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A B S T R A C T 

 

Induced polarization (IP) tomography measurements, as a near-surface geophysical method, can provide information about the degree of 
chargeability of subsurface materials and are commonly used in mineral exploration, engineering studies (e.g., sediment/bedrock interface 
identification, crushed zones and faults detection, and landslide and soil properties imaging), as well as in environmental investigations 
(contaminant plums identification and landfill characterization). The purpose of these measurements is to obtain the distribution of 
polarizability characteristics inside an object, generally below the surface, at the boundary of the object, or outside the area in question. The 
results of such measurements can be mathematically modeled for the specific polarizability properties by solving the Poisson’s equation 
restricted by appropriate boundary conditions. In this paper, we focused on the importance of simulating induced-polarization responses and 
retrieving chargeability distributions in geo-materials to enhance the characterization of subsurface structures. We presented the methods for 
forward modelling and non-linear inversion of IP measurements. To this end, in the first step, the Poisson’s equation for a two-dimensional 
ground with an arbitrary distribution of conductivity is solved using the finite difference numerical method. In the next step, based on the 
existing relations between conductivity and chargeability (the Siegel’s formulation), the apparent IP response is calculated. Finally, we solved 
the non-linear chargeability inversion problem following a non-linear apparent resistivity inversion. This is achieved by imposing physical 
constraints to prevent the estimation of unrealistic model parameters, using a Newton-based optimization method. To evaluate the efficiency 
of the proposed methodology, we utilized the proposed algorithm on two simulated examples and a real data set. Our numerical results show 
that the algorithm reliably represents the main features and structure of the Earth’s subsurface in terms of resistivity and chargeability models. 
All the algorithms presented in this paper have written in the MATLAB programming language. 

Keywords: Finite difference, Newton-based method, Non-linear inversion, Poisson’s equation, Time domain induced polarization, 
Tomography. 

 

 

1. Introduction 

Historically, IP tomography measurements, as a non-invasive and 
near-surface geophysical method, have been widely used for exploring 
metallic ore deposits. However, in recent years, it has been increasingly 
utilized in a wide range of engineering and environmental applications. 
IP measurements are performed in two different time and frequency 
domains. Depending on the type of signal injected into the ground, there 
is a difference in the type of response recorded. Naturally, in the 
frequency domain, we would face more information from 
measurements and due to the existence of more interpretive parameters, 
the uncertainty in modelling and interpretation of subsurface structures 
decreases. Frequency domain surveys, conducted at specific frequencies, 
can be time-consuming and costly, and equipment availability may be 
limited. Hence, due to the project's time sensitivity, time domain surveys 
are typically preferred. A review of the induced-polarization method can 
be found in [1-3]. Besides advances in the foundational comprehension 
of induced polarization phenomena, the TDIP tomography method has 
shown growing progress and significant developments in many fields of 
research from forward modelling to inversion in recent years. Early 
inversion algorithms parameterized the ground model into blocks with 
low numbers and maintained the same for inversions [4-6]. The systems 
of overdetermined equations were solved and the convergence of the 
algorithm was judged solely on the basis of misfit. But due to the 
complexity of the structure of the electrical conductivity of the Earth,  

 
 
 
the display of several blocks does not adequately show the actual 
distribution of this physical property. This problem can be solved to 
alarge extent of model parameters by discretizing the terrain to a large 
number of blocks, and solving the inversion problem as an optimization 
process, where a model objective function is minimized to achieve a 
relatively sufficient fit to the data. The very first effort to model the 
effect of the presence of chargeable material on the effective resistivity 
was based on the study by [7]. Following the model presented by [7], 
[8] proposed a two-step inversion approach to retrieve a chargeability 
model. Their method was based on the DC resistivity inversion in the 
first step, and in the second step, assuming that the DC resistivity 
inversion estimates the effective resistivity model instead of the intrinsic 
resistivity model, the chargeability model is inverted. [9] suggested a 2D 
inversion of the IP data in specular cross-section tomography 
experiments. [10] presented an approximate inversion of the IP data 
which is valid for low resistivity contrasts. Later, [11] extended this 
approach to the 3D inversion of the IP data. [12] developed a 
computationally simpler method based on a low-contrast (resistivity 
and chargeability) approximation. However, this approach has now 
diminished in value due to subsequent computational advancements. 
[13] developed a software for time-lapse two- and three-dimensional IP 
data. Despite progress in the application of the TDIP method, the 
principles behind the inversion of resistivity and IP data have not really 
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changed in recent years. 
In this paper, [7] and the algorithm proposed by [8], we present a 

two-step inversion of the IP data in which the resistivity data are first 
inverted, and at the second step, the polarizability model is recovered 
using a non-linear chargeability inversion. In the non-linear inversion, 
the non-linearity of the underlying problem is linearized using a 
sensitivity matrix containing partial derivatives of measurements with 
respect to model parameters. The most obvious way to determine these 
entries is the application of the forward matrix method which is rather 
time-consuming [13]. 

