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INTRODUCTION 

Pure and uncontaminated water is an indispensable resource for supporting life on Earth. 
However, as the global industrialization continues to accelerate, the quality of natural water 
resources is unprecedentedly deteriorating due to the rising levels of pollutants. A diverse 
array of contaminants, both synthetic and natural, have entered the surface and ground water, 
posing imminent risk to the human health and natural environment. The worldwide scientific 
communities recognize heavy metals as contaminants of principal concern on account of their 
elongated environmental persistence and substantial toxicity. Several studies indicate that heavy 
metals like Zn, Cr, Pb, Ni, Cu, and Cd are primarily present in different water bodies across the 
world (Banerjee et al., 2016). Various industrial, agricultural, and domestic operations allow 
these metals to infiltrate water bodies, where they eventually contaminate them. 

Due to its ubiquitous prevalence and adverse health impacts, lead, a well-known heavy 
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Cedrus deodara is a coniferous tree native to Himalayan region. Its wood is a valuable resource 
for the timber industry; however, its bark is typically discarded as a waste material. The present 
study examines the performance of Cedrus deodara bark powder (CD) as an inexpensive 
adsorbent for elimination of Pb (II) ions. In addition to this multiple linear regression (MLR) and 
artificial neural network (ANN) models were developed for modelling the adsorption process 
and prediction of Pb (II) removal efficiency. The structural and chemical properties of CD were 
explored using Field Emission Scanning Electron Microscope (FE-SEM), Energy Dispersive 
Spectrometer (EDS), X-Ray Diffractometer (XRD) and Fourier Transform Infrared Spectroscopy 
(FTIR). Batch experiments were conducted to investigate the influence of factors including pH, 
contact time, initial Pb (II) concentration and temperature on Pb (II) adsorption. The adsorption 
followed pseudo-second-order kinetic and Langmuir isotherm models with maximum monolayer 
uptake capacity 77.52 mg/g. Based on the thermodynamic criteria, the process was endothermic 
and spontaneous with enthalpy change (ΔH = 8.08 kJ/mol), free energy change (ΔG = -2.44 kJ/
mol) and entropy change (ΔS = 0.03 kJ/K/mol). Statistical comparison of MLR model (R2 = 
0.817, RMSE = 8.954, MAPE = 17.379 %) and ANN model (R2 = 0.993, RMSE = 1.777, MAPE 
= 2.054 %) confirmed that ANN model was far more accurate in predicting removal efficiency.
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metal contaminant, has received considerable attention. The Agency for Toxic Substances and 
Disease Registry (ATSDR) has ranked lead as a rank 2 contaminant in their Substance Priority 
List 2019 (ATSDR, 2019). According to World Health Organization (WHO), lead is amongst the 
metals of greatest concern due to its potentially toxic nature and tendency to diffuse throughout 
the body, inflicting deleterious health effects. Exposure to lead contamination is known to cause 
serious neurological abnormalities, developmental delays, and cognitive diseases, therefore it 
can cause serious health repercussions, especially for children and pregnant women. 

Due to the profound consequences of heavy metal exposure, a variety of remediation methods 
have been adopted to eliminate these contaminants from water. The frequently employed 
procedures include, membrane separation, chemical precipitation, electrocoagulation, ion 
exchange and adsorption. Although each of these strategies has advantages and disadvantages, 
the adsorption technique has shown to be the most efficient way to remove heavy metals due to 
its cheap cost, adaptability, and high efficiency (Barakat, 2011; Ciesielczyk et al., 2013; Carolin 
et al., 2017). 

Due to environmental and economic factors, biomass from agricultural leftovers such as rice 
husk, wheat husk, gram husk, peanut shell, walnut shell, soybean hulls, cotton stalks, and bark 
from various trees has garnered substantial interest as adsorbents (Sud et al., 2008; Fomina 
& Gadd, 2014; Haydar et al., 2020). Because of its distinctive morphological and chemical 
properties, tree bark, a commonly available waste material generated by forestry and horticulture 
processes, has demonstrated extraordinary adsorption qualities (Vazquez et al., 2002; Liang et 
al., 2014; Sen et al., 2015). It often contains a wide range of chemical components such as 
cellulose, hemicellulose, lignin, and a variety of extractives that vary depending on the species 
of tree. Numerous functional groups, including carboxyl and hydroxyl groups, can be easily 
found in tree bark which may readily bind with metal ions present in water (Liang et al., 2014). 
Cedrus deodara is a cedar tree species native to the Himalayan area, which particularly includes 
India, Pakistan, and Nepal (Jain et al., 2015). It is an evergreen tree noticed for its massive size, 
conical structure and fragrant leaves. Its wood is commonly used in construction, particularly 
for the crafting of doors, windows, and furniture, due to its longevity and resistance to decay 
(Grover, 2021). Since the bark portion is typically discarded by the wood processing industries, 
it may be utilized possibly as a lucrative sorbent for eliminating heavy metal ions.

Computational techniques including Artificial neural networks (ANN) and Multiple linear 
regression (MLR) have recently been employed as exceptionally effective and versatile 
approaches for mathematical modelling of a wide range of processes (Zhang et al., 2017; 
Taoufik et al., 2021). Typically, the basis behind these techniques is to use the experimental 
data to ascertain a functional relationship between the independent operational variables and 
the dependent response variable. Therefore, the objective of the present study is to determine 
the potential of Cedrus deodara tree bark powder for the adsorptive elimination of Pb (II) ions 
and to analyze the effectiveness of MLR and ANN models for modelling the adsorption process 
and prediction of Pb (II) removal efficiency. 

