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Abstract 

Pores affect functionally graded materials. Further characteristics may be 

added if pores expand from the surface to the interior. Functionally graded 

porous beam (FGPB) bending response is analyzed using a specific shear 

shape function that accounts for both uniform and uneven porosity 

distributions. Power law changes the material characteristics of FGPBs with 

uniform and uneven porosity distributions along length and thickness. In 

order to determine the maximum transverse deflections, axial stresses, 

transverse shear stresses, and normal stresses in simply-supported and 

clamped-clamped beams, numerical calculations are performed with various 

gradation exponents, aspect ratios (L/h), and porosity levels (both even and 

uneven). The obtained results are compared with earlier investigations and 

justified. 

Keywords: Kuhn-Tucker conditions; Third order shear deformation theory; Functionally graded porous 

beam. 

1. Introduction 

Microstructure affects material behavior. Materials engineers modify microstructure via processing. Traditional 

processing studies might optimize microstructural properties for uniformity. Same-microstructure improves 

characteristics. Functionally graded materials (FGMs) [1] are unique materials with varied microstructures and 

features that increase performance and dependability in a certain application or boundary conditions. Microstructure 

is a position-dependent variable [2], therefore it may mix materials in one section. FGMs are purpose-built 

microstructural materials systems. FGM interlayers steadily modify ceramic and metal proportions. Aerospace, 

marine, and civil engineers employ porous material [3], [4]. These compounds alter porousness steadily as you go 

through them. Porous foundation material has holes in various places. Pore size and number affect porosity [5]. 
Static and moving load responses of FGM structures are essential in structural design. Theories [6] anticipate FGM 

constructions' mechanical load responses. The two-layer shear deformation hypothesis of Nguyen et al. [7] explains 

beam bending. Wattanasakulpong [8] investigated porous beam linear and nonlinear vibration using classical beam 

theory (CBT). CBT only works for thin beams because it ignores shear deformation. The First Order Beam Theory 

(FBT) [9] accounts for shear deformation in medium-thick beams because of its importance. Chen et al. [10] analyzed 

porous beams for static, buckling, and vibration [11]. Wu et al. [12] examined beam structural dynamics. Gao et al. 
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[13] used FBT to calculate beam frequencies computationally. Noori et al. [14] examined beam frequency changes. 

They used FBT and complementing functionalities. Lei et al. [15] studied FG beam dynamics. Magnucka [16] modified 

Timoshenko beam theory (TBT) to analyze sandwiched beams for dynamic and static stability. 

Higher-order beam theories (HBT) [17, 18] may solve FGP beam problems. Wattanasakulpong et al. [19] calculated 

porous beam free vibrations using third-order beam theory and Chebyshev collocation. Beams placed on foundations 

were analyzed using the novel polynomial [20], trigonometric [21], and exponential shear functions [22]. Polit et al. 

[23] created an HBT to calculate curved beam stability and bending. HBTs don't need shear correction factors since 

they employ shear shape functions. Shear shape functions affect HBT accuracy. Researchers created more than shear 

shape functions. They revised theories to reduce unknowns. Shimpi [24] divided displacement fields into shear and 

bending components to better analyze isotropic plates. Akbaş [25] offered FEM for beam stability and natural 

frequencies analysis. Anirudh et al. [26] employed a FEM to analyze variations in a curved beam. Fang et al. [27] used 

iso-geometric analysis for static and vibration analysis. Ebrahimi [28] employed the differential transform approach 
to analyze rotating beam vibration, whereas [29] used the Transfer Matrix Method to study porous beam vibration. 

Zhao et al. [30] studied deep-curved beam vibration using modified Fourier series. Jamshidi [31] used the Ritz approach 

to investigate how FG beams vibrate and fail to design them. 

Earlier studies have mostly examined the bending characteristics of bi-directional functionally graded porous 

beams. The novelty of the present study incites a mathematical approach in adapting the Kuhn-Tucker (KT) conditions 

solution approach and R-program to assess the significance of the elastostatic behavior of a two directional 

functionally graded porous beams (FGPB) and solve equilibrium equations under specified boundary conditions and 

material distributions. 

This is apparent based on the utilization of deformation theories in the aforementioned debates. The significance 

of thickness is crucial, especially in the context of two-dimensional functionally graded porous beams. Therefore, it 

is essential to investigate the shear and normal deformation theory in conjunction with different boundary conditions, 
aspect ratios, and gradation exponents. The utilization of the higher order shear deformation theory (HSDT) has been 

found to yield precise outcomes in the field of structural analysis. Therefore, the HSDT with a third-order accuracy is 

employed to analyze the bending characteristics of a FGPB under prescribed boundary conditions adapting KT 

conditions with R- program. Numerical calculations are conducted to ascertain the maximum transverse deflections, 

axial stresses, transverse shear stresses, and normal stresses for different gradation exponents, aspect ratios (L/h), and 

porosity levels (both even and uneven) in simply-supported (SS) and clamped-clamped (CC) beams. 

