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A B S T R A C T 

 

The mining process involves several sequential stages, including drilling, blasting, loading, transportation, and mineral processing. Among 
these stages, blasting costs (BC) exhibit greater sensitivity compared to others. Inadequate blasting practices can lead to additional drilling, 
increased explosive consumption, and environmental consequences such as ground vibrations. The variability in blasting patterns and ore 
rock hardness results in variations in BC. Consequently, there is a need for a method that can establish a relationship between design, 
geotechnical parameters, and blasting costs while accounting for uncertainties in input parameters. In this study, the rock engineering system 
method (RES) was employed to construct a complex and non-linear model for predicting blasting costs, considering uncertainties in 
geotechnical parameters. Data from six limestone mines in Iran were utilized, incorporating 146 data points. The input parameters used for 
creating this relationship included hole diameter, burden, emulsion, hole number, hole length, spacing, stemming, sub-drilling, rock hardness, 
ANFO, number of electric detonators, uniaxial compressive strength, and specific gravity. The model was built using 80% of the data (117 
data points) to establish the RES-based method, with the remaining 20% (29 data points) dedicated to evaluating and validating the model. 
To assess its performance, the RES-based method was compared to other statistical regression techniques, utilizing statistical indicators such 
as root mean square error (RMSE), mean square error (MSE), and coefficient of determination (R2). The results demonstrated that the RES-
based method significantly outperformed other statistical approaches with impressive accuracy, as indicated by MSE=0.00608, RMSE=0.078, 
and R2=0.9518 in predicting explosion costs. Therefore, the model developed through this method can be effectively applied in mining and 
rock mechanics projects, providing a high level of accuracy. 
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1. Introduction 

Blasting operations have become the predominant method for large-
scale production in both surface and underground mining today. Hence, 
optimizing these operations offers a promising avenue for enhancing 
profitability and reducing production costs in mines. The primary 
objective of drilling and blasting in both surface and underground 
mining is to achieve proper rock fragmentation. Carrying out efficient 
drilling and blasting operations marks the initial step toward achieving 
the desired crushed rock dimensions required for feed supply to 
processing plants. Rock fragmentation resulting from blasting 
significantly impacts the overall economic performance of the mine in 
various ways (Singh & Singh, 2005). Conducting successful blasts 
reduces rock crushing costs, enhances the efficiency of drilling, loading, 
and hauling operations, minimizes additional drilling and backbreak, 
mitigates ground vibration, minimizes throw, and improves post-
extraction drilling operations. Therefore, optimizing and meticulously 
designing this stage not only minimizes mining costs but also enhances 
subsequent stages of the production process, bolsters safety measures, 
and ultimately maximizes production value (Latham, Van Meulen, & 
Dupray, 2006; Lowery, Kemeny, & Girdner, 2001; Qu, Hao, Chen, Li, & 
Bian, 2002; Rezaei, Monjezi, & Varjani, 2011). To attain these objectives, 
it is crucial to identify the factors influencing blasting and drilling 
processes. Determining the factors influencing blasting and drilling 
operations (input parameters) is the initial stage for executing effective  

 
 