MATERIALS AND METHODS 

Analytical grade consumables utilized in the present investigation were purchased from E. 
Merck, India Ltd. A stock solution containing 1000 ppm Pb (II) was generated by dissolving 
accurately measured 1.60 g of Pb (NO3)2 (99.95% Assay) in 1 litre of acidified double distilled 
water. Cedrus deodara tree bark was procured from Pauri, Uttarakhand, India (30° 8’ 53.6388’’ 
N, 78° 46’ 16.3056’’ E). The acquired bark pieces underwent thorough cleansing with distilled 
water, dried in the sun and then chopped into smaller chunks. These chunks were then fully 
air-dried in hot air oven with temperature set to 110°C. The obtained material was then finely 
grinded to create a powder with 90 – 125 μm sized particles. To prevent unnecessary colour 
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release in aqueous media, the water-soluble tannins and other constituents were eliminated 
by periodically boiling 30 g of bark powder in 250 ml of double-distilled water, followed by 
decanting, until no further colour discharge was noticed (Reddy et al., 2011; Das et al., 2020). 
The final product was then dried out within a hot air furnace at 80°C, then cooled to room 
temperature and stored as the adsorbent Cedrus deodara bark powder (CD) in air tight plastic 
bottles. 

For conducting batch adsorption experiments 1000 ppm standard solution of Pb (II) was 
diluted to prepare solutions having concentrations within the range 10 – 250 ppm. Separate 
measurements of CD were held in conical flasks that carried 200 ml of Pb (II) solutions having 
required concentrations. 0.1M HCl and 0.1M NaOH solutions were added for altering the pH of 
the solutions in each of these flasks. These flasks were subsequently placed in an orbital shaker 
at an appropriate temperature, maintained at 140 rpm speed. Batch tests were performed by 
varying a variety of variables including pH, adsorbent dose, initial Pb (II) concentration, contact 
time and temperature. Finally, the mixtures were made to pass through Whatman filter paper and 
Pb (II) concentration in the filtrate was evaluated using Atomic Absorption Spectrophotometer 
(Analytic Gena, Model AAS 5EA) with hollow cathode lamps at characteristic wavelength of 
217 nm (CWC, 2019). 

Following equations were utilized to compute the removal efficiency (R%) and the uptake 
capacity (Qt) at any given time t (Mittal et al., 2016 a; b): 
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C0 and Ct are the initial and final concentrations of Pb (II) ion measured at time t. The volume 
of solution (l) was denoted by V, while W signified the adsorbent mass (g). The collected data 
was evaluated utilizing suitable kinetic and isotherm models. 

After Pb (II) adsorption, the alterations in surface texture and elemental distribution of CD 
were inspected by FE-SEM (JEOL JSM – 7610F with Smart Au Sputter Coater) (Pradhan et 
al., 2018; Kumar et al., 2019). During the procedure, a focused electron beam with a 30kV 
accelerating voltage and a 200 nA probe current was used. An EDS (Oxford EDS Liquid Nitrogen 
free) detector for backscattered electrons was connected to the apparatus. The functional groups 
across the adsorbent surface were determined using FTIR (Perkin Elmer - Spectrum Two with 
DTGS Detector). The equipment used KBr optics, which had a sensitivity ratio of 32000:1 
and a resolution of 1 cm-1 (Litefti et al., 2019). The X-Ray Diffractometer (Model: Bruker D8 
Advance) was deployed to evaluate the alerations in the crystallographic and micro structural 
characteristics of CD after Pb (II) loading within the region 2θ = 5° to 90° with a scan speed set 
at 10°/ min employing Cu Kα wavelength λ = 1.54 Å (Kumar et al., 2018; 2020). The notable 
peaks observed via XRD analysis were identified and assigned using the program PANalytical 
X’Pert HighScore Plus 3.0. 

The collected experimental data was utilised to generate adequate mathematical models 
for analysing the intricate adsorption process and predicting Pb (II) removal efficiency (R%) 
using multiple linear regression (MLR) and artificial neural network (ANN). The purpose of 
the MLR and ANN models was to examine the mathematical relationship between the response 
variable (R%) and the predictor variables including pH, adsorbent dosage (g), contact time 
(min), initial concentration (mg/l), and temperature (°C). The MLR model was formulated with 
help of software Minitab Version 21.1.0 (Minitab LLC, Chicago, USA). The approach was 
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based on fitting the obtained adsorption data to a linear equation. Following equation was used 
for formulating the model: 

0 1 1 2 2 3 3 ........ n ny x x x xβ β β β β= + + + + +

where y is the response variable and β0 is the y-intercept while β1, β2, β3,…., βn represent 
the coefficients for the predictor variables x1, x2, x3,….., xn respectively. The significance of 
these predictor variables and the overall MLR model in predicting the response variable was 
investigated with help of analysis of variance (ANOVA) results.  

