection of high-risk patients susceptible to lung cancer, permitting 

prompt actions to attenuate long-term effects and described the Rotation Forest approach and 

assessed the effectiveness of the strategy using well-known measures. The evaluation 

demonstrated the proposed model’s amazing efficacy with an impressive AUC of 99.3%. 

Another investigation by (Sun, 2016) used the Kaggle Data Science Bowl 2017 dataset 

with unlabeled nodules and demonstrated a computer-aided diagnosis (CAD) method 

designed for lung cancer categorization in CT scans. Lung tissue is distinguished from the rest 

of the image using thresholding as an initial segmentation technique. To find potential 
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nodules within the segmented scans, the study used a modified U-Net trained on LUNA16 

labeled data. 3D Convolutional Neural Networks (CNNs) are then applied to the possible 

nodule locations that the U-Net discovered to classify lung cancer. The 3D CNNs manage an 

impressive accuracy of 86.6% on the test set despite issues like false positives.  

In Table 1, we discussed the dataset, data augmentation, and segmentation techniques of 

existing research work. 

Several significant limitations come with the present investigation that are worth 

acknowledging. The study cannot forecast the nature, arrangement, or dimensions of tumors, 

which is a critical factor in the early diagnosis and treatment of cancer. Additionally, the 

research was limited by a restricted number of pixels in its analytical approach, which may 

not be conducive to early cancer detection. The lack of appropriately labeled datasets, 

especially for lung cancer images, presents a significant 

Table 1. Overview of Existing work: Dataset, Augmentation and Segmentation Techniques 

Dataset Augmentation Segmentation 

WSI dataset OTSU’s method 
Rotation, translation, flipping and 

color jittering 

LIDC dataset 
Rotation, shear, zoom range , and 

horizontal and vertical flip 

Data Science Bowl Kaggle 

competition’s method 

The National Lung 

Cancer Screening 

Trial (NLST) and 

Early Lung Cancer 

Action Program (ELCAP) 

Rotation Location and size 

LUNA16 dataset and the 

LIDC-IDRI 

Random cropping of zero-padded 

nodules 

Various radio densities of different 

substances 

LC25000 Lung and 

colon histopathological image 

dataset 

Flip in horizontal and vertical and a 

zoom range 
Area, perimeter, and eccentricity 

LIDC-IDRI datasets 
Translation, rotation, flipping, and 

cropping 

Various radio densities of different 

substances 

Obstacle when training machine learning models. Obtaining accurately annotated training 

data is also challenging due to the resource-intensive nature of annotating genomic data, 

which is closely linked with histological images. Access-related challenges when dealing with 

extensive databases also hinder the effectiveness of classification algorithms for histological 

images across various healthcare settings. Integrating machine learning platforms with high-

performance computing in extensive healthcare facilities has promising benefits. The primary 

focus should be devising innovative solutions to overcome these challenges, ultimately 

improving the precision and efficiency of diagnostic procedures. 
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Methodology  

In this part, we discuss our suggested methods for detecting lung cancer using cutting-edge 

DL models. Our method seeks to transform the early identification and treatment of lung 

cancer by utilizing the synergy of advanced image analysis and artificial intelligence. Using a 

well-organized pipeline, we describe the procedures for converting unprocessed medical 

image data into useful diagnostic data. The overall steps performed in our research are shown 

graphically in Figure 1. We will describe each step of the research below: 

 

Figure 1. Overall steps of our research 

Dataset and Data Preprocessing 

Dataset Description: 

To diagnose and comprehend a variety of medical diseases, histopathological investigation is 

crucial. We used the Lung and Colon Cancer Histopathological Image Dataset (LC25000) for 

our work, and this dataset has 25,000 jpeg files that are 768 x 768 pixels in size and contain 

five different types of histopathology images (Borkowski, Lung and colon cancer 

histopathological image dataset, 2019). A wide range of histopathological images is added to 

this dataset, which was created from sources that were extensively validated and HIPAA-

compliant, containing 750 total images of lung tissue, including 250 benign lung tissue, 250 

lung adenocarcinomas, and 250 lung squamous cell carcinomas. 

There are also 500 colon tissue images, including - 250 benign colon tissue and 250 colon 

adenocarcinomas. 

The dataset was supplemented with the Augmentor package to 25,000 images to increase 

its size and improve its diversity and usability. The dataset consists of five classes with 5,000 

images each, including Lung benign tissue, Lung adenocarcinoma, Lung squamous cell 

carcinoma, Colon adenocarcinoma, and colon benign tissue. 
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Some dataset samples are shown in Figure 2. 