In the following, we first provide the theory and mathematical 
formulation of the DC resistivity and IP forward modelling. Next, we 
present a non-linear inversion method under spatial smoothness 
constraints aimed at retrieving resistivity and chargeability models. We 
then evaluate the efficiency of our approach using both synthetic and 
field data sets of the IP. We end the paper with conclusions. 

2. Methodology 

IP measurements are usually accompanied with direct current 
resistivity measurements. The merit of utilizing IP method alongside 
pure direct current lies in the difficulty of detecting the resistivity 
signature caused by disseminated chargeable material. The chargeability 
signature resolved by the IP method may be strong and relatively 
independent of the geometry of the resistivity structure. When 
subjecting the ground to an external field, in the specific form of direct 
current (low-frequency current), the potential experiences a rapid and 
sudden increase in the absence of chargeability referred to as the 
instantaneous potential (𝑉∞). This increase is followed by a gradual and 
exponential growth until it reaches a steady and constant value. This 
final value, which is utilized to determine the apparent resistivity, is 
commonly referred to as the primary potential (𝑉𝑝). When the electrical 
field is interrupted, there is an initial sharp drop in potential, known as 
the secondary potential (𝑉𝑠), which then decreases exponentially as the 
charges return to their initial state. This subsequent potential change is 
influenced by the polarizability characteristic of the Earth. However, in 
real data, it is not feasible to measure the secondary potential, because 
it corresponds to the moment of current transmission. Therefore, it 
cannot be practically measured and is solely defined theoretically in the 
context of forward modelling relations [8]. 

[7] first defined the principal concept of chargeability as a physical 
property and demonstrated that the IP response (𝜂𝑎 is influenced by the 
subsurface distribution of intrinsic chargeability. Building upon the 
work of [7], the IP response of a uniform earth with the intrinsic 
conductivity (𝜎∞) and intrinsic chargeability (𝜂) is expressed as: 

 

𝜂𝑎 =
𝑓𝑑𝑐(𝜎∞(1−𝜂))−𝑓𝑑𝑐(𝜎∞)

𝑓𝑑𝑐(𝜎∞(1−𝜂))
                                                                       (1) 

 

where 𝑓𝑑𝑐 stands for the direct current resistivity forward operator. It 
is noteworthy that the terms 𝑓𝑑𝑐(𝜎∞(1 − 𝜂))  and 𝑓𝑑𝑐(𝜎∞)  are 
proportional to the 𝑉𝑝 and 𝑉𝑠, respectively. Equation 1 reveals that the 
apparent chargeability is computed based on two consecutive 
applications of the resistivity forward operator for two conductivity 
models, that is, 𝜎∞(1 − 𝜂) and 𝜎∞ . The forward modelling of electrical 
potential due to an arbitrary conductivity distribution and for a point 
source is expressed in terms of the Poisson’s equation [14]. 

 

−𝛻. (𝜎∞ 𝛻𝑉∞) =  𝐼 𝛿(𝑟 − 𝑟𝑠)                                                                       (2) 
 

where 𝑉∞ is the potential measured in the absence of chargeability, 𝐼 
indicates the injected current, 𝑟𝑠 is the position of the point sources of 
the current electrode, and 𝛿 is the Dirac delta function. 

Assuming �⃗�  is the external field, the applied current density vector is 
𝑗 = 𝜎∞ �⃗� . The vector 𝑗 (1 − 𝜂)  plays the role of 𝑗  when there is a 
distribution of dipoles. Therefore, the total current density at the time 
of the existence of dipoles in the ground with chargeability is equal to            
𝜎∞(1 − 𝜂)�⃗� , and the net effect is to reduce 𝜎∞ by factor (1 − 𝜂). Using 
Siegel relations, the ground chargeability effects are simulated by 
employing the forward operator of the DC resistivity 𝑓𝑑𝑐 with effective 

conductivity 𝜎𝜂 = 𝜎∞(1 − 𝜂), [7]: 
 

𝑉𝜂 = 𝑓𝑑𝑐[𝜎∞(1 − 𝜂)].                                                                                 (3) 
 

Insertion Equation 3 into Equation 2 yields:  
 

−𝛻. (𝜎∞ (1 − 𝜂)𝛻𝑉𝜂) = − 𝐼 𝛿(𝑟 − 𝑟𝑠)                                                              (4) 
 