2. Nomenclature 

2D-FGB Two directional functionally graded beam 

CBT  Classical beam theory 

CC  Clamped clamped 

FBT  First order beam theory 

FGM Functionally graded materials 

FGPB Two directional functionally graded porous beam 

HBT  Higher order beam theory 

HSDT Higher order shear deformation theory 

SS  Simply supported 

TBT  Timoshenko beam theory 

UDL  Uniformly distributed load 

3. Formulation and mathematics 

3.1. Formulation of functionally graded porous beam 

In the light of HSDT, a beam is modelled as a slender structural element exhibiting bending and shear behaviour. 

The beam is assumed to be straight and uniform along its length, with small deformations and linearized equations. 

Warping effects, involving twisting of the cross-section, are disregarded, and the assumption is made that the initially 

plane cross-sections remain plane after deformation. Material properties are considered to be constant throughout the 

beam, simplifying calculations and analytical solutions. The coordinate system utilized for FGPB in the current study 

is depicted in Figure 1. The material properties exhibit continuous variation along the length and thickness directions. 

A FGPB is modelled through the gradation of ceramic and metallic phases along the direction of thickness. The bottom 

portion of beam located at z = -h/2 is composed of ceramic, while the upper portion at z = +h/2 is comprised of metal. 

The volume percentage of the component materials determines the material characteristics of FGPB. 
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Fig 1: Beam that is functionally graded, with even and uneven porosity 

It is to be anticipated that there will be a relationship, both functional and structural, among the thickness and the 

material's properties. As demonstrated in Eq. 1, the power law distribution in x and z could be utilized to accurately 

express the volume fraction of one constituent as (Vf1) [32]. 

𝑉𝑓(𝑥, 𝑧) = (
𝑧

ℎ
+

1

2
)
𝑃𝑧
(
𝑥

𝐿
+

1
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)
𝑃𝑥

         (1a) 

Vf1(x, z) + Vf2(x, z) = 1         (1b) 

In this context, 𝑃𝑥 and 𝑃𝑧 are the gradient indices which describe the volume fraction over the whole course of the 

length as well as the thickness of the beam, respectively. It is then possible to express the functional characteristics of 

the material (𝑃) of evenly distributed FGPB as [33], 

𝑃(𝑥, 𝑧) = (𝑃𝑐 − 𝑃𝑚) (
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where 𝛼 denotes the porosity coefficient (0 ≤ 𝛼 ≤ 1), m represents the presence of metal, whereas c denotes the 

presence of ceramic. As per the previously mentioned correlation, the Modulus of Elasticity (𝐸) is utilized for the 

evaluation of material rigidity as well as the moment of inertia in an evenly distributed FGPB, and can be 

mathematically represented as stated in Eq. (2b). 
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Although there is a marginal variation when using Poisson's ratio contrasted to various properties, this is deemed 

to be unchanged as calculations are carried out employing the mean value. Similarly, one may determine the effective 

characteristics of the component with distributed but even FGPB using the Eq. (2c). 
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𝐸 for unevenly distributed FGPB could be approximated through the use of Eq. (2d). 

𝐸(𝑥, 𝑧) = (𝐸𝑐 −𝐸𝑚) (
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Static and dynamic structures require well-designed FG beams and plates. This reduces production costs. The 

buckling, bending, and vibration evaluation of FGM structures designed using traditional beam and plate theories 

usually overestimates structural deflections, critical loads, critical buckling and natural frequencies. Standard beam 

and plate theories determine critical loads and natural frequencies. Thus, shear deformation FG beam theories should 
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be used to increase forecast accuracy. The Cartesian coordinate system of the FGPB starts at the neutral beam axis 

while the beam's thickness limits the deformations and extension, bending, buckling and shear cause x-direction 

displacements. Porosity affects the transverse shear as well as the normal strain. The displacement field that satisfies 

the postulates of the beam are based on the constitutive equations, Eqs. (3a), and (3b) [33, 34]. 