Dataset Preprocessing: 

This code snippet’s preparation pipeline for image data includes numerous crucial steps that 

prepare the images for a machine learning model’s training and evaluation. The target image 

size is initially set to 224x224 pixels with three color channels (RGB), with batch size 16. 

Training, validation, and test sets of data have been created. An Image Data Generator is used 

for each set to apply different preprocessing methods. 

The real-time data augmentation enhances the resilience and generalization of the model 

that the Image Data Generator does during training. Each image batch is subjected to arbitrary 

rotations, shifts, flips, and zooms as part of data augmentation. This lessens overfitting by 

exposing the model to a larger range of variability in the data. Data augmentation is turned off 

during testing to guarantee that the model’s forecasts are accurate and comparable. 

Data stored in dataframes (train df, valid df, and test df) are utilized to generate batches of 

images and the labels that go with them using the flow from dataframe function. The file 

paths supplied in the dataframe columns are used to load the images, and the ’categorical’ 

class mode is used to one-hot encode the labels. Important aspects of the preprocessing 

methods: 

1. Image resizing: To provide uniform input dimensions for the Model, images are scaled to 

a consistent size of 224x224 pixels. 

2. Color Mode: Each image’s red, green, and blue channels are preserved while reading an 

image in RGB color mode. 

3. Data Augmentation: To improve model resilience, data augmentation is used during 

training (train gen), adding variations in rotations, shifts, flips, and zooms. 
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Figure 2. Samples of the dataset 

4. Batching: During training, validation, and testing, 16 images are loaded in batches. During 

training, batch processing provides effective GPU use and gradient updates. 

5. Shuffling: To prevent the model from memorizing the order of the images and increase 

generalization, images are randomly shuffled inside each batch. 

6. Validation and Testing: Shuffling is deactivated to accurately assess the model’s 

performance for validation (valid gen) and testing (test gen), and images are processed 

without data augmentation. 

Proposed Model SimpleCNN Model 

In this study, we provide a CNN architecture that is both straightforward and efficient for 

accurately classifying lung cancer from medical images. Layer by layer, we describe the 

model’s construction and offer the relevant mathematical equations that describe how it 

works. The architecture demonstrates the effectiveness of fundamental CNN building blocks 

in producing accurate and reliable categorization outcomes. Our study uses DL to tackle the 

crucial task of classifying lung cancer. The suggested architecture takes advantage of CNNs’ 

innate ability to recognize complex patterns in medical pictures, providing a framework for 

cutting-edge diagnosis. The structure of the architecture is as follows: 

1. Convolutional Layers: Convolutional layers are first used in the model to extract 

hierarchical characteristics from the input photos. Every 2D convolutional operation is 
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followed by an activation and normalization process in each convolutional layer. The first 

convolutional layer uses a collection of 32 filters to produce a 3x3 convolution on the 

input image tensor X. Non-linearity is introduced by the ReLU activation function (A), 

and the training process is stabilized with the help of batch normalization (BN). The 

following is the equation for this operation: 

C1 = A (BN(Conv2D(X,32,(3,3))))                                                                                              (1) 

The input image tensor is represented by the variable X. The raw picture data we feed into 

a convolutional neural network (CNN) for processing is referred to as X in this context. On 

this input image, the Conv2D layer performs a 2D convolution operation. The output of the 

convolutional operation is then subjected to the BN and ReLU (rectified linear activation) 

functions. Although the number of filters in the following convolutional layers (C2 and C3) is 

higher (64 and 128, respectively), they follow a similar pattern. After each convolutional 

block, the MaxPooling operation (MP) with a 2x2 pooling window is used to downsample the 

spatial dimensions of the feature maps. The following is the equation for this operation: 

3))))),(3,64,1C= MP(A(BN(Conv2D(2 C (2) 

3))))),(3,128,2C= MP(A(BN(Conv2D(3 C (3) 

2. MaxPooling Layers: MaxPooling is carried out by moving a window of a predetermined 

size across the feature map (often 22 or 33). The highest value in the window is chosen at 

each stage, which is subsequently kept in the final downscaled feature map. This approach 

reduces the feature map’s dimensionality while keeping the most crucial details. This 

procedure is represented mathematically as follows: 

Pi = MaxPool2D (Ci,pooling window = (2,2))     (4) 

It shows how the feature map Ci was subjected to the MaxPooling technique. Ci, in this 

case, represents the output of the preceding convolutional layer (C1 or C2), and the pooling 

window is set to (2, 2), suggesting that a window of size (2 times 2) is utilized to extract 

features from the downsampled image. The final product, Pi, is a downscaled version of the 

feature map Ci that keeps the highest value from each pooling window. The feature map’s 

spatial dimensions are effectively reduced due to this procedure, which encourages effective 

computing and improves the network’s capacity to recognize key patterns while ignoring less 

crucial information. 