It is noticed that in contrast to Equation 2 in which the chargeability 
is neglected, Equation 4 includes polarization effects. From a practical 
point of view, the potential 𝑉𝜂  is usually measured that should be 
inverted to retrieve the intrinsic conductivity 𝜎∞, but the inversion of 𝑉𝜂 
results in the conductivity 𝜎𝜂 . The crucial initial step, as indicated by 
Equations 2 and 4, is to formulate and solve a 2.5D electrical resistivity 
forward modelling problem. The merit of the 2.5D method lies in its 
ability to achieve a physically realistic representation, incorporating the 
full 3D electrical potential distribution. This is accomplished by 
addressing multiple problems within a constrained 2D geometry, 
considering various wavenumbers. Consequently, computational time is 
minimized compared to performing a complete 3D forward modelling. 
The computation of electrical resistivity forward responses involves 
simulating current flow into the Earth's surface by solving the Poisson's 
equation. This is achieved through the finite difference approximation, 
utilizing mixed boundary conditions as proposed by [15]. The 3D 
distribution of electrical potential due to a point source 𝑟𝑠 = (𝑥𝑠, 𝑦𝑠, 𝑧𝑠) 
is expressed by the following governing equation [15]: 

 

∇ ∙ [𝜎∞(x, y, z)∇𝑉∞(𝑥, 𝑦, 𝑧)] = −𝐼𝛿(𝑥 − 𝑥𝑠)𝛿(𝑦 − 𝑦𝑠)𝛿(𝑧 − 𝑧𝑠).         (5) 
 

To account for the three-dimensional source characteristic, we need 
to the Fourier transform the partial differential equation (5) with 
respect to 𝑦, the strike direction, using the cosine transform [15]: 

 

�̃�∞(𝑥, 𝑘𝑦, 𝑧) = ∫ 𝑉∞(𝑥, 𝑦, 𝑧) cos(𝑘𝑦𝑦) 𝑑𝑦,                   
∞

0
                              (6) 

 

where �̃�∞  stands for the transformed potential in the wavenumber 
domain and 𝑘𝑦 is the wavenumber with respect to 𝑦. 

Applying the Fourier-cosine transformation to the three-dimensional 
Poisson’s equation (5), one obtains [15]: 

 

∂

𝜕𝑥
(𝜎∞(𝑥, 𝑧)

∂𝑉∞

𝜕𝑥
) − 𝑘𝑦

2𝜎∞(𝑥, 𝑧)�̃�∞ +
∂

𝜕𝑧
(𝜎∞(𝑥, 𝑧)

∂𝑉∞

𝜕𝑧
) =  

              −
𝐼

2
𝛿(𝑥 − 𝑥𝑠)𝛿(𝑧 − 𝑧𝑠)                                                                           (7) 

 

Equation (7) is numerically solved using rectangular or triangular 
mesh discretization procedure. After obtaining discrete representations 
for the principle governing equations and boundary conditions at all 
cells, the transformed forward problem can be represented as a linear 
system of equations: 

 

𝐂�̃�∞ = 𝒒,                                                                                                 (8) 
 

where 𝐂 indicates a real sparse five-band symmetric matrix and 𝒒 
displays the source vector. This equation has to be solved for the vector 
�̃�∞  containing the potentials for all existing nodes. By taking the 
advantage of the sparsity of the matrix 𝐂, it is possible to use direct 
methods that can be computationally efficient. The solution �̃�∞ is then 
transformed from the wavenumber domain to the spatial domain (i.e., 
x-z plane) following the procedure of [15] and based on the inverse 
cosine-Fourier transform [15], 

 

𝑉∞(𝑥, 𝑧) =
2

𝜋
∫ �̃�∞(𝑥, 𝑘𝑦, 𝑧) cos(𝑘𝑦𝑦) 𝑑𝐾𝑦.                  

∞

0
                              (9) 

 

The next step is to formulate the inverse problem of electrical 
resistivity tomography data. 