Artificial neural networks (ANNs) are digital representations of the intricate structure 
and functioning of the human nervous system and brain. ANNs can easily comprehend any 
arbitrary mathematical function with great precision and they do not require highly regulated 
experimental setups (Kareem & Pathak, 2016). ANNs usually have layered structure consisting 
of interlinked nodes. The network may be classified as ‘single-layered’ or ‘multi-layered’ based 
upon the number of layers. Single-layered networks have only input and output layers. While 
multi-layered networks have certain number of hidden layers of nodes for further computational 
processing in order to recognise the data patterns and acquire a better comprehension of data 
(Sazli, 2006). In general, the nodes and the inter-connections between them represent the 
biological structure of neurons and the branching dendrites respectively (Hallinan, 2013). Each 
node takes information as input from other nodes present in previous layer, analyses it, and then 
transmits the results to other nodes in subsequent layer. Therefore, the output of a particular 
node depends on the weighted sum of the inputs provided by the nodes in previous layer. 
Consider node j present in the hidden layer connected to the node i of input layer via synaptic 
weight wi,j. If the output at node i is represented by vi, the resultant output value at node j may 
be expressed as follows (Hallinan, 2013): 

,
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n
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=
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This value is further mathematically transformed using a non-linear activation function so 
as to ensure compliance of boundary conditions. This generated output is then fed as input to 
the subsequent layer of nodes. This network architecture thus obtained may then be employed 
to recognize the mathematical dependence of response variable on predictor variables. In order 
to ensure lower rates of error, the network training was accompanied by Levenberg-Marquardt 
algorithm. This involves fine-tuning the synaptic weights at each successive iteration by 
minimizing the sum of square errors between the target values and predicted values of response 
variable (Lee & Choi, 2013; Syahrullah & Sinaga, 2016). The ‘nnstart’ function of the MATLAB 
software version R2018a (MathWorks, Massachusetts, USA) was employed to develop the 
ANN model for this investigation. 

The accuracy and the quality of MLR and ANN models in predicting the adsorptive removal 
(R%) were estimated and compared in terms of coefficient of determination (R2), root mean 
square error (RMSE) and mean absolute percentage error (MAPE) which were computed using 
following equations (Yetilmezsoy & Demirel, 2008; Xie et al., 2022): 
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where n = total number of observations, while yi,obs and yi,pred represent the experimentally 
observed and model predicted values corresponding to ith observation respectively. Similarly 
ymean,obs denotes the mean value of all experimental observations. The accuracy of prediction 
for a particular model may be demonstrated by higher R2 value and lower values of RMSE 
and MAPE (Kulisz et al., 2021). Usually, MAPE value lower than 10% indicates excellent 
predictive accuracy of the model (Xie et al., 2022)

RESULTS AND DISCUSSION 

The FE-SEM micrographs of adsorbent CD before and after loading Pb (II) ions and 
corresponding EDS spectra have been presented in Figure 1. It is evident from figure that the 
surface of CD was uneven and rough surface with irregular and sharp edges. It also revealed 
a number of asymmetrical cavities present throughout the surface. The loading of Pb (II) ions 
partially filled the surface cavities, and the rough, jagged edges were substantially rounded. As 

 
Figure 1: FE-SEM images of CD (a) before and (b) after Pb (II) adsorption; EDS spectra 

of CD (c) before and (d) after Pb (II) adsorption  

  

Fig. 1. FE-SEM images of CD (a) before and (b) after Pb (II) adsorption; EDS spectra of CD (c) before and (d) 
after Pb (II) adsorption
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a result, CD surface became noticeably smoother. On examining the EDS spectra of CD, the 
elemental lines were only observed for carbon and oxygen. Accordingly, CD was comprised 
mainly of carbon (52.13% w/w) and oxygen (47.87% w/w). The EDS spectra of CD after 
Pb (II) adsorption revealed characteristic lines for Pb (Mα), Pb (Lα) and Pb (Lβ) at 2.3, 10.5 
and 12.6 keV respectively (Ijomah & Okoyeh, 1988; Capobianco et al., 2018). Consequently, 
the overall elemental composition of the adsorbent was also altered, with distribution of the 
elements as carbon (52.06% w/w), oxygen (37.77% w/w) and lead (10.17% w/w) respectively. 

Figure 2 (a) displays the FTIR spectra of CD before and after loading of Pb (II) ions. The 
FTIR spectra of CD before Pb (II) adsorption demonstrated distinct peaks at 3309 and 1049 
cm-1 which could be assigned to the O-H stretching (Hwang et al., 2018) and C-O stretching 
(Teshager et al., 2022) frequencies for alcohol respectively. Moreover, the existence of a peak 
at 1266 cm-1 may indicate the C-O stretching frequency for alkyl aryl ethers (Coates, 2000). 
Also, the peaks at 1605 and 1443 cm-1 may be assigned to the conjugated C=C and C=C-C 
bonds in aromatic ring structure, thereby revealing the presence of lignin (Wu et al., 2019). The 
peak at 2949 cm-1 is most likely related to the methyl C-H stretching (Fuks et al., 2006). The 
adsorption of Pb (II) ions induced a change in peak frequencies as well as an overall drop in 
peak intensities. The O-H stretching unveiled a major shift from 3309 to 3296 cm-1 reflecting 
involvement of O-H group in adsorption. The absorptions at 1605 and 1443 cm-1 also displayed 
a shift to lower frequencies 1603 and 1440 cm-1 respectively, revealing a possible interaction of 
π electrons with the metal ions (Wu et al., 2019). Similarly, the peaks at 2949 and 1266 shifted 
to lower frequencies 2945 and 1265 cm-1 respectively. Therefore, the FTIR data suggested 
that the hydroxyl groups of lignin, cellulose, and hemicellulose participated in the adsorption 
process (Politi & Sidiras, 2020). 