3. Flatten and Dense Layers: The feature maps are converted into a one-dimensional (1D) 

vector after extracting pertinent features using convolutional and pooling layers to permit 

further processing by dense (completely connected) layers. This transformation is 

essential since it enables the model to use these features for classification tasks. The 

flattening process is modelled mathematically as follows: 
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F = Flatten (Pn)                                                                                                                          (5) 

The first dense layer (D1), which serves as a feature fusion step and receives the flattened 

feature vector F afterward. Through the ReLU (Rectified Linear Unit) activation function, this 

dense layer adds nonlinearity to the features. The ReLU activation function improves the 

model’s capacity to extract pertinent data and aids in the collection of complex patterns within 

the data. This operation can be described mathematically as: 

D1 = ReLU (Dense(F,128))                                                                                                        (6) 

Where D1 denotes the first dense layer’s output, and 128 denotes the layer’s total number 

of neurons (or units). After passing through the second dense layer (D1), the output of D2, 

which contains fused and non-linearly modified features, is produced. By further honing the 

features, this layer enables the model to recognize higher-level patterns that are essential for 

precise classification. The ReLU activation function introduces non-linearity similar to the 

prior layer. This operation is represented mathematically as follows: 

D2 = ReLU (Dense(D1,64))                                                                                                        (7) 

Here, D2 results from the dense layers, and 64 is the number of neurons in this second 

dense layer. 

4. Output Layer: The model’s computations are completed in the output layer, which 

generates class probabilities that allow the model to make predictions about the input data. 

The outputs of the model’s last layer are converted into class probabilities in a crucial way 

by the softmax activation function. The softmax function normalizes a vector of scores or 

logits to reflect probabilities that add up to 1. Each component of the output vector 

represents the likelihood that the input belongs to a particular class. Here is the softmax 

equation: 

                                                                                                                                                   (8) 

N is the total class number, and zi is the score (logit) corresponding to class i. 

 

Figure 3. Proposed model efficientnetB3 architecture 
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Efficient netB3 

We outline the design of our suggested lung cancer detection model in this section. The model 

is made to accurately classify medical images by quickly extracting and learning key elements 

from the images. Because it has been demonstrated to balance model size and performance in 

computer vision applications successfully, we use the EfficientNetB3 architecture as the 

foundation. 

Convolutional neural network (CNN) architecture EfficientNetB3 is a member of the 

EfficientNet family. It was created to strike a fair compromise between model size and 

effectiveness for various computer vision tasks, including object identification and image 

categorization. Compared to less advanced models like EfficientNetB0 and EfficientNetB1, 

EfficientNetB3 is more sophisticated and potent. Like other EfficientNet models, 

EfficientNetB3’s architecture is distinguished by three essential elements: Depth-wise 

Convolution, SE blocks, and compound scaling of width, depth, and resolution. Let’s dissect 

these elements and comprehend those using visuals as well as textual descriptions: 

1. Depth-wise Convolution: The fundamental units of the model’s convolutional layers are 

depth-wise separable convolutions. This method requires two sequential steps: point-wise 

convolution, which combines the output channels, and depth-wise convolution, which 

applies a convolutional filter to each input channel independently. As a result, the 

computational cost is significantly decreased while the expressive capability of the 

network is maintained. 

2. Squeeze-and-Excitation (SE) Blocks: Squeeze-and-Excitation (SE) blocks are used in the 

model to improve feature representation in the network. The SE blocks are divided into 

two stages: the squeeze stage uses global average pooling to produce statistics for each 

channel, and the excitation stage uses fully connected layers to mimic channel 

dependencies. The feature maps’ relevance is clarified using the derived scale factors. 

3. Compound Scaling: By modifying the breadth, depth, and resolution coefficients, we use 

compound scaling to further adapt the model to our job. The careful selection of these 

coefficients, designated as phi, psi, and rho, respectively, ensures optimal performance 

and computing efficiency. The following equation is used to determine the output 

resolution: 

Resolution = 300 × (1.15ϕ)                                                                                                        (9) 

The EfficientNetB3 model, a cutting-edge neural network that has undergone pre-training 

on the expansive ImageNet dataset, forms the basis of the model design. The network can 

automatically learn and recognize complicated patterns from images using feature extraction, 

which is made possible by the pre-trained model that acts as its foundation. The original fully 

connected layers of EfficientNetB3 are removed by setting ‘include top’ to ‘False,’ 

transforming the model into a specialized feature extractor. A Batch Normalization layer is 
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added after the underlying model. By minimizing the internal covariate shift, batch 

normalization improves training stability and speed. It works by normalizing the output of the 

preceding layer. The next step is to create a highly connected layer with 256 neurons. L2 

weight regularization, L1 activity regularization, and L1 bias regularization are three more 

regularization types that are enhanced in this layer. These regularization terms can be 

represented mathematically as follows. 