3. Inversion of electrical resistivity tomography data 

The inverse problem of electrical resistivity tomography (ERT) data 
is formulated as a non-linear problem and is usually solved through an 
iterative process that applies a forward modelling for arbitrary resistivity 
distribution. The relationship between the observed data and model 
parameters is defined as: 
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𝐝 = 𝒇(𝐦).                                                                                                         (10) 
 

By linearizing Equation 10 using a first-order Taylor expansion, we 
have: 

 

∆𝐝 = ∇𝒇(𝐦)∆𝐦.                                                                                        (11) 
 

In these equations, 𝐝 ∈ ℛ𝑚×1 is the observed data, 𝐦 ∈ ℛ𝑛×1 is the 
model parameters (here, 𝐦  includes the subsurface conductivity 
distribution), 𝒇(𝐦) ∈ ℛ𝑚×𝑛  is the non-linear forward operator, ∆𝐝 =
𝐝 − 𝒇(𝐦) is a vector of the difference between observed and theoretical 
data, ∇𝒇(𝐦) is a sensitivity matrix that represents the changes in the 
response of the forward modelling to changes in the model parameters 
with elements 𝐽𝑖,𝑗 =

𝜕d𝑖

𝜕m𝑗
 , and ∆𝐦 is a model correction (perturbation) 

vector. In the inversion process, we seek to minimize the difference 
between observed and theoretical data using the following cost function: 
a measure of the goodness of fit between the data and the model 
parameters, accounting for noise [16]:  

 

𝛷𝐝 = 𝑚𝑖𝑛||𝐖d(𝐝 − 𝒇(𝐦))||𝑙2
2 .                                                             (12) 

 

The process of solving most of geophysical inverse problems is often 
highly unstable, so that the smallest changes in measurements can lead 
to large variations in the estimated model. The ERT non-linear inversion 
problem is also inherently ill-posed, resulting in non-unique estimates 
of the model parameters. To numerically solve the inverse problem, we 
must consider data fidelity, model residual, and physical constraints to 
reduce instability of the inversion and the size/dimension of the model 
space to increase the chance of obtaining a geologically meaningful 
model. To that end, we form a weighted sum of the data fidelity 𝛷𝒅 and 
the stabilizer function 𝛷𝐦  using a weighting factor 𝛼 , and find the 
solution which minimizes the objective function as given by: 

 

Ψ(𝐦,α) = min(𝛷𝒅 + α𝛷𝒎) = min‖𝐖𝑑(𝐝 − 𝒇(𝐦))‖𝑙2
2  +

 𝛼‖𝐖m(𝐦 − 𝐦𝑎𝑝𝑟)‖𝑙2

2
,                                                                                            (13) 

 

where 𝛼  is the damping factor,  𝐖d  represents the data weighting 
matrix, comprised of the inverse of the data error, assuming that the 
noise for each experiment is independently and normally distributed, 
𝐖m = 𝑎ℎ𝐃ℎ 

T 𝐃ℎ + bℎ𝐃𝑉 
T  𝐃𝑉  is the model constraint matrix, and the 

positive coefficients 𝑎ℎ = 1  and 𝑏ℎ = 0.5  are used to promote 
heightened smoothness in either horizontal or vertical directions, and 
𝐦apr is the prior model. It is worth mentioning that different norms (𝑙𝑝) 
can be used for misfit and regularization terms. When using the 𝑙2 norm 
for misfit, all the data is given equal weight, leading the algorithm to be 
influenced by noise that falls outside the desired range. This can result 
in a suboptimal fit. On the other hand, when the 𝑙1 norm is employed, 
the algorithm becomes less susceptible to noise; however, from a 
mathematical and derivational standpoint, it presents a more complex 
solution. Hence, utilizing the 𝑙2 norm is preferred, because it simplifies 
the mathematical calculations in the context of misfit. The choice of 
which norm to use in the regularization term depends on the geological 
conditions and the specific model requirements. In models where we are 
seeking sharp or sparse representations, the 𝑙1   norm is employed. 
Conversely, in models using the 𝑙2  norm, we aim to obtain smoother 
and more continuous estimations [16]. 

By linearization using the Taylor expansion and replacing the first 
and second terms of the expansion, one obtains: 

 

min||𝐝 − 𝒇(𝐦) − ∇𝒇(𝐦)∆𝐦||
𝑙2

2
 +  

                               𝛼||𝐖m(𝐦 − 𝐦apr + ∆𝐦)||𝑙2
2 .                                        (14) 

 

By taking the derivative of the objective function with respect to ∆𝐦 
and solving the objective function produces the following iterative 
numerical method, i.e. 