 
blasting. Subsequently, the optimal blast pattern is designed based on 
these factors. Generally, the factors influencing blast pattern design can 
be categorized as uncontrollable and controllable parameters. 
Uncontrollable parameters are inherent environmental factors that 
dictate the design for better results. These factors include geomechanical 
conditions of the mining area, such as rock strength, joints, faults, as well 
as weather conditions like humidity, temperature, and atmospheric 
precipitation. On the other hand, controllable parameters are subject to 
modification, and their proper and principled design leads to optimized 
blasting. Examples of controllable parameters include geometric 
parameters of the drilling pattern, hole diameter, hole distance and 
depth, physical properties of explosives, explosive quantity, and delay 
time (Monjezi, Rezaei, & Varjani, 2009). Despite extensive research 
efforts, no reliable theoretical relationships have been established to 
date for the blast pattern design based on design and geomechanical 
parameters. In many cases, the blast pattern design is carried out using 
traditional approaches and personnel experience. Numerous studies 
have been conducted to develop scientific and reliable methods for the 
optimizing blast design, resulting in cost reduction. These studies 
encompass numerical modelling (Abbaspour, Drebenstedt, Badroddin, 
& Maghaminik, 2018; Esen, La Rosa, Dance, Valery, & Jankovic, 2007; 
Kanchibotla, 2003; Leng, Fan, Gao, & Hu, 2020; Miranda, Leite, & Frank, 
2019; Nielsen, 1987; Pomasoncco-Najarro et al., 2022; Zhu, 2009), 
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regression and statistical methods (AFENI, 2009; Akande & Lawal, 2013; 
Antipas Thadei Safari & Karim Rajabu, 2011; Ghanizadeh Zarghami, 
Shahriar, Goshtasbi, & Akbari, 2018; Nikkhah, Vakylabad, Hassanzadeh, 
Niedoba, & Surowiak, 2022), as well as analytical and experimental 
models (Lyashenko, Vorob'ev, Nebohin, & Vorob'ev, 2018; Roy, Paswan, 
Sarim, & Kumar, 2017; S. Wang et al., 2019; H.-S. Yang & Rai, 2011; R. 
Yang, Kavetsky, & McKenzie, 1989). Although these methods yield 
reasonably accurate results, they face limitations. Numerical models, for 
instance, accept only one value for input parameters and require 
separate calculations for each value, making it challenging to achieve a 
comprehensive and unified analysis for multiple points. Analytical 
models often create simplified mathematical relationships between blast 
conditions and outcomes, neglecting certain factors and assumptions, 
thereby reducing model accuracy. Regression methods, on the other 
hand, suffer from reduced accuracy due to input parameter uncertainty 
and a large number of variables. Furthermore, empirical equations 
derived from individual experiences in specific projects cannot be 
universally applied to different cases. Consequently, with advancements 
in technology and artificial intelligence, smart algorithms have been 
employed to design blast algorithms and predict results. These methods 
offer the advantage of considering uncertainties in input parameters and 
handling extensive datasets with high accuracy (Asl, Monjezi, Hamidi, 
& Armaghani, 2018; Bakhshandeh Amnieh, Hakimiyan Bidgoli, 
Mokhtari, & Aghajani Bazzazi, 2019; Bakhtavar, Sadiq, & Hewage, 2021; 
de Miguel-García, Martín-Chinea, & Gómez-González, 2021; Dehghani 
& Ataee-Pour, 2011; Hasanipanah, Amnieh, Arab, & Zamzam, 2018; Jang 
& Topal, 2013; Kulatilake, Qiong, Hudaverdi, & Kuzu, 2010; Kumar, 
Mishra, & Choudhary, 2021; Ozdemir & Kumral, 2019; Sadeghi, 
Monjezi, & Jahed Armaghani, 2020; Silva, Amaya, & Basso, 2017; M. 
Wang, Shi, Zhou, & Qiu, 2018; Yu et al., 2021; J. Zhou et al., 2021). In this 
context, the focus of this paper lies in the utilization of the RES 
approach. This method accounts for uncertainties in input parameters 
while remaining simple, avoiding lengthy and tedious coding processes, 
cost-effective, and time-efficient. Moreover, it enables simultaneous 
analysis of multiple variables impacting blasting costs. Extensive 
research has been conducted in the field of RES, covering topics such as 
vulnerability and risk assessment following the Songun copper mine 
explosion (Faramarzi, Ebrahimi Farsangi, & Mansouri, 2013), evaluation 
of coal mine methane gas drainage potential (Ghanbari, Ataei, Sereshki, 
& Saffari, 2018), estimation of maximum ground surface settlement 
resulting from tunneling using the earth pressure balance shield 
tunneling (TMB-EPB) (Fattahi & Babanouri, 2018), safety factor 
calculation and risk analysis for circular failure (Fattahi, 2017), 
forecasting rock throw and fragmentation danger resulting from 
explosions in the Sarcheshme copper mine (Hasanipanah, Jahed 
Armaghani, Monjezi, & Shams, 2016), prediction and estimation of rock 
mass deformation modulus (Fattahi & Moradi, 2018), injection 
techniques to improve the condition of rock mass in underground 
tunnels, dams, and foundations (Saeidi, Azadmehr, & Torabi, 2014), 
measurement and prediction of the penetration rate of the TBM drilling 
machine in underground spaces (Fattahi & Moradi, 2017), creation of 
maps to calculate landslide occurrence in Sallekular, situated in the Jama 
River Gorge (Meten, Bhandary, & Yatabe, 2015), prediction of fire 
hazard in coal mine strata (Saffari, Sereshki, Ataei, & Ghanbari, 2013), 
quantitative analysis of gas and explosion risk in coal mines (Q. Zhou, 
Herrera, & Hidalgo, 2019), estimation of explosion and rock mass 
fragmentation for mines in Chile and Canada (Azadmehr, Jalali, & 
Pourrahimian, 2019), the blast-induced peak ppaper velocity estimation 
method (Adesida, 2023), estimation of advance speed and penetration 
of the TBM in underground structures (Frough & Torabi, 2013), 
prediction of land surface settlement and damage to surface structures 
caused by underground tunnel excavation (Mohammadi & Azad, 2021). 

From the studies conducted in the field of rock engineering, it 
becomes evident that the parameters influencing the model's output are 
remarkably intricate. Geotechnical parameter values differ significantly 
from one point to another, making it impractical to attain the desired 
results through conventional and traditional methods. In response, this 
article introduces a novel approach - the rock engineering system 
method, or RES - to establish a new relationship capable of considering 

all parameter values at any given point. This application of the RES 
method to the context of blasting costs in limestone mines represents 
an innovative and pragmatic study. To date, no studies have employed 
this method to build complex, non-linear relationships while addressing 
the uncertainties in geological parameter values, setting it apart from 
earlier research. Another distinct advantage of this method, in contrast 
to studies focused on explosion costs, is its adaptability and the 
flexibility of the relationships it establishes. In essence, if the 
relationship created proves applicable in all scenarios with similar 
geological and geotechnical conditions, it can be a valuable asset. 
However, in situations involving different geological conditions or 
variations in input parameters, this research provides a framework for 
updating the established relationship with minimal time and 
exceptional accuracy to form new relationships tailored to specific 
geological conditions. This study distinguishes itself from prior research 
on blasting costs by demonstrating that the utilization of the RES 
method can offer engineers and practitioners in the field of rock 
engineering the most cost-effective and time-efficient means of 
developing highly accurate functional equations. 

In this paper, to account for input parameters uncertainties, data from 
146 data points in six limestone mines in Iran were utilized. 
Subsequently, the RES method was employed to model blasting costs, 
considering 13 influential factors that significantly impact the evaluation 
of blasting cost performance in mines. Statistical indicators, including 
MSE, R2, and RMSE were used to assess the effectiveness of the RES 
technique in modelling the nonlinear and complex system. 

2. Database used in this study 

This study utilizes two databases to model and evaluate the RES 
method. Specifically, data from six limestone mines in Iran have been 
utilized. Table 1 provides the characteristics of these six mines, and their 
geographical locations within Iran are illustrated in Figure 1. 

 
Table 1. The characteristics of six limestone mines in Iran (Bastami, Aghajani 
Bazzazi, Hamidian Shoormasti, & Ahangari, 2020). 

No. Name of the mine Annual extraction 

capacity (tons) 

Definite  storage Nearest city to 

mine 

1 Moslem Abad 300000 7000000 Hamedan 

2 Sepahan Mobarakeh 600000 13500000 Esfahan 

3 Abelou 4000000 89340000 Neka 

4 Barkhordar1 160000 1600000 Nurabad 

5 Tang Fani 100000 900000 Pol Dokhtar 

6 Tajareh 150000 4300000 Khorramabad 
 

To ensure the use of real data, the BC of these six mines were 
collected from 2011 to 2018. The data was subsequently updated based 
on the cost increase that occurred in January 2019, serving as the 
foundation for this paper. Based on the collected data, the blasting 
company's salary accounts for 8.5% of the total cost, while personnel, 
transport, consumption monitoring, escort, and container costs 
contribute to 16.8% of the expenses. Additionally, the cost of secondary 
fragmentation and adverse effects of blasting represents 11.8%, and the 
cost of purchasing explosives comprises 62.9% of each blast's total cost 
(Bastami et al., 2020). 