(a) L2 weight regularization:Loss += 0.016 ·∥weights∥2 

(b) L1 activity regularization: Loss += 0.006 * ·activities · (L1norm) 

(c) L1 bias regularization: Loss += 0.006 * ·biases · (L1norm) 

To prevent large weight magnitudes, promote sparse activations, and discourage biased 

activations all of which contribute to overfitting—these parameters are added to the loss 

function. Rectified Linear Activation (ReLU) is the activation function that was used in this 

instance. Subsequently, a Dropout layer is included, which aids in preventing overfitting by 

randomly deactivating a fraction of input units during each training iteration. This addition of 

stochasticity encourages the network to learn more reliable features. 

Another densely coupled layer acts as the output layer, with a neuron count equal to the 

total number of classes, making up the final layer. This layer makes a prediction about the 

class membership of the input image by using the softmax activation function to transform the 

model’s raw outputs into probability distributions across classes. 

Table 2 graphical representation of the EfficientNetB3 model architecture. 

Table 2. Architecture of proposed EfficientnetB3 model 

Parameter Value 

Input Image Dimensions A 224x224 pixel image using RGB color channels 

Base Pre-trained Model 
EfficientNetB3 for feature extraction with fully linked layers omitted 

(include top=False) 

Batch Normalization Increases training speed and stability by adjusting layer outputs 

Dense Layer 1 

Includes L2 weight regularization, 

L1 activity regularization, and L1 bias regularization; dense layer with 256 

neurons and ReLU activation 

Dense Layer 1 Dropout layer with a rate of 0.45 to prevent overfitting 

Dense Layer 2 (Output) 
Neurons in the final dense layer that correspond to class count and softmax 

activation 

Table 3 displays the model’s values and parameters during the training process, and 

Figure 3 displays a graphic representation of the suggested model’s architecture. 
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Table 3. Parameters of the proposed model and values during the training process 

Parameter Value 

Epocs 10 

Verbose 1 

Validation steps None 

Shuffle Flase 

Results and Discussion  

Following the model’s development, we evaluated EfficientNte-B3’s performance. We also 

discover the performance of the simpleCNN model. We calculate accuracy, recall, F-score, 

and precision. We will also show the suggested model’s training, validation, loss, and 

accuracy curves. The confusion matrix for our EfficientnetB3 model was finally calculated. 

We assessed the performance of two distinct DL models in the context of our study, namely, 

the SimpleCNN and the EfficientNetB3 model— which centred on the early identification of 

lung cancer. A wide range of evaluation standards, such as precision, recall, F-score, and 

accuracy, were used to evaluate the models thoroughly. Notably, the findings revealed a 

significant variation in how well different models performed. 

The SimpleCNN model performed admirably, with precision, recall, F-score, and 

accuracy values of 83%, 86%, 84.5%, and 85%, respectively. Comparatively, the 

EfficientNetB3 model demonstrated remarkable results across all measures, having 100% 

accuracy, 100% precision, and 100% recall. The implications of these findings on the 

performance of lung cancer diagnosis are important. In closing, our research led to a 

comparison analysis that overwhelmingly preferred the EfficientNetB3 model, and its 

unmatched accuracy, recall, precision, and F-score highlight its strength and competence in 

detecting lung cancer cases. The EfficientNetB3 model outperformed the SimpleCNN model, 

which also performed admirably, but its success highlights how it has the potential to 

dramatically enhance the precision and dependability of lung cancer detection systems. 

 

Figure 4. The evaluation metrics of our proposed model 
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Two distinct classifiers, SimpleCNN and EfficientNetB3 Model, and their performance 

metrics are displayed in Table 4. 