The XRD spectra of CD before and after loading of Pb (II) ions has been shown in Figure 2 
(b). Major diffraction peaks for CD were observed at positions 2θ = 14.9°, 17.1°, 22.0°, 24.6°, 
26.7°, 30.2° and 38.3°. The presence of cellulose I may be easily identified by the broad hump 
along the region 2θ = 15° and 25° (Liang et al., 2018; Shooto et al., 2020). Diffraction peaks 
at 2θ = 24.6°, 26.7° and 30.2° may indicate the existence of p- coumaric acid, matching with 
the JCPDS card no. 00-037-1722. Earlier studies confirmed the occurrence of major sterol 
extractives in Cedrus deodara stem bark including stigmasterol and ß- sitosterol (Hafizoğlu 
& Holmbom, 1987). Accordingly, the peaks at 2θ = 26.7° and 30.2° may also be ascribed to 

 

 

 

 Figure 2: (a) FTIR and (b) XRD spectra of CD before and after Pb (II) adsorption. 

  

Fig. 2. (a) FTIR and (b) XRD spectra of CD before and after Pb (II) adsorption.
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ß- sitosterol (JCPDS card no. 00-010-0641). In a similar way, peaks at 2θ = 24.6° and 38.3° 
are attributable to the presence of stigmasterol (JCPDS card no. 00-029-1925). It is noteworthy 
that the peak positions of CD before and after Pb (II) loading were identical, with the exception 
that the peak intensities were considerably lowered. This undoubtedly demonstrates that the 
adsorption process comprised physisorption of Pb (II) over the CD surface (Srivastava et al., 
2017; Gupta & Mondal, 2020). 

Figure 3 illustrates the effect of change in pH and adsorbent dose on equilibrium uptake 
capacity (Qe). For examining the effect of pH, batch tests were performed using 0.1 g of CD 
in 200 ml of Pb (II) solutions having initial concentration 10 ppm and the pH values were 
maintained within the range 2 – 8. It was observed that with rise in pH, the Qe and R% values 
increased gradually, reached a maximum, and then declined marginally as the pH increased 
further. The optimum Pb (II) uptake occurred at pH = 6, with Qe = 14.56 mg/g and R% = 72.8%. 
In order to realize the surface charge over CD, the point of zero charge was determined as 
pHpzc = 5.0, according to the standard methodology described in previous studies (Kumari et 
al., 2015; Rajput et al., 2016). At lower pH the Pb (II) ions compete with H+ ions to bind with 
the available active sites. Additionally, at pH < pHpzc the adsorbent surface acquired an overall 
positive charge, thus repelling Pb (II) ions. However, the surface attained a negative charge at 
pH > pHpzc, luring Pb (II) ions to bind with the active sites. A marginal reduction in the values 
of Qe and R% at pH 7 and 8 may be attributed to formation of lead hydroxide, thereby resulting 
in decreased adsorption (Gundogdu et al., 2009; Chakravarty et al., 2010). 

In order to study the effect of adsorbent dose, batch experiments were carried out separately 
using 0.05 – 0.25 g of CD in 200 ml of 10 ppm Pb (II) solution maintained at optimum pH = 6. 
The adsorption capacity initially increased, attained a maximum value at adsorbent dose 0.1 g, 
then it decreased gradually with further increase in adsorbent dose. The initial rise in Qe with 

 
 
 
 

Figure 3: (a) Effect of pH and (b) adsorbent dose on adsorption of Pb (II) over CD 
  

Fig. 3. (a) Effect of pH and (b) adsorbent dose on adsorption of Pb (II) over CD
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increase in adsorbent dosage might be attributed to an increased availability of binding sites. 
However, at higher adsorbent doses, a consistent decrease in Qe was observed which might be 
explained by the self – binding property of the adsorbent material, causing formation of large 
sized aggregates (Nuhoglu & Malkoc, 2009; Iqbal et al., 2016). The R% values also exhibited 
similar pattern of variation. Consequently, 0.1 g was deemed as the optimal adsorbent dosage 
for the experiments. 

For examining the kinetics of Pb (II) adsorption, batch experiments were performed utilizing 
0.1 g of CD in 200 ml of 10 ppm Pb (II) solution, maintained at pH = 6 for contact time 
durations of 30 – 240 minutes at 298 K temperature. It is evident from data, that with increase in 
contact time, Qt initially rose sharply, then gradually slowed and eventually reached a constant 
equilibrium value. The adsorption equilibrium was attained within 240 mins. As shown in 
Figure 4, the acquired data was evaluated using pseudo-first order, second order and Weber 
Morris. The obtained kinetic parameters have been illustrated in Table 1. 

The pseudo first order model is predicated on the idea that the adsorption process is reversible 
and the rate is governed by the initially available active surface sites. However, with increasing 
surface coverage, the adsorption rate declines exponentially. The mathematical equation below 
may be employed to formulate this model (Reddy et al., 2010): 

1 .log( ) log
2.303e t e
k tQ Q Q− = −

In this equation, Qe and Qt represent the uptake capacities (mg/g) at equilibrium and time 
t respectively, while k1 is the rate constant (min-1). Plotting log (Qe – Qt) versus t yielded the 
kinetic parameters for this model. Similarly, the pseudo second order model assumes that the 
process is regulated by chemisorption or certain other comparably stronger forces. It may be 
expressed with help of following linear equation (Reddy et al., 2010; Ahmad et al., 2017): 

2
2

1
.t e e

t t
Q k Q Q

= +

where k2 denotes the rate constant (g/mg/min). The estimation of parameters was achieved 
with the aid of t/Qt versus t plot. The pseudo-second order model reliably explained the kinetics 
as evidenced by the close concordance between calculated equilibrium uptake capacity Qe (calc) 
= 14.99 mg/g and the actual experimental value Qe (obs) = 14.56 mg/g. This finding was also 
supported by the substantially high value of coefficient of determination (R2 = 0.9998) and 
considerably lower value of chi – square (χ2 = 0.1489).