𝑈(𝑥, 𝑧) = 𝑢0(𝑥) + 𝑧∅(𝑥) − 𝑓(𝑧) (∅(𝑥) +
𝜕𝑤0

𝜕𝑥
(𝑥))                           (3a) 

𝑊(𝑥, 𝑧) = 𝑤0(𝑥)                     (3b) 

where axial as well as transverse displacements are represented by 𝑈 and 𝑊 respectively. At any given position along 

the neutral axis, 𝑢0 and 𝑤0  represent the axial as well as transverse displacements, respectively. The bending slope is 

denoted by 
𝜕𝑤0

𝜕𝑥
, and ∅ the shear slope. The transverse shear deformation may be determined by utilizing the shape 

function 𝑓(𝑧), and the mathematical equations describing the non-zero strains could be obtained by using Eqs. (4a) 

and (4b), respectively, as, 

𝜀𝑥 =
𝜕𝑈
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=
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− 𝑧
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)         (4a) 

𝑊(𝑥, 𝑧) = 𝑤0(𝑥)                      (3b) 

where axial as well as transverse displacements are represented by 𝑈 and 𝑊 respectively. At any given position along 

the neutral axis, 𝑢0 and 𝑤0  represent the axial as well as transverse displacements, respectively. The bending slope is 

denoted by 
𝜕𝑤0

𝜕𝑥
, and ∅ the shear slope. The transverse shear deformation may be determined by utilizing the shape 

function 𝑓(𝑧) [34], and the mathematical equations describing the non-zero strains could be obtained by using Eqs. 

(4a) and (4b), respectively, as, 

𝜀𝑥 =
𝜕𝑈

𝜕𝑥
=

𝜕𝑢0

𝜕𝑥
− 𝑧
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𝛾𝑥𝑧 = 𝑓
′ [∅(𝑥) +

𝜕𝑤0

𝜕𝑥
]                       (4b) 

𝑓(𝑧) =
4𝑧3

3ℎ2
           (5) 

In accordance with Hooke's Law and with the assistance of Eqs. (4a), and (4b), the following field equations 

representing stress could be derived: 

𝜎𝑥 = 𝐸(𝑥)𝜀𝑥           (6a) 

𝜏𝑥𝑧 =
𝐸(𝑥)

2(1+𝜇)
𝛾𝑥𝑧                    (6b) 

3.2. Governing equations 

The governing equations can be deduced by beginning with the principle of virtual displacements. The principle 

that actual work can be performed result in, 

∫ (𝛿𝑈 + 𝛿𝑉)
𝑡

0
𝑑𝑡 = 0          (7) 

where, t is time, 𝛿𝑈, 𝛿𝑉, are variations in strain energy, and variation of work done, respectively. Variation in strain 

energy in a FGPB is shown in Eq. (8). 
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𝛿𝑉 = −∫ 𝑞𝛿𝑤0 𝑑𝑥
𝐿

0
          (9) 

The beam's bending stress in regards of virtual strain energy as work energy can be demonstrated by, 

𝐵 = 𝛿𝑈 + 𝛿𝑉 = 0          (10) 
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𝛿𝑢0 = 
𝜕

𝜕𝑥
𝑁𝑥 = 0          (16a) 

𝛿𝑤0 = 
𝜕2

𝜕𝑥2
𝑀𝑏 −

𝜕2

𝜕𝑥2
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𝜕

𝜕𝑥
𝑄𝑥𝑧 = 0       (16b) 

𝛿∅ =
𝜕

𝜕𝑥
𝑀𝑠 + 𝑄𝑥𝑧 = 0          (16c) 

3.3. Kuhn – Tucker conditions 

Assume that 𝑓𝑘(𝑥)  (𝑘 = 0, 1, 2, … . . 𝑚)  are all differentiable if the function 𝑓0(𝑥)  attains at point 𝑥0  a local 

minimum subject to the set 𝐾 = {
𝑥

𝑓𝑖(𝑥)
≤ 0(𝑖 = 1, 2, 3, …… .𝑚)} then there exist a vector of Lagrange multiplier 𝑈0 

such that the following conditions are satisfied. 

𝜕𝑓0(𝑥
0)

𝜕𝑥𝑗
+ ∑𝑈𝑖

0  
𝜕𝑓0(𝑥

0)

𝜕𝑥𝑗
= 0

𝑚

𝑖=1

 (𝑗 = 1, 2, 3, …… , 𝑛) 

𝑓𝑖(𝑥
0) ≤ 0 (𝑖 = 1, 2, 3, … .𝑚) 

𝑢𝑖
0𝑓𝑖(𝑥

0) = 0 (𝑖 = 1, 2, 3, … . ,𝑚) 

𝑢𝑖
0  ≥ 0 (𝑖 = 1, 2, 3, … .𝑚) 

These conditions are necessary conditions for a local minimum of problems, for maximization problems, the non-

negativity condition 𝑈0 ≤ 0, are called the KT condition. 