Table 4. Parameters of the proposed model and values 

Classifier Precision Recall F-score Accuracy 

SimpleCNN Model 83% 86% 84.5% 85% 

EfficientnetB3 100% 100% 100% 100% 

Monitoring the training and validation metrics is essential for determining a model’s 

effectiveness and generalizability in DL, especially for applications like lung cancer 

diagnosis. Training and validation loss and training and validation accuracy are two crucial 

measures that are crucial for assessing model performance. Loss is a key indicator that 

measures how well a model’s forecasts correspond to the actual labels in the ground truth 

data. The training loss in the context of lung cancer detection refers to how well the model fits 

the training set of data. In contrast, validation loss assesses how 

 

Figure 5. Training and validation loss of the proposed model 

The model performs on untested data, replicating its adaptability to novel, untested 

situations. Overfitting can be discovered by observing the training and validation loss. The 

model fits the training data too closely and may not generalize well if the training loss keeps 

dropping while the validation loss rises. Loss function minimization is the aim of model 

training. To improve the model’s performance, changes can be made to its architecture, 

hyperparameters, or regularization methods by evaluating the training and validation loss. 

Figure 5 shows the training and validation loss and training and validation accuracy of our 

proposed EfficientnetB3 model. Another important indicator is accuracy, which shows the 

percentage of correctly identified occurrences relative to all instances. While validation 

accuracy demonstrates how effectively the model generalizes to fresh, untested data, training 

accuracy demonstrates how well the model performs on the training data. The training and 

validation accuracy over time can be tracked to determine how well the model improves. 

Overfitting may be indicated by rapidly increasing training accuracy but stagnant or declining 

validation accuracy. The graphs in Figure 5 show the trends in training and validation 

accuracy throughout 10 epochs, as well as training and validation loss.  
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The epoch number (x-axis) and the corresponding metric values (y-axis) are displayed on 

both curves. These curves’ convergence throughout the 10 epochs indicates that the model is 

stabilizing and achieving a level of performance that is largely consistent. The confusion 

matrix of the proposed model is shown in Figure 6. In the field of medical diagnostics, such 

as the diagnosis of lung cancer, evaluating an ML model’s performance extends beyond only 

considering accuracy and loss. A confusion matrix offers a more thorough understanding of 

how well a model categorizes various kinds of cases. Four categories are used to categorize 

the predictions and actual labels: true positives, true negatives, false positives, and false 

negatives. Particularly in the context of lung cancer diagnosis, a confusion matrix offers a 

more comprehensive evaluation of a model’s performance than accuracy alone.  

Discussion and Comparison with Existing Work in Deep Learning: 

Table 5. Comparison of lung cancer classification outcomes of existing methods and 

histopathological images datasets 

Model Accuracy 

Deep Neural Network (DNN) 95% 

Convolutional Neural Network (CNN) 97.89% 

CNN 97.2% 

EfficientNetB3 100% 

In Table 5, we compare our proposed model with the existing one using the DL model 

and histopathological images dataset. 

 

Figure 6. Confusion matrix 
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Recently, DNN and Machine Learning have made considerable strides, especially in the 

area of image classification. An admirable accuracy of 95% was attained by a DNN in 

(Mohalder, 2022), while an even higher accuracy of 97.89% was achieved by a CNN. 

Another study (Mangal, 2020) also used CNN which produced outcomes with a 97.2% 

accuracy. These findings showed how image classification methods are continually 

improving. 

 

Figure 7. Comparison of lung cancer classification results of existing methods with our proposed 

model 

However, we presented a revolutionary approach that acquired an unmatched accuracy of 

100% by employing the EfficientNetB3 architecture. In addition, our suggested model 

performs better than existing methods in terms of accuracy to enhance efficiency and 

effectiveness in image classification tasks. Our EfficientNetB3 model reached an exquisite 

accuracy of 100% that surpassed (21) and (28), which attained accuracies of 95% and 97.2%, 

also outperforming the previous best of 97.89% from (5) and demonstrating significant 

progress in image categorization. Our model represented a significant advancement in the 

field of image classification and holds tremendous potential for many real-world applications 

due to the overall advantages of improved accuracy and efficiency. Figure 7 illustrates the 

classification outcomes that compare existing work with our proposed model. 

Conclusion 

Colon and lung cancer are major contributors to global mortality. Lung cancer detection has 

made significant progress through advanced technology and methods. While SimpleCNN and 

EfficientNetB3 models have been highly accurate, they face challenges in interpretability and 

generalizability into current medical procedures. Our study presented the effectiveness of 

deep learning-based classifier models, specifically the EfficientNetB3 architecture, in 

detecting and classifying lung cancer utilizing histopathological image data. It outperformed 

SimpleCNN in multiple evaluation metrics, with exceptional accuracy, recall, F1 score, and 
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overall performance. Future research will enhance pulmonary nodule categorization, refine 

the model, and address interpretability and practical integration challenges. The dataset will 

be expanded, and healthcare professionals will collaborate to ensure the successful translation 

of these advancements into clinical practice; this will enhance the quality of care for people at 

risk of lung cancer, ultimately enhancing survival rates. 
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