The following Weber-Morris model equation can be used to explicitly reveal the general 
direction of the diffusion process (Gundogdu et al., 2009; Ahmad et al., 2016): 

1/2.t idQ k t C= +

where boundary layer thickness is designated by C, and the rate constant by kid (mg/g/min1/2). 
The actual diffusion mechanism involved may be visualized by Qt versus t1/2 plot. A graph with 
multi-linear plot typically reveals that the process incorporates numerous diffusion pathways. 
Similarly, a straight-line graph passing through the origin reflects that intraparticle diffusion is 
fully responsible for controlling the process (Arris et al., 2016). As evident from the figure, the 
plot of Qt versus t1/2

 was noticeably linear with R2 value = 0.9412. However, major divergence 
of intercept C from origin demonstrated that surface sorption was a major factor in the diffusion 
process in addition to pore diffusion (Arris et al., 2016). 

Adsorption isotherm study was performed using 0.1 g CD in 200 ml of 10 – 250 ppm 
Pb (II) solutions, each maintained at pH = 6. It was observed that with rise in initial Pb (II) 
concentration, the Qe value gradually increased till it reached a nearly constant value, however 
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Fig. 4. (a) Effect of contact time on adsorption capacity; (b) Pseudo first order kinetics;
(c) Pseudo second order kinetics; (d) Intraparticle diffusion; (e) Effect of Pb (II) ion concentration on adsorption 

capacity and (f) Langmuir (g) Freundlich (h) Temkin isotherms
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the R% values exhibited a completely opposite pattern and decreased regularly with increase in 
initial Pb (II) concentration. The obtained isotherm data was fitted to Langmuir, Freundlich and 
Temkin isotherm models as shown in Figure 4 and the obtained isotherm parameters have been 
listed in Table 1. The Langmuir adsorption isotherm is based on the idea that the adsorption 
process takes place at energetically equivalent active sites. This approach is mainly useful for 
explaining monolayer adsorption, in which the Pb (II) ions adhered to the adsorbent surface 
form a single layer. The linear form of this isotherm mode may be expressed as (Gundogdu et 
al., 2009):  

1
.

e e

e m m

C C
Q b Q Q

= +

where Ce represents the equilibrium concentration of Pb (II) ions in the solution (mg/l). Qm 
equals the maximum monolayer uptake capacity (mg/g) and Qe signifies the amount of Pb (II) 
adsorbed per unit mass of adsorbent (mg/g) at equilibrium. The affinity of CD towards Pb (II) 
ions may be indicated by the constant “b”. These parameters were computed utilising the Ce/Qe 
versus Ce plot. The suitability of the process may also be defined by the dimensionless factor RL 
(Chakravarty et al., 2010):

0

1
1 .LR

b C
=

+

where C0 is the initial Pb (II) concentration (mg/l). A value of RL between 0 and 1 indicates 
the process to be favourable, whereas values 1, 0, and RL >1 typically imply linear, irreversible, 
or unfavourable nature of the process. The Freundlich isotherm model describes adsorption 

Adsorption Kinetics  Adsorption Isotherms 
Pseudo-first order  Langmuir isotherm 
Qe (obs) (mg/g) 14.56 Qm (mg/g) 77.52 
Qe (calc) (mg/g) 4.98 b (l/mg) 0.08 
k1 (min-1) 0.02 RL 0.54 
R2 0.9294 R2 0.9999 
χ2 5.9898 χ2 0.0094 
Pseudo-second order Freundlich isotherm 
Qe (obs) (mg/g) 14.56 KF (mg/g) 12.01 
Qe (calc) (mg/g) 14.99 n (g/l) 2.70 
k2 (g/mg/min) 0.01 R2 0.8934 
R2 0.9998 χ2 8.9365 
χ2 0.1489  
Intraparticle diffusion Temkin isotherm 
kid

 (mg/g/min1/2) 0.22 bT 180.03 
C (mg/g) 11.44 KT (l/mg) 1.33 
R2 0.9412 R2 0.9746 
χ2 0.0225 χ2 1.4782 
Adsorption thermodynamics 
Temperature 
(K) 

Ce 
(mg/l) 

CS 
(mg/l) KC ΔG˚ 

(kJ/mol)
ΔH˚ 

(kJ/mol)
ΔS˚ 

(kJ/K/mol)
288 2.89 7.11 2.46 -2.15  
298 2.72 7.28 2.67 -2.44 8.08 0.03
308 2.46 7.54 3.06 -2.87  

 
 Table 1: Parameters for adsorption kinetics, isotherms and thermodynamics 

  

Table 1. Parameters for adsorption kinetics, isotherms and thermodynamics
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over a surface having heterogenous energy distribution, leading to formation of several layers 
rather than just one monolayer. This mode is particularly useful when the Langmuir model’s 
requirements of uniform, monolayer adsorption are violated. The approach of this model may 
be stated in the form of following equation (Abdel-Aty et al., 2013): 

1log log loge F eQ K C
n

= +

where KF and n are the constants which may be associated with the affinity of the adsorbent 
towards Pb (II) ions. The parameters of this model were estimated with help of the plot log Qe 
versus log Ce. The model’s viability may be expressed by the value of constraint ‘n’, which 
should be between 1 and 10. 