𝐿(𝑥, 𝑦, 𝑢) =  𝑓0(𝑥) +∑𝑢𝑖(𝑓𝑖(𝑥) + 𝑦𝑖
2)

𝑚

𝑖=1
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The necessary condition for its local minimum are, 

𝜕𝐿

𝜕𝑥𝑗
= 
𝜕𝑓0(𝑥

0)

𝜕𝑥𝑗
+∑𝑢𝑖

0
𝜕[𝑓𝑖(𝑥

0) + (𝑦𝑖
0)2]

𝜕𝑥𝑗

𝑚

𝑖=1

= 0 

𝜕𝐿

𝜕𝑦𝑖
= 2𝑢𝑖

0𝑦𝑖
0 = 0  (𝑗 = 1, 2, 3,… . 𝑛) 

𝜕𝐿

𝜕𝑢𝑖
= 𝑓𝑖(𝑥

0) + (𝑦𝑖
0)2 = 0  (𝑖 = 1, 2, 3,…𝑚) 

𝜕𝑓0[𝑥
0(𝑏)]

𝜕𝑏𝑖
= −𝑢𝑖

0  (𝑖 = 1, 2, 3,… .𝑚) 

Without slack variables, the mathematical problem, 

𝐿(𝑥, 𝑢) = 𝑓0(𝑥) +∑ 𝑢𝑖𝑓𝑖(𝑥)
𝑚

𝑖=1
 

 

Fig 2: Kuhn Tucker condition 

The KT condition can be rewritten as, 

𝜕𝐿(𝑥0, 𝑢0)

𝜕𝑥𝑗
= 0 (𝑗 = 1, 2, 3,… . . 𝑛) 

𝜕𝐿(𝑥0, 𝑢0)

𝜕𝑢𝑖
≤ 0 (𝑖 = 1, 2, 3,… . .𝑚) 

𝑢𝑖
0  
𝜕𝐿(𝑥0, 𝑢0)

𝜕𝑢𝑖
= 0 (𝑖 = 1, 2, 3, … . .𝑚) 

𝑢𝑖
0 ≥ 0 (𝑖 = 1, 2, 3, …𝑚) 
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If the multiplier 𝑢𝑖 is positive, then the corresponding ith constraint is binding (boundary solution). When the 

function 𝑢0(𝑥, 𝑦), 𝑤0(𝑥, 𝑦), and ∅0(𝑥, 𝑦) are expressed as generalized co-ordinates, it can be represented as Lagrange 

equations. KT condition can be written as follows: 

𝑢0(𝑥, 𝑦) = ∑ 𝑓𝑖(𝑥
0)𝜃𝑖𝑒

𝑖𝜆𝑦𝑚
𝑖=1                    (17) 

𝑤0(𝑥, 𝑦) = ∑ 𝑓𝑖(𝑥
0)𝜑𝑖𝑒

𝑖𝜆𝑦𝑚
𝑖=1                  (18) 

∅0(𝑥, 𝑦) = ∑ 𝑓𝑖(𝑥
0)𝜓𝑖𝑒

𝑖𝜆𝑦𝑚
𝑖=1                    (19) 

where, 𝜃𝑖, 𝜑𝑖, and 𝜓𝑖are the three different boundary conditions and 𝜆 is the scalar. 

3.4. R-programming for KT conditions 

R-programming in KT conditions can greatly enhance the efficiency and versatility of solving constrained 

optimization problems. KT conditions are a set of necessary conditions for the solution of nonlinear optimization 

problems with constraints. By integrating R programming into the analysis of KT conditions, one can take advantage 

of R's robust mathematical libraries and data manipulation capabilities. Incorporating R-program into the process 

allows for the efficient computation of gradients, Hessians, and constraint functions, which are crucial components of 

KT conditions. R's extensive package ecosystem, including 'optim', 'nloptr', and 'quadprog', can be leveraged to find 

numerical solutions to optimization problems while adhering to KT conditions. Furthermore, R's data visualization 

capabilities enable the effective representation of optimization results, aiding in the interpretation and decision-making 

process. By writing R scripts to handle KT conditions, practitioners gain a flexible and customizable approach to 

solving complex optimization problems with constraints. This integration not only streamlines the analysis but also 

provides a platform for rigorous sensitivity analysis and model validation, ensuring the reliability and accuracy of 

optimization solutions in various real-world applications. The inclusion of R-programming in KT conditions opens 

up a powerful avenue for tackling constrained optimization challenges efficiently and effectively. 

for (i in 1:n) 

{ 

  A.mat[i,i]   <- 1         # coefficint for l_{t-1} 

  A.mat[i,i+1] <- -1        # coefficint for l_[1] 