 

∆𝐦 = (𝑱(𝐦𝑘)𝑇𝐖d
𝑇𝐖d 𝑱(𝐦

𝑘) + 𝛼(𝑎ℎ𝐃ℎ 
T 𝐃ℎ +

bℎ𝐃𝑉 
T  𝐃𝑉))

−1(𝑱(𝐦𝑘)𝑇𝐖d
𝑇𝐖d∆𝐝 − 𝛼(𝑎ℎ𝐃ℎ 

T 𝐃ℎ + bℎ𝐃𝑉 
T  𝐃𝑉)(𝐦

𝑘−1 −

𝐦𝑎𝑝𝑟)),                                                                                                        (15) 
 

where 𝑱𝑇 is the transpose of the Jacobian matrix 𝑱, 𝑘 shows the k-th 

iteration of the inversion process, and ∆𝐦𝑘+1 is a search direction at the 
k-th iteration. The Jacobian matrix or sensitivity function is computed 
through a highly efficient numerical method, employing a forward 
matrix calculation within the context of 2.5D finite-difference electrical 
resistivity forward modelling. ∆𝐝 = [log 𝐝 − log 𝒇(𝐦)]  to ensure the 
positivity of the updated conductivity values. At each iteration, the 
algorithm is calculated by solving the objective function for ∆𝐦 and the 
model is updated using 𝐦𝑘+1 = 𝐦𝑘 + 𝜇∆𝐦. Furthermore, before the 
model is updated, using a line-search algorithm, the step length 𝜇  is 
determined aimed at averting the iteration divergence. The 
minimization process is executed with a range of 𝛼  values, with the 
objective of selecting the optimal 𝛼 that results in the smoothest model 
while maintaining the misfit 𝛷𝒅  at the desired level. The motivation 
behind pursuing a smoother model lies in the intention to avoid being 
misled by non-essential features that may appear in the model but are 
not crucial for accurately aligning with noisy measurements. In essence, 
among a myriad of potential solutions (i.e., those adequately fitting the 
observations within a specified tolerance), our goal is to identify the 
simplest model—requiring the fewest unnecessary features not 
demanded by the observed data. This approach is commonly known as 
the Occam's inversion, which involves a two-step inversion process. In 
the initial step, the emphasis is on minimizing the misfit function within 
a specified tolerance (i.e., 𝜒2 = ‖𝐖d(𝐝 − 𝒇(𝐦))‖𝑙2

2 /𝑚, 𝑚 is the size of 
the data vector, moves close to one) across a range of regularization 
parameters. Subsequently, in the second step, the minimization of the 
objective function persists while maintaining the misfit function at the 
desired level. Moreover, the iterative process is governed by three 
stopping criteria; 1) the reduced-𝜒2score ((𝛷𝒅 𝑚⁄ ) < 1), 2) the root 
mean square error (RMS = (100 × √𝑚

−1
‖𝐝 − 𝒇(𝐦𝑘−1)‖𝑙2 < 𝜀 , 𝜀 =

4%) where 𝑚 is the length of data, and  3) the number of maximum 
iteration is exceeded. In other words, if one of these criteria is met, the 
iterative process is terminated [16]. 

4. The inversion of time-domain IP data 

[8] developed three time-domain IP inversion methods. All methods 
are based on the chargeability perturbation model according to [7], and 
they recover a resistivity and a chargeability model after two 
implementations of inversion. The first implementation aims to recover 
a resistivity model, while the second implementation is used to retrieve 
a chargeability model. The first method, as proposed by [8], involves 
solving a linear inverse problem under the assumption that the amount 
of chargeability is small. The second algorithm estimates the 
chargeability model after two resistivity inversions of perturbed 
resistivity models. Finally, the third method, which solves a non-linear 
problem, includes the most accurate theoretical framework for the 
inversion of the IP data. One of the advantages of this method is that it 
does not require that the chargeability to be small, and it uses a similar 
algorithm for the inversion of resistivity data and IP. Hence, we follow 
the third IP inversion strategy proposed by [8]. The objective function 
in the inversion algorithm is expressed as follows: 

 

∆𝜼 = (𝑱𝐼𝑃(𝜼
𝑘)𝑇𝐖d

𝑇𝐖d 𝑱𝐼𝑃(𝜼
𝑘) +  𝛼(𝑎ℎ𝐃ℎ 

T 𝐃ℎ + bℎ𝐃𝑉 
T  𝐃𝑉) +

𝜆 𝐖𝑝)
−1

  
(𝑱𝐼𝑃(𝜼

𝑘)𝑇𝐖d
𝑇𝐖d∆𝐝 −  𝛼(𝑎ℎ𝐃ℎ 

T 𝐃ℎ + bℎ𝐃𝑉 
T  𝐃𝑉)𝜼

𝑘−1 − 𝜆𝐖𝑝𝜼
𝑘−1),    (16) 

 
where 𝑱𝐼𝑃 is the IP sensitivity matrix as a function of the conductivity 

obtained from the direct current resistivity inversion,  𝜆  is a large 
positive value (e.g., 𝜆 = 105)  which penalizes negative chargeability 
values, 𝐖𝑝 = diag

𝑖
(𝑢(−𝜼))  ( 𝑢(𝑥)  is the step function) displays a 

diagonal matrix with values of zero or one, and ∆𝐝 = (𝛈𝑎 − 𝛈𝑐𝑎𝑙) is the 
residual vector. 