In contrast to Langmuir and Freundlich models, the Temkin isotherm emphasizes on the 
variation in heat of adsorption with surface coverage. It assumes that the adsorbate-adsorbent 
interactions cause linear decrease of heat of adsorption with surface coverage. The linear form 
of the model may be expressed by following equation (Ahmad et al., 2017; Medhi et al., 2020):

ln lne T e
T T

RT RTQ K C
b b

= +

where the constants T and R represent the absolute temperature and the gas constant 
respectively. Similarly, bT and KT are constants having units J mol-1 and L g-1 respectively. 
The constant bT reveals the strength of interaction between Pb (II) ions and adsorbent. The 
endothermic nature of adsorption may be indicated by positive values of bT, while the bT < 0 
confirms the exothermic nature the process. The plot Qe versus ln Ce was employed to ascertain 
the respective parameters. 

The isotherm data for adsorption of Pb (II) over CD best fitted with the Langmuir model (R2 
= 0.9999) followed by Temkin (R2 = 0.9746) and Freundlich (R2 = 0.8934) models respectively. 
This trend was also corroborated by the lowest χ2 value observed for the Langmuir model 
(χ2 = 0.0094) followed by Temkin (χ2 = 1.4782) and Freundlich (χ2 = 8.9365) models. As a 
result, Pb (II) adsorption over CD was preferentially monolayered, with a maximum monolayer 
capacity Qm = 77.52 mg/g. However, the significance of the Temkin model (R2 > 0.9) cannot 
be overlooked, indicating that to an extent, adsorption also involved formation of multilayers. 
The separation factor 0 < RL < 1 and the Freundlich constant n > 1 indicating that the adsorption 
process was favourable. The Temkin constant bT was substantially greater than 0, suggesting 
that the adsorption was endothermic. 

Batch experiments were performed in an incubator maintained at 288, 298 and 308 K 
temperatures so as to explore the effect of temperature on the process. The enthalpy change 
(ΔH°), entropy change (ΔS°) and the free energy change (ΔG°) accompanying the adsorption 
process were computed with help of Vant Hoff plot between ln KC and 1/T shown in Figure 5. 
The corresponding parameters have been listed in Table 1. 

The Vant Hoff equation is usually expressed by following equations (Siddiqui, 2018; Park 
& Lee, 2020): 

0s e
C

e e

C C CK
C C

−
= =

0 0

ln C
H SK

RT R
−∆ ∆

= +

KC is the dimensionless equilibrium constant; R is the gas constant having value 8.314 J/K/
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mol and T is the absolute temperature. C0 denotes the initial Pb (II) concentration (mg/l), Ce is 
the equilibrium Pb (II) concentration in the supernatant phase (mg/l), while Cs represents the 
equilibrium Pb (II) concentration in the solid phase (mg/l). Similarly, ΔG0 may be evaluated as 
follows (Hasan et al., 2019 a): 

ln CG RT K∆ = −

Positive values for enthalpy change (ΔH° = 8.08 kJ/mol) confirmed the endothermic nature 
of the adsorption process. Moreover, since ΔH° < 40 kJ/mol, the mechanism of adsorption 
was expected to be physisorption (Kumari et al., 2020; Salawu et al., 2022). Similarly, the 
parameters ΔG° < 0 and ΔS° > 0, suggest spontaneous nature and considerable haphazardness 
at the liquid – solid interface (Sahmoune, 2019). 

The adsorption capacities of various tree bark adsorbents used in the literature for the 
adsorptive removal of Pb (II) ions have been compared in Table 2. The discrepancies in 
experimental conditions frequently render comparison of adsorbents exceedingly difficult. 
Therefore, in order to simplify the comparison usually the Langmuir maximum monolayer 
uptake capacity (Qm) is utilized. The present study demonstrates that at pH 6.0 and 25°C 
temperature, using 0.5 g/l dose of Cedrus deodara tree bark resulted in achieving Qm = 77.52 
mg/g, which was certainly higher than most of the other adsorbents reported in literature. 

MLR model was attempted to formulate the mathematical expression describing the 
dependence of Pb (II) removal efficiency (R%) on various predictor variables such as pH, 
adsorbent dosage (g), contact time (min), initial concentration (mg/l), and temperature (°C). 
Figure 6 (a) depicts the Pareto chart of standardised effects, which provides an insightful visual 
overview of the key predictors. Considering 5 predictor variables, with 25 data points and 
degrees of freedom (df) = 19, the statistical significance of predictor variables at significance 
level (α) = 0.05 was determined by critical t-value = 2.093. As evident from the figure, among the 
predictor variables, initial Pb (II) concentration, pH and adsorbent dose emerged as statistically 
significant contributors in predicting the removal efficiency (R%). Figure 6 (b) depict the normal 
probability (P-P) plot of the standardized residuals of MLR model. The obtained residuals were 
standardized by scaling them based on their standard deviation. As evident from the figure, the 
points appear to form a reasonably straight line suggesting that the standardized residuals were 

 

 
Figure 5: Vant Hoff plot for adsorption of Pb (II) ions over CD 

  

Fig. 5. Vant Hoff plot for adsorption of Pb (II) ions over CD
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normally distributed. 
The overall model summary, results of the ANOVA analysis and corresponding values of 

the coefficients obtained for MLR model have been illustrated in Table 3. The model exhibited 
R2 value = 0.8170 and R2 (Adj.) value = 0.7689 with standard estimate of error (S) = 10.2567. 
The ANOVA results indicated that the MLR model significantly explained the variance in 
response variable (p < 0.01). Moreover, pH, adsorbent dose and initial Pb (II) concentration 
appeared to be statistically significantly decisive factors in the adsorption process (p < 0.01). 
This observation further supported the findings of Pareto chart. With help of the coefficients, it 
may be pointed out that following linear mathematical equation may be employed to compute 
Pb (II) removal efficiency: 