The fly rock was measured using Total Station mapping cameras and 
laser meters. Rock crushing in six limestone mines was assessed using 
the Split Desktop 4 software and the image analysis method. Random 
imaging was conducted, considering dimensional variations and 
utilizing two scales at the top and bottom of the explosive coupe. In one 
of the mentioned mines, Figure 2 depicts the sequential stages of image 
analysis utilizing the Split Desktop software (Bastami et al., 2020). 

Overall, a total of 146 data samples, comprising geomechanical and 
design parameters, were utilized in the analysis of six limestone mines 
in Iran. The input parameters include hole diameter (D), burden (B), 
emolite (EM), hole number (N), hole length (H), spacing (S), stemming 
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(T), sub-drilling (J), rock hardness (HA), ANFO (AN), the number of 
electric detonators (Det), uniaxial compressive strength (σc). and 
specific gravity (γr). The blasting cost serves as the output or prediction 
in this research. Table 2 presents some of the input parameters along 
with the measured BC (Bastami et al., 2020). 

 

 
Figure 1. The geographical location of limestone mines on the map of Iran 
(Bastami et al., 2020). 

 
Figure 2. The steps of using the Split Desktop software in one of six limestone 
mines in Iran (Bastami et al., 2020). 

 

 

 

 

 

Table 3 provides a statistical summary of the input and output data, 
including minimum, maximum, average, mode, median, range, and 
standard deviation values. It offers an overview of the dataset used in the 
analysis. 

To gain a better understanding of the statistical parameters presented 
in Table 3, a box diagram depicting the input and output parameters can 
be generated using statistical software such as the SPSS, as shown in 
Figure 3. 

3. Rock Engineering Systems 

The RES method, initially proposed by Hudson (1992), is a robust 
tool for modelling and identifying crucial parameters as well as 
interaction mechanisms in rock engineering projects. It allows for the 
simultaneous analysis of relationships between various factors,  
 

 

Table 2 The part of input and output data for modelling (Bastami et al., 2020). 

No. 
Inputs Output 

AN (Kg) Det EM (Kg) N H (m) D (mm) B (m) S (m) T (m) J (m) γr (ton/m3) HA (Mhos) σc (Kg/cm3) BC (Rials/ton) 

1 5500 270 260 270 6.3 76 1.8 2.1 0.9 0.5 2.7 3.5 671 18239 

2 9300 490 500 436 6.8 76 1.8 2.2 0.9 0.5 2.7 3.5 671 15486 

3 10000 650 500 404 8 76 1.7 2 0.9 0.5 2.7 3.5 671 18110 

4 4300 230 280 215 6 76 1.7 2 1 0.5 2.7 3.5 671 23481 

5 6200 590 320 500 4 76 1.8 2 1.1 0.5 2.7 3.5 671 20946 

 

Table 3. The statistical description of the input and output dataset. 

Type  Parameters Minimum Maximum Mean Mode Median Range Std. Deviation 

Input 

AN (Kg) 1020 12400 8551.3014 10000 9700 11380 2598.48504 

Det 45 650 347.8288 400 343 605 122.43328 

EM (Kg) 40 600 295.4041 300 300 560 115.37469 

N 29 553 271.4863 190 242.5 524 136.60864 

H (m) 4 20.40 9.5253 9 9 16.4 3.21751 

D (mm) 76 100 82.9315 76 76 24 8.21828 

B (m) 1.70 3.5 2.3603 3 2.3 1.8 0.52986 

S (m) 1.90 4 2.7966 3.5 2.6 2.1 0.61391 

T (m) 0.9 3.6 1.8329 2.5 1.8 2.7 0.55263 

J (m) 0.2 1.5 0.8247 0.5 0.6 1.3 0.41582 

γr (ton/m3) 2.60 2.7 2.6665 2.7 2.7 0.1 0.03961 

HA (Mhos) 3 3.5 3.2705 3.3 3.3 0.5 0.16153 

σc (Kg/cm3) 530 671 600.5616 620 620 141 49.94935 

Output BC (Rials/ton) 7157 23481 13467.924 8887 13587 16324 3994.76247 
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Figure 3. The box diagram of input and output parameters from Table 3. 

 

including rock mass properties, construction, and structural elements, 
while considering their interactions. Conventional methods may not 
suffice when dealing with complex rock engineering projects 
characterized by numerous complexities and interactions. In such cases, 

the RES approach becomes indispensable as it enables the 
comprehensive consideration of all relevant parameters and their 
interactions. The key components of the RES method include 
identifying critical parameters, effective pathways, feedback loops, and 

 1 

 2 

 3 

 4 

 5 
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evaluating appropriate engineering techniques through the use of an 
interaction matrix. This matrix serves as a fundamental element in the 
RES and presents the interconnections among the influential 
parameters in a rock engineering project. The input parameters or 
primary factors are placed along the major diagonal of the matrix, as 
depicted in Figure 4, while the interactions between these factors are 
represented outside the main diagonal (Andriani & Parise, 2017; Shad, 
Sereshki, Ataei, & Karamoozian, 2018). To determine the interactions 
and parameter influences, specific numerical codes are assigned, and the 
results can be derived through computations on the rows and columns. 
Figure 4 illustrates the clockwise interaction between parameters, where 
parameter B impacts parameter A in the lower-left quadrant and 
parameter A impacts B in the upper-right quadrant. 
 