The inversion begins with a uniform chargeability model (𝜼0) derived 
from the geometric mean of the apparent chareability data as the staring 
model. The IP sensitiviy matrix (𝑱𝐼𝑃) is updated at each iteration. The 
Jacobian matrix represents the variation of the observational data to the 
parameters of the model: 



156 S. S. Pourhashemi et al.  / Int. J. Min. & Geo-Eng. (IJMGE), 58-2 (2024) 153-160191-199 

 

𝐽𝐼𝑃
𝑖𝑗

=
𝜕d𝑖

𝜕𝜂𝑗
.                                                                                               (17) 

 

and 

𝑑𝑖 = 𝜼𝑎 =
𝑉𝜂

𝑖−𝑉∞
𝑖

𝑉𝜂
𝑖 .                                                                                     (18) 

By taking the derivative of apparent chargeability with respect to 𝜂𝑗 , 
we have: 

 

𝜕d𝑖

𝜕𝜂𝑗
= 𝑉∞

𝑖

(𝑉𝜂
𝑖)

2

𝜕𝑉𝜂
𝑖

𝜕𝜂𝑗
.                                                                                                (19) 

 

Algorithm 1. Pseudocode corresponding to time-domain IP data 
inversion 

Inputs: Observed data 𝛈𝑎𝜖ℝ
𝑚×1  including apparent chargeability 

measurements, the conductivity distribution 𝜎∞  derived from the 
direct current resistivity inversion, and data weighting matrix 
𝐖d𝜖ℝ

𝑚×𝑚. 
Outputs: Inverted model parameters 𝜼𝜖ℝ𝑛×1  
Initialization: define a range of 𝛼𝑞  (𝑞 = 1,… ,𝑁) , 𝐖m  (model 
constraint matrix defined as the first order roughening matrix), 𝜖 =
5%, 𝑘 = 1, the initial chargeability model 𝜼0. 

While 𝜒2 > 1  or (100 × √𝑚
−1

‖𝜼𝑎 − 𝜼𝑎
𝑐𝑎𝑙‖𝑙2) < 𝜀  or maximum 

iteration is not reached do 
Comput 𝝈𝜼

𝒌 = 𝝈∞(1 − 𝜼𝑘−1) 

Compute 𝜼𝑎
𝑐𝑎𝑙 =

𝒇(𝝈𝜂
𝑘)−𝒇(𝜎∞)

𝒇(𝝈𝜂
𝑘)

  

Compute ∆𝐝 = (𝛈𝑎 − 𝜼𝑎
𝑐𝑎𝑙) the discrepancy between the measured 

apparent chargeability data and the calculated one 
Compute the matrix  𝑱𝐼𝑃(𝜼

𝑘−1)𝜖ℝ𝑚×𝑛 with respect to all model cells 
and meaurements  
For 𝛼𝑞 , 𝑞 = 1,… ,𝑁 do 
Compute the model perturbation ∆𝐦 using Equation 16 
Compute 𝜼𝑞 = 𝜼𝑞−1 + ∆𝐦 
Calculate 𝝈𝜂

𝑞
= 𝝈∞(1 − 𝜼𝑞) 

Compute 𝜼𝑎
𝑐𝑎𝑙 =

𝒇(𝝈𝜂
𝑞
)−𝒇(𝜎∞)

𝒇(𝝈𝜂
𝑞
)

  

Compue the data fidelity term 𝛷𝒅 = ‖𝜼𝑎 − 𝜼𝑎
𝑐𝑎𝑙‖𝑙2

2  
End for 
Choose the largest value for 𝛼𝑞 such 𝜒2 ≤ 1, otherwise select a 𝛼𝑞 
minimizing 𝛷𝒅 
𝑘 = 𝑘 + 1 
Set 𝜼𝑘−1 = 𝜼𝑞 
End while 

 

Now we only need to calculate 
𝜕𝑉𝜂

𝑖

𝜕𝜂𝑗
 . By inserting 𝜎𝜂 = 𝜎∞(1 − 𝜂) as 

the conductivity that generates the potential 𝑉𝜂 into Equation 19, we get: 
 

𝜕𝑉𝜂
𝑖

𝜕𝜂𝑗
= −𝜎∞

𝑗 𝜕𝑉𝜂
𝑖

𝜕𝜎𝜂
𝑗 ≡ −𝜎∞

𝑗
𝐽𝑖𝑗 ,                                                                           (20) 