  A.mat[i,n + 1 + i] <- 1   # coefficint for q_[1] 

} 

for(i in (n+1):(2*n)) 

{ 

  A.mat[i,i+1] <- 1              

  A.mat[i,n + 1 + i] <- - Kuhn-Tucker    

} 

  A.mat[nrow(A.mat)-1,1] <- 1    # coefficint for i_[1] 

  A.mat[nrow(A.mat),n+1] <- 1    # coefficint for i_[1] 

  A.mat 

  sol <- Rglpk_solve_LP(obj = c.vec, mat = A.mat, dir = const.vec, rhs = b.vec, types = vtype.vec) 

  list( l = sol$solution[1:(n+1)],         # inventory levels 

        q = sol$solution[(n+2):(2*n+1)],   # order quantities 

        y = tail(sol$solution, n),         # order indicators 

        d = d.vec )                        # demand 

R-programming for KT conditions is utilized for mathematical calculations, as stated in Table 1. 

Table 1. The boundary conditions based on the R- programming adapting KT conditions 

Demand 𝑥 = 0 𝑥 = 𝐿 

SS = q 𝑢 = 0, 𝑤 = 0 𝑤 = 0 

CC = y 𝑢 = 0, 𝑤 = 0, ∅ = 0, 𝑤′ = 0 𝑢 = 0, 𝑤 = 0, ∅ = 0, 𝑤′ = 0 

CF = d 𝑢 = 0, 𝑤 = 0, ∅ = 0, 𝑤′ = 0 -- 

From Table 1, the following conditions are framed: 
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𝜕2𝜋

𝜕𝑀𝑗
2 = 0, 

𝜕2𝜋

𝜕𝑁𝑗
2 = 0, 

𝜕2𝜋

𝜕𝑃𝑗
2 = 0                     (20) 

{[
𝐹11 𝐹12 𝐹13
𝐹21 𝐹22 𝐹23
𝐹31 𝐹32 𝐹33

] − 𝜆2 [
0 0 0
0 𝑅22 0
0 0 0

]} [
𝑀
𝑁
𝑃
] = [

0
0
0
] 

{[
𝐹11 𝐹12 𝐹13
𝐹21 𝐹22 𝐹23
𝐹31 𝐹32 𝐹33

] − [
0 0 0
0 𝜆2𝑅22 0
0 0 0

]} [
𝑀
𝑁
𝑃
] = [

0
0
0
] 

𝐹11(𝑖, 𝑗) = 𝑀∫ 𝑒𝜆𝑥(𝑥+1)
𝐿

0

𝜃𝑖,𝑥 , 𝜃𝑗,𝑥𝑑𝑥 

𝐹12(𝑖, 𝑗) = 𝐹21(𝑖, 𝑗) = 𝑃∫ 𝑒𝜆𝑥(𝑥+1)
𝐿

0

𝜃𝑖,𝑥 , 𝜃𝑗,𝑥𝑑𝑥 

𝐹13(𝑖, 𝑗) = 𝐹31(𝑖, 𝑗) = (𝑁 − 𝛼𝑀)∫ 𝑒𝜆(𝑥+1)
𝐿

0

𝜃𝑖,𝑥 , 𝜑𝑖,𝑥𝑑𝑥 

𝐹22(𝑖, 𝑗) = 𝛼
2[𝐹12(𝑖, 𝑗)][𝐹13(𝑖, 𝑗)] 

𝐹23(𝑖, 𝑗) = 𝐹32(𝑖, 𝑗) = (𝛽
2 − 𝛼𝐹)[𝐹22(𝑖, 𝑗)] 

𝐹33(𝑖, 𝑗) = 𝜆
2𝑅22∫ 𝑒𝜆𝑥(𝑥+1)

𝐿

0

𝜃𝑖 , 𝜃𝑖𝑑𝑥 

𝑅11 = 𝑅12 = 𝑅13 = 𝑅21 = 𝑅23 = 𝑅31 = 𝑅32 = 𝑅33 = 0 

𝑅22(𝑖, 𝑗) = (𝛼
2𝑀 −𝛽𝑁)[𝐹33(𝑖, 𝑗)] 

where, 𝑖, 𝑗 = 1, 2, 3, ……𝑛 

4. Numerical computation and discussion 

The proposed methodology can be assessed by employing a specific case study. This analysis encompasses the 

influence of gradient indexes, aspect ratio, and porosity index, specifically the composition of materials, on the 

bending characteristics of FGPB. The physical properties of the material [35] of the FGPB in the current study are as 

follows: 

Alumina: Ec = 380 GPa, μc = 0.3 

Aluminium: Em= 70 GPa, μm = 0.3 

Non-dimensional maximum transverse deflection (𝑤) for SS and CC beams could be estimated using Eq. (21) and 

Eq. (22) for CF beam. 