% 56 8.48* 128.2* 0.0277*
0.2356* 0.215*

R pH dose time
concentration temperature

= − + + −
− + 

When compared to MLR, the Artificial Neural Networks (ANNs) give better flexibility in 
data modeling because, unlike MLR, ANNs are capable of identifying non-linear relationships 
and can also cope with complicated multidimensional and incomplete data (Kareem & Pathak, 
2016). Studies suggest that ANNs are potentially valuable in modelling experimental data 
related to environmental contamination particularly concerning the water treatment (Fiyadha et 
al., 2023). The present study utilizes ANN for modelling the adsorption process and predicting 

Table 2: Comparison of maximum monolayer adsorption capacities (Qm) of various tree barks reported for removal 
of Pb (II) ions. 

 
 
 

Tree bark pH Adsorbent dose (g/l) Qm (mg/g) Reference 
Pinus nigra 8 2.5 49.00 Argun & Dursun, 2007 
Neem 5 7.5 83.33 Naiya et al., 2008 
Pinus brutia 4 1.0 76.80 Gundogdu et al., 2009 
Moringa oleifera 5 4 34.60 Reddy et al., 2010 
Pinus elliottii 5 10 12.42 Junior et al., 2012 
Metroxylon sago 5 - 31.44 Fauzia et al., 2018 
Prosopis juliflora 5 0.3 27.47 Gayathri et al., 2018 
Schleichera oleosa 6 10 69.44 Khatoon et al., 2018 
Grape vine 4.5 0.5 91.00 Haydar et al., 2020 
Cedrus deodara 6 0.5 77.52 Present study 

 
  

Table 2. Comparison of maximum monolayer adsorption capacities (Qm) of various tree barks reported for remov-
al of Pb (II) ions.

 

Figure 6: (a) Pareto chart of standardized effects and (b) standardized residual plots for MLR 
model. 

  

Fig. 6. (a) Pareto chart of standardized effects and (b) standardized residual plots for MLR model.
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the Pb (II) removal efficiency (R%) based on experimental data acquired from batch adsorption 
study using Cedrus deodara bark powder as adsorbent. 

The ANN architecture comprised of three layers: one input layer, one hidden layer, and 
one output layer. The input layer receives input data from 5 nodes corresponding to the input 
variables pH, adsorbent dosage, contact time, initial concentration and temperature. The hidden 
layer acts as the network’s processing core, where it establishes complex correlations between 
input data and the target variable (R%). Each of the hidden layer neurons contributed in inducing 
non-linearity into the model by applying tangent sigmoid (tansig) activation to the weighted 
sum of inputs. This non-linearity allowed the network to recognize intricate relationships and 
dependencies in the data that a linear model could overlook. The output layer consisted of a 
single node, representing the predicted removal efficiency (R%). The output node employed 
pure linear (purelin) activation, ensuring that the final prediction is a continuous value, making 
it suitable for regression applications. 

Levenberg-Marquardt algorithm was implemented for training the model as it can manage 
non-linear relationships and is resistant to outliers in data (Wilamowski & Yu, 2010). The 
experimental data set was randomly split into usually prescribed ratios 70:15:15 i.e., 70% 
for training, 15% for validation and an additional 15% for testing (Genc & Tunc, 2019). The 
ANN architecture was further improved by optimizing the number of neurons in the hidden 
layer. Underfitting might occur if there are too few neurons, resulting in inaccurate predictions. 
Similarly, overfitting may occur when the model retains the training data and fails to apply it to 
new, unknown data. 

Figure 7 (a) displays the variation of mean squared error (MSE) with change in number of 
neurons in the hidden layer. It is evident from the figure that using 10 neurons in the hidden 
layer reduces MSE for both training (0.0282) and validation (2.6064) sets. As a result, neural 
network with 10 neurons in the hidden layer was deemed optimal for prediction, with schematic 
representation and architecture illustrated in Figure 7 (b). The values of weights and biases 
used in different layer based on the optimum ANN structure have been illustrated in Table 4 
(Hasan et al., 2019 b).

Table 3: Details of MLR model 
 
 

MODEL SUMMARY 
  R2 Adj R2 Pred R2 S 
  0.8170 0.7689 0.5785 10.2567
ANOVA RESULTS 
Source df Adj SS Adj MS F-value p-value 
Regression 5 8924.1 1784.82 16.97 0.000
pH 1 2260.8 2260.77 21.49 0.000
dose 1 543.0 543.02 5.16 0.035
time 1 66.6 66.65 0.63 0.436
initial conc 1 5161.2 5161.17 49.06 0.000
temperature 1 9.2 9.25 0.09 0.770
Error 19 1998.8 105.20  
Total 24 10922.9  
COEFFICIENTS 
Term Coef SE Coef T-value p-value VIF 
Constant -56 217 -0.26 0.800  
pH 8.48 1.83 4.64 0.000 1.05 
dose 128.2 56.4 2.27 0.035 1.06 
time -0.0277 0.0348 -0.80 0.436 1.13 
initial conc -0.2356 0.0336 -7.00 0.000 1.11 
temperature 0.215 0.725 0.30 0.770 1.00 

 
  

Table 3. Details of MLR model
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The performance validation of the ANN model is crucial for ensuring that its accuracy extends 
well beyond the training data, generating trustworthy predictions for fresh, previously unknown 
samples. The performance of ANN model was validated by comparing MSE with successive 
iterations as depicted in Figure 8. As evident from the figure, each subsequent iterations resulted 
in regular decrease in MSE for training, validation and testing sets. However, as the number 
of iterations further increased, the network eventually started over-fitting the data, causing 
slight increase in the error. It was observed that best results were obtained at 10th iteration of 
the network. The corresponding regression plots for training, validation and testing have been 
shown in Figure 9. The regression coefficients (R) obtained for training (0.99997), validation 
(0.9992) and testing data (0.9915) were > 0.99, suggesting that ANN model fitted well with the 
adsorption data. 