 

is a scaled value of the sensitivity for a resistivity problem. 𝜎∞and 
𝐽𝑖𝑗(𝜎∞)  are the intrinsic conductivity or background conductivity and 
the sensitivity matrix derived from the inversion of direct current 
resistivity inversion from the first step, respectively. The final Jacobian 
reads: 

 

𝐽𝐼𝑃
𝑖𝑗 = 𝜕d𝑖

𝜕𝜂𝑗
= −𝜎∞

𝑗 𝑉𝜎
𝑖

(𝑉𝜂
𝑖)

2 𝐽𝑖𝑗 .                                                                 (21) 

Algorithm 1 represents a pseudocode corresponding to the proposed 
inversion of IP measurements. 

5. Numerical experiments 

In this section, we present a set of experiments using two simulated 
examples and a real case from the Nikuiyeh area in Qazvin province, 
Northeast Iran, to demonstrate the performance and reliability of the 

inversion algorithm. It should be noted that in direct current resistivity 
surveying, the presence of negative data is generally indicative of 
measurement technical problems, unless the electrode arrangement's 
geometry yields a negative geometrical factor. Within the near surface 
geophysics community, it is widely believed that the same principle 
applies to time-domain IP measurements, where negative IP data are 
often considered an indication of data quality problems. Consequently, 
it is not uncommon to eliminate negative IP data during the data 
processing stage, although this practice can result in the loss of valuable 
information [17]. Therefore, to maintain depth resolution and prevent 
the formation of artifacts in the chargeability model, it is essential to 
retain data points with negative apparent chargeability values in both 
synthetic and real data sets. 

5.1. Synthetic models 

In this context, the simulated data from two synthetic models are 
produced using RESIP2DMODE, an open-source MATLAB code 
specifically crafted for 2.5D forward modelling of the resistivity and IP 
data [18]. The apparent electrical resistivity and IP responses of the 
synthetic models are simulated using a linear dipole-dipole setup, with 
measurements taken from position 0 up to 420 m and a fixed electrode 
spacing of 10 m at up to 8 levels (n=1-8, where n indicates the number 
of receiver-transmitter dipole separations). This results in a total of 132 
measurements. For the 2.5-D forward modelling, we partition the model 
into a series of rectangular cells, where the width of the working-area 
cells matches the unit electrode spacing, and the depth of the cells 
logarithmically increases in the vertical direction. To better emulate 
real-world field conditions, we introduce perturbations into the forward 
modelling responses, encompassing both apparent resistivity and 
apparent chargeability data. These perturbations involve the addition of 
2% uncorrelated Gaussian-distributed noise with a zero mean, and the 
magnitude of the noise varies depending on each data point. 

Model 1 

The initial model, denoted as Example 1, comprises three structures, 
resembling the inclined vein structures, situated at varying depths 
beneath the surface. These bodies are embedded within a homogeneous 
medium characterized by a resistivity of 1000 Ω.m and a chargeability of 
1 mV/V, as illustrated in Figure 1. Table 1 provides details regarding the 
geo-electrical parameters relevant to Example 1. Throughout the 
inversion process, lower and upper bounding constraints for resistivity 
values are established as [𝜌𝑙𝑜𝑤 = 0, 𝜌𝑢𝑝𝑝𝑒𝑟 = 5000] Ω𝑚 for all synthetic 
examples. Figures 2(a) and 3(a) displays the apparent resistivity and 
chargeability pseudo-sections, which have been affected by noise. The 
pseudo-sections do not allow for the accurate identification of the true 
subsurface structures in terms of geometry and physical properties. 
Following the strategy proposed for the inversion of apparent resistivity 
and chargeability data sets, Figures 2(c) and 3(c) show the inverted 
sections of resistivity and chargeability. In these figures, it is evident that 
the primary features and structures of the synthetic model are accurately 
replicated, and no significant undesirable features (artifacts) are 
observed in the inverted resistivity and chargeability tomograms. 
Additionally, the top and bottom surfaces of three structures are clearly 
resolved in the resistivity section.  

 

Table 1. The synthetic geo-electric parameters corresponding to model 1. 

 
 

However, the lower boundary of the third structure (medium 4) is 
not accurately recovered. In both resistivity and chargeability inversions, 
the inversion algorithms converge after 20 and 5 iterations, respectively. 
The root mean square (RMS) data misfit error values for the resistivity 
and chargeability inversions are 5.32% and 2.4%, respectively. 