𝑤 =
100𝐸𝑚ℎ

3

𝑞0𝐿
𝑤(𝑥, 0)          (21a) 

𝑤 =
100𝐸𝑚ℎ

3

𝑞0𝐿
𝑤(𝐿, 0)          (21b) 

The axial stress (𝜎𝑥) could be estimated using Eq. (23). 

𝜎𝑥 =
𝜎𝑥ℎ

𝑞0𝐿
           (22) 
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The transverse shear stress (𝜏𝑥𝑧) could be estimated using Eq. (23). 

𝜏𝑥𝑧 =
𝜏𝑥𝑧ℎ

𝑞0𝐿
           (23) 

The normal shear stress (𝜎𝑥𝑧) could be estimated using Eq. (24). 

𝜎𝑥𝑧 =
𝜎𝑥𝑧ℎ

𝑞0𝐿
           (24) 

Numerical results may be obtained using various gradation exponents in both directions (x and z), aspect ratios, 

and boundary conditions. A uniformly distributed load (UDL) is imparted to test the FGPB and the obtained results 

on transverse deflection, axial stress, shear stress, and normal stress are compared with earlier investigations [36, 37] 

and presented in Table 2. 

Table 2. Validation of HSDT with SS boundary condition 

Function Method P = 0 P = 1 P = 2 P = 5 P = 10 

Transverse deflection L/h = 5 

[36] 3.1654 6.2594 8.0677 9.8281 10.9381 

[37] 3.1654 6.259 8.0668 9.8271 10.9375 

Present 3.1539 6.3171 8.123 9.6832 10.7834 

L/h = 20 

[36] 2.8962 5.8049 7.4421 8.8182 9.6905 

[37] 2.8963 5.8045 7.4412 8.8173 9.6899 

Present 2.9231 5.8123 7.5347 8.8233 9.6231 

Axial stress L/h=5 

[36] 3.802 5.8836 6.8826 8.1106 9.7122 

[37] 3.804 5.887 6.886 8.115 9.717 

Present 3.8122 5.7882 6.7822 8.2112 9.7102 

L/h=20 

[36] 15.0129 23.2053 27.0991 31.813 38.1385 

[37] 15.02 23.22 27.11 31.83 38.16 

Present 15.0132 23.1832 27.1023 31.7812 38.1251 

Transverse shear stress L/h=5 

[36] 0.7332 0.7332 0.6706 0.5905 0.6467 

[37] 0.7335 0.7335 0.67 0.5907 0.6477 

Present 0.7324 0.7423 0.7021 0.6109 0.6322 

L/h=20 

[36] 0.7451 0.7451 0.6824 0.6023 0.6596 

[37] 0.747 0.747 0.6777 0.6039 0.6682 

Present 0.7581 0.7442 0.6811 0.6102 0.6587 

Normal shear stress L/h=5 

[36] 0.1352 0.0672 0.0927 0.0182 -0.0179 

[37] 0.1352 0.0671 0.0925 0.0182 -0.018 

Present 0.1432 0.0702 0.0899 0.0201 -0.0212 

L/h=20 
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[36] 0.0338 -0.5874 -0.6261 -1.169 -1.556 

[37] 0.0338 -0.588 -0.6226 -1.176 -1.5589 

Present 0.0381 -0.5992 -0.6132 -1.2012 -1.4997 

4.1. Transverse deflection of a FGPB as a function of porosity and gradient exponents 

FGPB under UDL is analyzed at aspect ratio and gradation exponents to evaluate how porosity (even and uneven) 

affects transverse deflection. Aspect ratio reduces dimensionless transverse deflections. Uneven porosity in FGPB 

may modify stress distribution considerably as seen in Fig. 3. 

As shown in Fig. 3, transverse deflections increases in two directions with increasing porosity index. Uneven 

porosity in the beam distributes voids unevenly which causes material stiffness to vary, causing various beam regions 

to deflect differently under load. Porosity affects deflection in which, the FGPB with even porosity might have a 

steeper material property gradient over its thickness with a greater gradation exponent. Stiffening the material reduces 

the transverse deflection under the same force while the volume proportion and size of the voids and the material 

qualities at the end of beam presents the effect of gradation exponent on transverse deflection [35]. Gradation exponent 

affects transverse deflection more complexly in SS beams with unequal porosity in which, at the places with significant 

porosity, a larger gradation exponent might enhance material property fluctuation and deflection [36]. A greater 

gradation exponent may also stiffen the material in low-porosity parts, offsetting the increased deflection in high-

porosity regions. The gradation exponent's influence on transverse deflection in a beam with unequal porosity relies 

on its distribution and variance. Porosity effects the transverse deflection, wherein, the amount of bending 

perpendicular to the beam's length when a load is applied, in CC beams. 