 

 
 

Figure 4. How the interaction matrix works in the RES-based method (Hudson, 
1992) 

 
To evaluate the parameters' impact on the system, the interaction 

matrix needs to be coded. Hudson has provided five coding methods for 
the interaction matrix, including the explicit method, probabilistic 
expert semi-quantitative (PESQ) method, continuous quantitative 
coding (CQC) (Lu & Latham, 1994), binary method, and expert semi-
quantitative (ESQ) method. Among these, the ESQ method is 
commonly used due to its simplicity and high accuracy. In this method, 
an expert or a group of experts, based on field research, engineering 
judgments, relevant documentation, expert experience, and potentially 
theoretical and numerical analyses or other research findings, assign(s) 
numerical values ranging from 0 to 4 to indicate the strength of 
interaction between parameters. A coding value of 4 indicates a strong 
interaction, while 0 denotes no interaction between the matrix 
parameters. Table 4 presents the coding values and the intensity of 
interaction between parameters according to the ESQ method. 

 
Table 4. The expert semi-quantitative (ESQ) method (Hudson, 1992). 

Code number Concept 

4 Intense interaction 

3 High interaction 

2 Moderate interaction 

1 Low interaction 

0 No interaction 

 
Once the interaction matrix is coded, a cause-effect diagram can be 

constructed. As shown in Fig. 4, the sum of row values in the interaction 
matrix represents the "cause" or the effect of a parameter on the system, 
while the sum of column values represents the "effect" or the impact of 
the system on the parameter. These cause and effect values, denoted as 
C and E, respectively, are plotted on a coordinate axis to create a cause-
effect diagram. The interaction state of each factor is determined based 
on its position in the space defined by the coordinates C and E. A factor 
with a higher numerical value for the sum of cause and effect values 
(C+E) indicates a stronger interaction with the overall system. 
Conversely, the degree of dominance of a factor over the system 

decreases as the subtraction of cause and effect values (C-E) increases. 
To construct a cause-effect diagram for each parameter, the cause and 
effect values are summed. Equation (1) is employed to obtain the weight 
(ai) of parameter i using the percentage value of (C+E) (Benardos & 
Kaliampakos, 2004). 

 

𝑎𝑖 =
(𝐶𝑖+𝐸𝑖)

(∑ 𝐶𝑖
𝑛
𝑖=1 +∑ 𝐸𝑖

𝑛
𝑖=1 )

× 100                                                                        (1) 
 

To analyze the collapse risk of loose regions in underground 
structures excavated using the TBM, Enardos and Kaliampakos [60] 
proposed the vulnerability index (VI). This index, calculated using 
Equation (2), enables the assessment of vulnerability based on the 
weights (ai) obtained from Equation (1), the maximum parameter value 
(Qmax), and the value of each parameter (Qi). The VI serves as an 
indicator of project risk, with higher values indicating increased risk, as 
outlined in Table 5. In this research, the VI is utilized for predicting 
blasting costs. 

 

𝑉𝐼 = 100 − ∑ 𝑎𝑖𝑖=1
𝑄𝑖

𝑄𝑚𝑎𝑥
                                                                           (2) 

 

 

Table 5. The classification of the VI ((Benardos & Kaliampakos, 2004)). 

Risk description Low-medium Medium-high High-very high 

VI 0-33 33-66 66-100 

Category І ІІ ІІІ 

 

3.1. parameters affecting blasting cost 

The parameters that affect blasting costs, required for constructing 
the BC model using the RES approach, are listed in Table 6. 

 

Table 6. The input variables used to build the RES-based model. 

Pn Parameter Symbol 

P1 ANFO AN (Kg) 

P2 Number of electric detonators Det 

P3 Emolite EM (Kg) 

P4 Hole number N 

P5 Hole length H (m) 

P6 Hole diameter D (mm) 

P7 Burden B (m) 

P8 Spacing S (m) 

P9 Stemming T (m) 

P10 Sub-drilling J (m) 

P11 Specific gravity γr (ton/m3) 

P12 Rock hardness HA (Mhos) 

P13 Uniaxial compressive strength σc (Kg/cm3) 
 

3.2. Interaction matrix 

To establish the RES-based BC model, a 13*13 interaction matrix was 
completed using the ESQ approach. 13 key parameters influencing BC 
were identified, and experts and engineers in the field of rock mechanics 
and geotechnical engineering completed questionnaires to code the 
interaction matrix. Table 7 presents the coding of the interaction matrix 
for the BCbased on expert opinions. 

The cause and effect values of each parameter are then used to create 
a cause-effect diagram, represented in Figure 5. The diagram indicates 
the dominant parameters in the lower right corner and the parameters 
influenced by the system in the upper left corner. Parameters 2, 4, and 5 
(the number of electric detonators, hole number, and hole length) are 
completely influenced by the system, whereas parameters 10, 11, and 13 
(sub-drilling, specific gravity, and uniaxial compressive strength) have 
the most significant effect on the system. Table 8 provides the weight 
(ai), effect (E), cause (C), interactive intensity (C+E) and dominance 
(C-E) for each parameter. 
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Table 7. The effect of input parameters on each other in the interaction matrix. 

P1 2 0 0 0 2 4 1 2 4 0 0 0 

3 P2 0 0 0 2 0 0 0 0 0 0 0 

0 1 P3 0 0 0 1 0 0 0 0 0 0 

0 0 0 P4 0 0 0 0 0 0 0 0 0 

0 0 0 0 P5 0 0 1 0 0 0 0 0 

3 0 0 0 0 P6 3 0 0 0 0 0 0 

4 0 1 0 0 3 P7 1 0 4 0 0 0 

4 0 0 0 0 0 4 P8 0 4 1 0 0 

3 0 0 0 0 0 1 0 P9 4 4 0 0 

4 4 0 0 1 4 4 4 4 P10 4 4 0 

4 4 3 1 1 4 4 4 4 4 P11 3 4 

0 1 1 3 1 0 1 0 0 1 4 P12 4 

0 3 1 2 3 0 0 0 0 4 4 3 P13 

 

 
 

Figure 5. The Cause-Effect Plot for principal parameters of the BC. 

 

Table 8. Weighting of the key variables BC. 