Figure 10 (a) shows a comparison between the experimentally observed values of removal 
efficiency (R%) and those predicted through MLR and ANN models for each individual 
observation. It may be easily observed from figure that ANN model provides a far better 
prediction with each predicted value almost overlapping the experimentally observed values. 
A scatterplot of predicted versus experimental R% values has been displayed in Figure 10 (b).  

 

Figure 7: (a) Variation of mean squared error (MSE) with number of neurons in the hidden layer 
and (b) Structure of optimal ANN model 

  
Table 4: The weights and biases of the trained ANN* 

 

 

w1 w2 b1 b2 
[1.0468 -3.8872 0.22754 2.4442 -0.43868; 

 0.83441 0.65871 -2.6825 -0.61522 -0.29932; 
 -0.86892 1.5824 1.2391 -1.5 0.77101; 

 0.56665 -0.17625 2.2869 -1.3698 0.85603; 
 -0.13045 0.86659 -0.05047 -3.938 -1.108; 
 -2.2423 -0.48397 0.52462 2.8691 0.37893; 

 -1.8848 -1.7195 0.96549 0.40176 0.098135; 
 -0.35999 0.74464 -3.5208 0.45822 0.57018; 

 2.2216 0.78178 1.4124 0.7111 0.64283; 
 0.78683 0.84499 -0.44289 -1.2388 0.60955] 

[-1.3959 0.45923 
0.39953 0.48086  
-1.5364 -1.2305 
0.54154 0.17909 
0.74821 -0.4037] 

[-1.7651; 
 -2.3276; 
 1.5466; 
 -0.5745; 
 -0.7399; 
 1.5138; 
 -1.5525; 

 -0.076846; 
 2.0836; 
2.6009] 

[-0.13695] 

*w1 = weight matrix for connections between input layer and hidden layer.  
 w2 = weight matrix for connections between hidden layer and output layer  
 b1 = bias vector associated with hidden layer.  
 b2 = bias vector associated with output layer.  
  

Fig. 7. (a) Variation of mean squared error (MSE) with number of neurons in the hidden layer and (b) Structure of 
optimal ANN model

Table 4. The weights and biases of the trained ANN*
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Figure 8: Validation performance of the ANN model 

  

Fig. 8. Validation performance of the ANN model

 
 
 

Figure 9: Regression plots for training, validation and testing of ANN model 
  

Fig. 9. Regression plots for training, validation and testing of ANN model
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The overall accuracy of MLR and ANN models may be statistically evaluated in terms of 
RMSE, MAPE and R2 values as shown in Table 5. 

As indicated by significantly low values of RMSE (1.777), MAPE (2.054%) and relatively 
higher R2 value (0.993) for ANN model, it may be inferred that ANN model may serve as 
a useful tool for modelling adsorption and predicting removal efficiency based on the key 
predictors pH, adsorbent dose, contact time, initial concentration and temperature. 

CONCLUSION
 
This study reveals a novel and environmentally significant technique for removing Pb (II) 

ions from water by utilizing Cedrus deodara tree bark, which is a non-toxic waste product from 
timber industry. Since the obtained maximum uptake capacity (Qm) exceeded several other 
reported adsorbents, the use of Cedrus deodara tree bark powder (CD) as an adsorbent offers an 
affordable, environmentally friendly, and green solution for purification of water. Additionally, 
the effective implementation of an Artificial Neural Network (ANN) model reveals the relevance 
of modern computational tools in exploring adsorption processes, paving the way for future 
environmental research and remediation. The study demonstrated that treating 200 ml of 10 
ppm Pb (II) solution maintained at pH = 6 with 0.1 g of CD resulted in achieving equilibrium 
uptake capacity (Qe) = 14.56 mg/g and removal efficiency (R%) = 72.8. The experimental 
data fitted well with pseudo-second order kinetic model and the Langmuir isotherm model. 
Similarly, the solute diffusion was impacted by both surface and pore diffusion processes. The 
thermodynamic parameters revealed endothermic and spontaneous nature of the adsorption. 
Considering pH, adsorbent dosage, contact time, initial concentration and temperature as factors, 

 

 
 
 

Figure 10: (a) Prediction of removal efficiency (R%) using MLR and ANN and (b) Plot 
of predicted and experimentally observed values of R% 

 

Fig. 10. (a) Prediction of removal efficiency (R%) using MLR and ANN and (b) Plot of predicted and experimen-
tally observed values of R%

Table 5. Statistical comparison of MLR and ANN models

 R2 RMSE MAPE (%) 
MLR 0.817 8.954 17.379 
ANN 0.993 1.777 2.054 

 
 Table 5: Statistical comparison of MLR and ANN models  
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MLR and ANN models were formulated for prediction of Pb (II) removal efficiency (R%). A 
statistical comparison utilizing R2, RMSE and MAPE values revealed that, as compared to the 
MLR model, the ANN model predicted removal efficiency with greater accuracy.
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