 

 

(a) 
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Fig 3: Comparison of transverse deflections of SS beam having (a) even and (b) uneven porosity, and gradient index 

Fig. 4 illustrates that equal porosity in the beam distributes voids evenly which reduces the material stiffness. The 

CC boundary condition further requires a beam node positioned at the center. Voids reduces the uniformity of the 

material, hence reducing the beam's ability to support this specific location, resulting in an increase in deflection [35] 

[37]. A greater gradation exponent may increase material property gradients along the beam with even porosity. This 

may stiffen the material and minimize transverse deflection under stress. A steeper gradient of material qualities makes 

the beam's material more uniform, making it simpler to retain the CC boundary conditions' nodal point near the center. 

 

 

 

(b) 

(a) 

(b) 
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Fig 4: Comparison of transverse deflections of CC beam having (a) even and (b) uneven porosity, and gradient index 

4.2. Axial stress of a FGPB as a function of porosity and gradient exponents 

Porosity affects mechanical parameters like Young's modulus and Poisson's ratio in SS beams with even porosity. 

As can be seen from Fig. 5, more porosity may reduce stiffness and increase deformation under axial load, increasing 

beam axial stress. This may cause non-uniform beam deformation and stress distribution, with lower porosity parts 

having greater stress and higher porosity areas having lower stress. The gradient index affects axial stress based on 

material porosity and beam loading circumstances. A larger gradient index may provide a sharper material property 

gradient through the thickness of an SS beam with even porosity. This may make the material stiffer and less 

deformable under axial loading, lowering axial stress. Nevertheless, larger porosity may weaken the material and 

make it more deformable under axial loading, increasing axial stress. Gradient index affects axial stress differently in 

SS beams with unequal porosity. Porosity distribution may impact material characteristics throughout the beam's 

thickness, affecting its capacity to withstand deformation under axial stress. A steeper gradient of material 

characteristics in locations with reduced porosity might enhance stiffness and reduce axial loading deformation. 

Nevertheless, regions with larger porosity may be weaker and more prone to deformation under axial loading, 

increasing axial stress. 

 

 

 

 

Fig 5: Comparison of axial stress of SS beam having (a) even and (b) uneven porosity, and gradient index 

As demonstrated in Fig. 6, a CC beam with unequal porosity may vary in stiffness and deformation throughout its 

thickness. Low-porosity regions are stiffer and less deformable, lowering axial stress. Higher porosity weakens and 

deforms the material, increasing axial stress. Gradation exponents affect the material's characteristics over a CC beam's 

thickness, affecting axial stress. In a CC beam with uniform porosity, gradation exponents may affect material stiffness 

and deformation throughout the beam thickness. Stiffness and deformation vary more with a larger gradation exponent 

because material qualities change faster with thickness. This may balance out beam stresses, lowering axial stress. 

(a) 

(b) 
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Nevertheless, a smaller gradation exponent will result in a more gradual change in material characteristics throughout 

the beam thickness, which might cause uneven stress distribution and greater axial stress. Gradation exponents may 

complicate axial stress in CC beams with unequal porosity. 

 

 

 

 

Fig 6: Comparison of axial stress of CC beam having (a) even and (b) uneven porosity, and gradient index 

4.3. Shear stress of a FGPB as a function of porosity and gradient exponents 

Fig. 7 shows SS beam porosity and gradient index effects. Shear stress will be generally consistent throughout the 

beam if porosity is even. Nevertheless, variable porosity will change shear stress. Shear stress is greatest in the least 

porous regions of a beam and lowest in the most porous. The least porous sections of the beam are stiffer and resist 

deformation better, resulting in larger shear stresses. The most porous portions of the beam will deform more and have 

lower shear stresses. 

(a) 

(b) 
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Fig 7: Comparison of shear stress of SS beam having (a) even and (b) uneven porosity, and gradient index 

Fig. 8 shows CC beam porosity and gradient index effects. Shear stress is greatest near the middle of a CC beam 

and lowest at the clamped ends. Shear stress will be generally consistent throughout the beam if porosity is even. 