Main factor C E C-E C+E ai (%) 

AN (Kg) 15 25 -10 40 11.4286 

Det 5 15 -10 20 5.71429 

EM (Kg) 5 4 1 9 2.57143 

N 0 6 -6 6 1.71429 

H (m) 1 9 -8 10 2.85714 

D (mm) 6 17 -11 23 6.57143 

B (m) 13 22 -9 35 10 

S (m) 13 7 6 20 5.71429 

T (m) 12 10 2 22 6.28571 

J (m) 29 25 4 54 15.4286 

γr (ton/m3) 38 17 21 55 15.7143 

HA (Mhos) 16 10 6 26 7.42857 

σc (Kg/cm3) 22 8 14 30 8.57143 

Total 175 175 0 352 100 

 

The values of C+E are obtained for each parameter individually, and 
their representation on a coordinate axis allows the visualization of 
interaction intensity. Parameters with greater interaction intensity have 
a more pronounced impact on the system, where even slight changes in 
these parameters can lead to significant system changes. Figure 6 
displays the C+E values for the principal parameters of the BC. 

 

 
Figure 6. The C+E values for principal parameters of the BC. 

 

3.3. Rating of parameters 

To rank the factors influencing blasting costs, specialists and 
engineers in the field of rock engineering provided ratings from 0 to 4, 
representing five classes. A rank of 0 indicates the worst or most 
unfavorable condition, while a rank of 4 indicates the best or most 
favorable state. Table 9 presents the suggested ratings and ranges for 
parameters affecting the prediction of blasting costs. 

 

Table 9. The suggested ratings and ranges. 

NO. Parameters Values and Ratings 

1 AN (Kg) 

Value >11000 8000-11000 6000-8000 4000-6000 4000> 

Rating 0 1 2 3 4 

2 Det 
Value 0-44 44-250 250-400 400-531 >531 

Rating 0 1 2 3 4 

3 EM (Kg) 
Value 0-80 80-170 170-380 380-500 500< 

Rating 0 1 2 3 4 

4 N 
Value 0-100 100-200 200-330 330-400 400< 

Rating 0 1 2 3 4 

5 H (m) 
Value >12 10-12 8-10 6-8 6> 

Rating 0 1 2 3 4 

6 D (mm) 
Value >170 150-170 120-150 100-120 100> 

Rating 0 1 2 3 4 

7 B (m) 
Value >3.1 2.7-3.1 2.5-2.7 1.8-2.5 1.8> 

Rating 0 1 2 3 4 

8 S (m) 
Value >3.8 3.1-3.8 2.7-3.1 2.2-2.7 2.2> 

Rating 0 1 2 3 4 

9 T (m) 
Value >3.1 2.5-3.1 2-2.5 1-2 1> 

Rating 0 1 2 3 4 

10 J (m) 
Value >1.1 0.6-1.1 0.5-0.6 0.4-0.5 0.4> 

Rating 0 1 2 3 4 

11 γr (ton/m3) 
Value 0-2.5 2.5-2.63 2.63-2.65 2.65-2.7 >2.7 

Rating 0 1 2 3 4 

12 
HA 

(Mhos) 

Value 0-2.5 2.5-3 3-3.2 3.2-3.5 >3.5 

Rating 0 1 2 3 4 

13 
σc 

(Kg/cm3) 

Value 0-531 531-539 539-621 621-671 >671 

Rating 0 1 2 3 4 
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3.4. Risk analysis and Performance evaluation of blasting cost 

For risk analysis and performance evaluation of blasting costs, 146 
data points were utilized in this study. Among these, 117 data points were 
used to calculate the VI and establish a relationship using the RES-based 
technique, while the remaining 29 data points were employed to 
evaluate the established relationship. Table 10 illustrates an example 
computation of the VI for dataset number 1. Figure 7 displays the 
variations of the VI for the 117 data points, indicating an average VI of 
43.83, which suggests the presence of medium-high risk in the second 
risk group. 

 
Table 10. The values, ratings and vulnerability indices for dataset number 1. 

Parameters Value or description Value rating 

(Qi) 

Weighting 

(% ai) 

VI 

AN (Kg) 5500 4 11.4286 

23.8571 

Det 270 2 5.71429 

EM (Kg) 260 2 2.57143 

N 270 2 1.71429 

H (m) 6.3 3 2.85714 

D (mm) 76 4 6.57143 

B (m) 1.8 3 10 

S (m) 2.1 4 5.71429 

T (m) 0.9 4 6.28571 

J (m) 0.5 2 15.4286 

γr (ton/m3) 2.7 3 15.7143 

HA (Mhos) 3.5 3 7.42857 

σc (Kg/cm3) 671 3 8.57143 

 

 
Figure 7. The VI for the sample of data points. 

 

To predict the BC using the RES-based method with high accuracy 
(R2= 0.8953) was performed, as depicted in Figure 8. The developed 
equation (Eq. 3) can be used as the basis for predicting the BC in the 
training stage.  

 

𝐵𝐶 = 0.9276𝑉𝐼2 − 390.48𝑉𝐼 + 28748                                              (3) 

 

 
Figure 8. BC–VI prediction model. 

4. Results and evaluation of model performance 

To assess the performance of the built model, 29 data points were 
used for both verification and evaluation. Table 11 presents a 
comparison between the predicted and actual values of blasting costs. 

 

Table 11. The comparison of the values obtained from the built and measured 
model of the BC. 

NO. VI Measured BC Predicted BC (RES Model) 

1 25.213 18948 19492.47535 

2 25.639 19165 19346.17872 

3 22.514 21131 20426.84402 

4 36.506 15804 15729.44124 

5 32.884 14828 16910.68011 

6 29.545 16557 18020.82438 

7 35.298 16514 16120.48305 

8 66.548 7233 6870.261103 

9 60.44 10466 8535.810771 

10 62.5 8271 7966.4375 
 

The accuracy of the built model was evaluated using three statistical 
indices: MSE, RMSE, and R2. The lower the MSE and RMSE values, and 
the closer the R2 value to 1, the higher the accuracy of the model. 
Equations (4), (5), and (6) define these evaluation criteria.  
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In the above equations, 'n' represents the number of samples, tk 
represents the actual amount, and 𝐴 = �̂�𝑘 represents the predicted value 
for the kth observation. The statistical indices MSE, RMSE, and R2 for 
the built model were calculated as 0.00608, 0.078, and 0.9518, 
respectively, based on the evaluation criteria. These results indicate high 
accuracy of the model, with the error being close to zero and the 
accuracy close to one. Therefore, the developed model using the RES-
based method can accurately predict the BC in different projects. Figure 
9 illustrates the accuracy of the predicted values (RES) compared to the 
actual values using the R2 statistical index. 

 

 
 

Figure 9. The accuracy of the prediction model BC using R2. 
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To further understand this, Figure 10 presents a comparison between 
the values obtained using the RES-based method and the actual values. 
If the graph of the predicted values deviates significantly from the actual 
values, the model cannot be used effectively for prediction. However, in 
this case, the predicted values closely align with the actual values, as the 
graphs overlap each other. This demonstrates the high accuracy of the 
model. Considering the incorporation of uncertainty in the developed 
model, the relationship established using the RES method can be 
applied to predict the BC in other mining projects as well (case studies). 

 

 
Figure 10. The comparison of Predicted and Measured BC for the RES-based 
Model. 

 

5. Discussion 

The process of mining involves various steps, including drilling, 
blasting, loading, transportation, and mineral processing. Among these 
steps, blasting is particularly sensitive as it can significantly impact 
mining costs. Improper blasting techniques can result in additional 
drilling, increased consumption of explosives, and environmental 
damage. Therefore, optimizing BC is crucial for the economic viability 
of mining operations. In this study, the researchers focused on 
predicting BC in limestone mines using the RES-based method. The 
RES-based method takes into account the uncertainties and 
complexities associated with rock parameters, providing a more 
accurate estimation of blasting costs. By establishing a relationship 
between design, geotechnical parameters, and blasting costs, the RES-
based method offers a valuable tool for mining engineers and rock 
mechanics specialists. The blasting cost model was built using data 
collected from six limestone mines in Iran, resulting in a total of 146 data 
points. A wide range of input parameters was considered, including D, 
B, EM, N, H, S, T, J, HA, AN, Det, σc. and γr. The dataset was divided 
into two parts: 80% of the data (117 data points) were used to construct 
the RES-based model, while the remaining 20% (29 data points) were 
used for model evaluation and validation. 

The performance of the RES-based model was assessed using 
statistical indices, including MSE, RMSE, and R2. The results 
demonstrated that the RES-based method achieved high accuracy in 
predicting blasting costs, with MSE = 0.00608, RMSE = 0.078, and R2= 
0.9518. These findings indicate the potential of the RES-based method 
to overcome the limitations of traditional approaches and improve blast 
cost estimation accuracy. The implications of this study are significant 
for professionals working in mining and geotechnical operations. The 
accurate prediction of BC can lead to improvements in design, 
extraction, and production processes, resulting in cost and time savings 
for mining operations. Additionally, it can help mitigate environmental 
issues associated with inefficient blasting practices and enhance overall 
productivity. The RES-based method offers valuable insights and aids 
decision-making processes, enabling engineers to make informed 
judgments regarding BC in all mining projects. By considering 
uncertainties, avoiding simplifications, and incorporating critical 
elements, the RES approach provides a powerful tool for addressing 
rock behavior problems in mining and geotechnical operations. 

6. Conclusions 

The RES-based method presented in this study offers an effective 
solution for predicting BC in mining applications. Its accuracy, ability to 
overcome challenges, and potential to enhance productivity and 
efficiency in mining and geotechnical operations make it a valuable tool 
for the fields of mining engineering and rock mechanics. By employing 
the RES approach, mining professionals can optimize blasting cost 
estimation and make informed decisions to improve mining economics. 

REFERENCES 

[1] Abbaspour, H., Drebenstedt, C., Badroddin, M., & Maghaminik, 
A. (2018). Optimized design of drilling and blasting operations 
in open pit mines under technical and economic uncertainties 
by system dynamic modelling. International Journal of Mining 
Science and Technology, 28(6), 839-848.  

[2] Adesida, P. A. (2023). A rock engineering system approach to 
estimation of blast induced peak particle velocity. International 
Journal of Mining and Geo-Engineering, 57(1), 101-109.  

[3] AFENI, T. B. (2009). Optimization of drilling and blasting 
operations in an open pit mine—the SOMAIR experience. 
Mining Science and Technology (China), 19(6), 736-739.  

[4] Akande, J. M., & Lawal, A. I. (2013). Optimization of blasting 
parameters using regression models in ratcon and NSCE granite 
quarries, Ibadan, Oyo State, Nigeria.  

[5] Andriani, G. F., & Parise, M. (2017). Applying rock mass 
classifications to carbonate rocks for engineering purposes with 
a new approach using the rock engineering system. Journal of 
Rock Mechanics and Geotechnical Engineering, 9(2), 364-369.  

[6] Antipas Thadei Safari, M., & Karim Rajabu, B. (2011). Regression 
models of the impact of rockmass and blast design variations on 
the effectiveness of iron ore surface blasting. Engineering, 2011.  

[7] Asl, P. F., Monjezi, M., Hamidi, J. K., & Armaghani, D. J. (2018). 
Optimization of flyrock and rock fragmentation in the Tajareh 
limestone mine using metaheuristics method of firefly 
algorithm. Engineering with Computers, 34, 241-251.  

[8] Azadmehr, A., Jalali, S. M. E., & Pourrahimian, Y. (2019). An 
application of rock engineering system for assessment of the 
rock mass fragmentation: a hybrid approach and case study. 
Rock mechanics and rock engineering, 52(11), 4403-4419.  

[9] Bakhshandeh Amnieh, H., Hakimiyan Bidgoli, M., Mokhtari, H., 
& Aghajani Bazzazi, A. (2019). Application of simulated 
annealing for optimization of blasting costs due to air 
overpressure constraints in open-pit mines. Journal of Mining 
and Environment, 10(4), 903-916.  

[10] Bakhtavar, E., Sadiq, R., & Hewage, K. (2021). Optimization of 
blasting-associated costs in surface mines using risk-based 
probabilistic integer programming and firefly algorithm. 
Natural Resources Research, 30(6), 4789-4806.  