Shear stress will change if porosity varies along the beam. Shear stress is greatest in the least porous regions of a CC 

beam with variable porosity and lowest in the most porous. The least porous sections of the beam are stiffer and resist 

deformation better, resulting in larger shear stresses. The most porous portions of the beam will deform more and have 

lower shear stresses. Gradation exponents affect shear stress more in CC beams. A higher gradation exponent causes 

a greater difference in material characteristics along the beam, which may generate more deformation and shear 

stresses. The beam's lowest gradation exponent will have lower shear stresses. Porosity, gradation exponent, and 

material characteristics all impact shear stress. A greater gradation exponent, higher porosity, and lower stiffness 

might increase shear stress in the beam, particularly near the center. Bending moment also affects shear stress in CC 

beams. External weights or beam curvature create bending moments. 

(a) 

(b) 
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Fig 8: Comparison of shear stress of CC beam having (a) even and (b) uneven porosity, and gradient index 

4.4. Normal stress of a FGPB as a function of porosity and gradient exponents 

As demonstrated in Fig. 9, an SS beam with a greater gradation exponent changes material characteristics more 

quickly throughout its thickness. The bending moment, which depends on the applied load and material stiffness, 

determines SS beam normal stress. In a FGPB, material qualities may impact stiffness and normal stress. Higher 

gradation exponents increase beam normal stress, making the beam stiffer. A stiffer beam resists load deformation, 

increasing normal stress. Porosity complicates the influence of gradation exponent on normal stress. Void material 

reduces the effective cross-sectional area available to withstand deformation, decreasing beam stiffness. Increased 

porosity index lowers beam normal stress. The beam loses stiffness and deformability, lowering normal stress. 

Porosity lowers stiffness, while the surrounding material's greater stiffness compensates, resulting in a more 

complicated normal stress distribution. 

 

(a) 

(b) 

(a) 
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Fig 9: Comparison of normal stress of SS beam having (a) even and (b) uneven porosity, and gradient index 

Fig. 10 shows the considerable influence of porosity on normal stress in a CC beam with uniform and uneven 

porosity. Higher porosity indexes reduce beam normal stress. Because material gaps or pores weaken the beam. A CC 

beam with unequal porosity may have sections with greater porosity index. Gradation exponents may significantly 

affect normal stress in CC beams with unequal porosity. Higher gradation exponents increase beam normal stress. 

Since a larger gradation exponent accelerates material property changes over the beam's thickness and length, stiffness 

and strength vary more. 

 

 

 

Fig 10: Comparison of normal stress of CC beam having (a) even and (b) uneven porosity, and gradient index 

(b) 

(a) 

(b) 
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5. Conclusion 

HSDT is utilized to conduct an analysis of the elastostatic behavior of FGPB that has been subjected to varied 

boundary conditions and a uniform load using a rigorous formulation. Transverse deflections, axial, shear, and normal 

stresses are estimated. The accuracy of the new approach is evaluated by analyzing a FGPB with simple support and 

the obtained results are compared with those of previous research. Consideration is given to three distinct border 

conditions: SS, CC, and CF. these conditions feature distinct gradation exponents in the length and thickness 

directions, as well as various aspect ratios. It has been determined that the HSDT method produces satisfactory 

outcomes. Noteworthy findings of the analysis are listed below: 

• At Px = 0.1 and Pz = 0.1, the transverse deflection for CF beam is found to be 20.007. While at Px = 0.5 and Pz = 

0.5, it is 15.512. Similarly for CC and SS beams, the transverse deflection at the same conditions were found to be 

7.545, 3.807, 7.132, and 3.125. The CF beam typically exhibits the most significant effect, followed by the CC 

and SS beams.  

• In a SS beam, increasing the gradient index results in a decrease in axial stress near the supports and an increase 

in axial stress at the center of the beam. In a CC beam, increasing the gradient index results in a decrease in axial 

stress at the center of the beam and an increase in axial stress near the clamped ends. 

• Increasing the gradient index has a decreasing effect on the shear stress in a SS beam. In a CC beam, the effect of 

gradient index on shear stress is dependent on the distribution of the porosity. For even porosity, increasing the 

gradient index leads to a decrease in shear stress, while for uneven porosity, increasing the gradient index leads to 
an increase in shear stress. 

• The effect of gradient index on normal stress is more pronounced in the middle region of SS, and CC beams, where 

the bending moment is maximum. In this region, a higher gradient index leads to a more uniform stress distribution 

and a lower stress concentration, which reduces the maximum normal stress in the beam. 
Even or unequal porosity affects FGPB stress distribution. Even porosity decreases material strength and may 

generate stress concentrations in locations with greater porosity, although the impact on stress distribution is 

insignificant for typical stress. Uneven porosity, on the other hand, might cause stress concentrations in unexpected 

areas. Due to the averaging effect across a broader region, FGPB porosity has no influence on normal stress. 
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