[11] Bastami, R., Aghajani Bazzazi, A., Hamidian Shoormasti, H., & 
Ahangari, K. (2020). Prediction of blasting cost in limestone 
mines using gene expression programming model and artificial 
neural networks. Journal of Mining and Environment, 11(1), 
281-300.  

[12] Benardos, A., & Kaliampakos, D. (2004). A methodology for 
assessing geotechnical hazards for TBM tunnelling—illustrated 
by the Athens Metro, Greece. International Journal of Rock 
Mechanics and Mining Sciences, 41(6), 987-999.  

[13] De Miguel-García, E., Martín-Chinea, K., & Gómez-González, J. 



 H. Fattahi and H. Ghaedi  / Int. J. Min. & Geo-Eng. (IJMGE), 58-2 (2024) 181-190191-199 189 

 

(2021). Particle Swarm Optimisation-Based Support Vector 
Regression Model to Estimate the Powder Factor of Explosives 
in Groundwater Tunnel Driving. Paper presented at the 
Proceedings of the 8th International Conference on Fracture, 
Fatigue and Wear: FFW 2020, August 26–27 2020. 

[14] Dehghani, H., & Ataee-Pour, M. (2011). Development of a model 
to predict peak particle velocity in a blasting operation. 
International Journal of Rock Mechanics and Mining Sciences, 
48(1), 51-58.  

[15] Esen, S., La Rosa, D., Dance, A., Valery, W., & Jankovic, A. 
(2007). Integration and optimisation of blasting and 
comminution processes. Paper presented at the EXPLO 
conference. 

[16] Faramarzi, F., Ebrahimi Farsangi, M., & Mansouri, H. (2013). An 
RES-based model for risk assessment and prediction of 
backbreak in bench blasting. Rock mechanics and rock 
engineering, 46, 877-887.  

[17] Fattahi, H. (2017). Risk assessment and prediction of safety 
factor for circular failure slope using rock engineering systems. 
Environmental earth sciences, 76(5), 224.  

[18] Fattahi, H., & Babanouri, N. (2018). RES-based model in 
evaluation of surface settlement caused by EPB shield tunneling. 
Indian Geotechnical Journal, 48, 746-752.  

[19] Fattahi, H., & Moradi, A. (2017). Risk assessment and estimation 
of TBM penetration rate using RES-based model. Geotechnical 
and Geological Engineering, 35, 365-376.  

[20] Fattahi, H., & Moradi, A. (2018). A new approach for estimation 
of the rock mass deformation modulus: a rock engineering 
systems-based model. Bulletin of engineering geology and the 
environment, 77, 363-374.  

[21] Frough, O., & Torabi, S. R. (2013). An application of rock 
engineering systems for estimating TBM downtimes. 
Engineering geology, 157, 112-123.  

[22] Ghanbari, K., Ataei, M., Sereshki, F., & Saffari, A. (2018). 
Determination and assessment of coal bed methane potential 
using rock engineering systems. Journal of Mining and 
Environment, 9(3), 605-621.  

[23] Ghanizadeh Zarghami, A., Shahriar, K., Goshtasbi, K., & Akbari, 
A. (2018). A model to calculate blasting costs using hole 
diameter, uniaxial compressive strength, and joint set 
orientation. Journal of the Southern African Institute of Mining 
and Metallurgy, 118(8), 869-877.  

[24] Hasanipanah, M., Amnieh, H. B., Arab, H., & Zamzam, M. S. 
(2018). Feasibility of PSO–ANFIS model to estimate rock 
fragmentation produced by mine blasting. Neural Computing 
and Applications, 30, 1015-1024.  

[25] Hasanipanah, M., Jahed Armaghani, D., Monjezi, M., & Shams, 
S. (2016). Risk assessment and prediction of rock fragmentation 
produced by blasting operation: a rock engineering system. 
Environmental earth sciences, 75, 1-12.  

[26] Hudson, J. (1992). Rock engineering systems. Theory and 
practice. 

[27] Jang, H., & Topal, E. (2013). Optimizing overbreak prediction 
based on geological parameters comparing multiple regression 
analysis and artificial neural network. Tunnelling and 
Underground Space Technology, 38, 161-169.  

[28] Kanchibotla, S. S. (2003). Optimum blasting? Is it minimum cost 
per broken rock or maximum value per broken rock? Fragblast, 
7(1), 35-48.  

[29] Kulatilake, P., Qiong, W., Hudaverdi, T., & Kuzu, C. (2010). 
Mean particle size prediction in rock blast fragmentation using 
neural networks. Engineering Geology, 114(3-4), 298-311.  

[30] Kumar, S., Mishra, A., & Choudhary, B. (2021). Prediction of 
back break in blasting using random decision trees. Engineering 
with Computers, 1-7.  

[31] Latham, J.-P., Van Meulen, J., & Dupray, S. (2006). Prediction of 
fragmentation and yield curves with reference to armourstone 
production. Engineering Geology, 87(1-2), 60-74.  

[32] Leng, Z., Fan, Y., Gao, Q., & Hu, Y. (2020). Evaluation and 
optimization of blasting approaches to reducing oversize 
boulders and toes in open-pit mine. International Journal of 
Mining Science and Technology, 30(3), 373-380.  

[33] Lowery, M., Kemeny, J., & Girdner, K. (2001). Advances in 
blasting practices through the accurate quantification of blast 
fragmentation. Mining Engineering, 53(10), 55-61.  

[34] Lu, P., & Latham, J.-P. (1994). A continuous quantitative coding 
approach to the interaction matrix in rock engineering systems 
based on grey systems approaches. Paper presented at the 
International congress International Association of Engineering 
Geology. 

[35] Lyashenko, V., Vorob'ev, A., Nebohin, V., & Vorob'ev, K. (2018). 
Improving the efficiency of blasting operations in mines with 
the help of emulsion explosives. Mining of Mineral Deposits(12, 
Iss. 1), 95-102.  

[36] Meten, M., Bhandary, N. P., & Yatabe, R. (2015). Application of 
GIS-based fuzzy logic and rock engineering system (RES) 
approaches for landslide susceptibility mapping in Selelkula 
area of the Lower Jema River Gorge, Central Ethiopia. 
Environmental earth sciences, 74, 3395-3416.  

[37] Miranda, V., Leite, F., & Frank, G. (2019). A numerical approach 
blast pattern expansion. O-Pitblast Lda, Porto, Portugal.  

[38] Mohammadi, H., & Azad, A. (2021). Prediction of ground 
settlement and the corresponding risk induced by tunneling: An 
application of rock engineering system paradigm. Tunnelling 
and Underground Space Technology, 110, 103828.  

[39] Monjezi, M., Rezaei, M., & Varjani, A. Y. (2009). Prediction of 
rock fragmentation due to blasting in Gol-E-Gohar iron mine 
using fuzzy logic. International Journal of Rock Mechanics and 
Mining Sciences, 46(8), 1273-1280.  

[40] Nielsen, K. (1987). Model studies of loading capacity as a 
function of fragmentation from blasting. Paper presented at the 
Proceedings of 3rd Mini-Symposium on Explosives and Blasting 
Research. 

[41] Nikkhah, A., Vakylabad, A. B., Hassanzadeh, A., Niedoba, T., & 
Surowiak, A. (2022). An evaluation on the impact of ore 
fragmented by blasting on mining performance. Minerals, 12(2), 
258.  

[42] Ozdemir, B., & Kumral, M. (2019). A system-wide approach to 
minimize the operational cost of bench production in open-cast 
mining operations. International Journal of Coal Science & 
Technology, 6(1), 84-94.  

[43] Pomasoncco-Najarro, A., Trujillo-Valerio, C., Arauzo-Gallardo, 
L., Raymundo, C., Quispe, G., & Dominguez, F. (2022). Pre-split 
blasting design to reduce costs and improve safety in 
underground mining. Energy Reports, 8, 1208-1225.  

[44] Qu, S., Hao, S., Chen, G., Li, B., & Bian, G. (2002). The BLAST-
CODE model–A Computer-Aided Bench Blast Design and 
Simulation System. Fragblast, 6(1), 85-103.  



190 H. Fattahi and H. Ghaedi / Int. J. Min. & Geo-Eng. (IJMGE), 58-2 (2024) 181-190191-199 

 

[45] Rezaei, M., Monjezi, M., & Varjani, A. Y. (2011). Development of 
a fuzzy model to predict flyrock in surface mining. Safety 
Science, 49(2), 298-305.  

[46] Roy, M., Paswan, R. K., Sarim, M., & Kumar, S. (2017). Geological 
Discontinuities, Blast Vibration and Frag-mentation Control—
A Case Study. Paper presented at the Proceedings of the 7th 
Asian Mining Congress and International Mining Exhibition, 
Kolkata, India. 

[47] Sadeghi, F., Monjezi, M., & Jahed Armaghani, D. (2020). 
Evaluation and optimization of prediction of toe that arises 
from mine blasting operation using various soft computing 
techniques. Natural Resources Research, 29, 887-903.  

[48] Saeidi, O., Azadmehr, A., & Torabi, S. R. (2014). Development of 
a rock groutability index based on the Rock Engineering 
Systems (res): a case study. Indian Geotechnical Journal, 44, 49-
58.  

[49] Saffari, A., Sereshki, F., Ataei, M., & Ghanbari, K. (2013). 
Applying rock engineering systems (RES) approach to evaluate 
and classify the coal spontaneous combustion potential in 
Eastern Alborz coal mines. International Journal of Mining and 
Geo-Engineering, 47(2), 115-127.  

[50] Shad, H. I. A., Sereshki, F., Ataei, M., & Karamoozian, M. (2018). 
Prediction of rotary drilling penetration rate in iron ore oxides 
using rock engineering system. International Journal of Mining 
Science and Technology, 28(3), 407-413.  

[51] Silva, J., Amaya, J., & Basso, F. (2017). Development of a 
predictive model of fragmentation using drilling and blasting 
data in open pit mining. Journal of the Southern African 
Institute of Mining and Metallurgy, 117(11), 1089-1094.  

[52] Singh, T., & Singh, V. (2005). An intelligent approach to 
prediction and controlground vibration in mines. Geotechnical 
and Geological Engineering, 23(3), 249-262.  

[53] Wang, M., Shi, X., Zhou, J., & Qiu, X. (2018). Multi-planar 
detection optimization algorithm for the interval charging 
structure of large-diameter longhole blasting design based on 
rock fragmentation aspects. Engineering Optimization, 50(12), 
2177-2191.  

[54] Wang, S., Li, X., Yao, J., Gong, F., Li, X., Du, K., . . . Du, S. (2019). 
Experimental investigation of rock breakage by a conical pick 
and its application to non-explosive mechanized mining in deep 
hard rock. International Journal of Rock Mechanics and Mining 
Sciences, 122, 104063.  

[55] Yang, H.-S., & Rai, P. (2011). Characterization of fragment size 
vis-à-vis delay timing in quarry blasts. Powder technology, 
211(1), 120-126.  

Yang, R., Kavetsky, A., & McKenzie, C. (1989). A two-dimensional 
kinematic model for predicting muckpile shape in bench 
blasting. International Journal of Mining and Geological 
Engineering, 7, 209-226.  

[56] Yu, Z., Shi, X., Miao, X., Zhou, J., Khandelwal, M., Chen, X., & 
Qiu, Y. (2021). Intelligent modeling of blast-induced rock 
movement prediction using dimensional analysis and optimized 
artificial neural network technique. International Journal of 
Rock Mechanics and Mining Sciences, 143, 104794.  

[57] Zhou, J., Dai, Y., Khandelwal, M., Monjezi, M., Yu, Z., & Qiu, Y. 
(2021). Performance of hybrid SCA-RF and HHO-RF models 
for predicting backbreak in open-pit mine blasting operations. 
Natural Resources Research, 30, 4753-4771.  

[58] Zhou, Q., Herrera, J., & Hidalgo, A. (2019). Development of a 
quantitative assessment approach for the coal and gas outbursts 

in coal mines using rock engineering systems.  