 𝜂(𝑚𝑉/𝑉) 𝜌(𝛺𝑚) Region Number 

1 1000 Background 1 

15 200 Structure 2 2 

50 100 Structure  3 3 

100 10 Structure  4 4 
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Figure 1. The representation of a) true resistivity and b) true chargeability sections 
associated with Example 1 containing four different mediums. 

 

 
Figure 2. a) The observed apparent resistivity pseudo-section, b) The calculated 
apparent resistivity pseudo-section, and c) The inverted section of resistivity for 
the first synthetic model shown in Figure 1(a). 

 
Figure 3. The observed apparent chargeability pseudo-section, b) The calculated 
apparent chargeability pseudo-section, and c) The inverted section of resistivity 
for the first synthetic model shown in Figure 1(b). 

Model 2 

The second synthetic example, denoted as Example 2, is more intricate as it 
involves four distinct mediums, as shown in Figure 4. A vertical contact in the 
middle of the model delineates two regions with varying resistivity and 
chargeability values. Table 2 represents different regions of Example 2 in terms of 
the resistivity and chargeability. Figures 5(a) and 6(a) illustrate the pseudosections 
of the apparent resistivity and chargeability corresponding to Example 2. The 
pseudosections show the expected presence of two distinct regions characterized 
by differences in the resistivity and chargeability in the central portion of the 
tomograms. However, the boundary of the vertical contact and the resistive surface 
layer are not clearly resolved. The observed data are subjected to inversion while 
adhering to spatial smoothness constraints and the predefined lower and upper 
bounds. The inversion results for the resistivity and chargeability are presented in 
Figures 5(c) and 6(c), respectively. These figures demonstrate that the inverted 
tomograms accurately depict the boundaries of the subsurface structures. In both 
resistivity and chargeability inversions, the inversion algorithms converge after 18 
and 4 iterations, respectively. The RMS data misfit error values for the resistivity 
and chargeability inversions are 2.35% and 2.8%, respectively. 
 

Table2. The synthetic geo-electric parameters corresponding to model 2. 

 
 

5.2. Field example 

In the previous section, we demonstrated the functionality and 
accuracy of our inversion algorithm using synthetic data sets. Here, we 
present a field example to showcase the capability and efficiency of the 
proposed methodology in real-world scenarios. The study area is 
situated in the Nikuiyeh region in Qazvin province, Northwest Iran. 
Geoelectrical measurements, including the resistivity and IP 
tomography methods were conducted for the exploration of epithermal 
gold deposits. The study area spans approximately 6.2 Km2 in Takestan 
city, west of the Qaqazan district, and is located about 1.5 km southeast 
of Nikuiyeh village. The predominant style of mineralization in the 
study area consists of vein-like and veinlet-like zones controlled by faults 
and fractured zones. In fact, fractured zones provide suitable locations 
for the accumulation of hydrothermal fluids, resulting in the formation 
of vein-type, massive, or disseminated deposits of various metallic ores, 
including gold. The primary constituent of mineralization in the studied 
area is quartz. Other formation minerals found within it include pyrite, 

 𝜂(𝑚𝑉/𝑉) 𝜌(𝛺𝑚) Region Number 

10 1000 Medium 1 1 

100 200 Overburden layer 2 2 

200 100 Layered medium  3 

400 10 Intrusive anomaly 4 



158 S. S. Pourhashemi et al.  / Int. J. Min. & Geo-Eng. (IJMGE), 58-2 (2024) 153-160191-199 

 

chalcopyrite, galena-sphalerite, free gold, and secondary weathered 
oxides. The highest concentration of gold and associated elements is 
confined to the quartz-sulfide veins and veinlets. The abundance of 
these elements significantly decreases in the surrounding siliceous-
argillaceous parts of the veins and veinlets and reaches a minimum as 
one moves away from the quartz-sulfide veins and veinlets. In field 
surveys within the study area, the dipole-dipole array was used. In order 
to cover the area, a total of 20 dipole-dipole profiles with an electrode 
spacing of 20 m up to 8 levels were deployed over a one-square-
kilometer area. The general procedure for the survey involves initially 
establishing a baseline as a reference line, typically aligned parallel to 
the outcrop of the mineral or, more generally, parallel to the appearance 
of anomalies on the ground. Measurements were then taken 
perpendicular to this line, essentially perpendicular to the trend of the 
mineralization zone. Figure 7 shows a simplified geology map of the 
study area. 

 

 

 
Figure 4. The representation of a) true resistivity and b) true chargeability sections 
associated with Example 2 containing four different mediums. 

 
When performing field data inversion, we follow the strategy outlined 

for synthetic examples. Initially, we invert the apparent resistivity data, 
followed by the non-linear inversion of the IP measurements. Figures 
8(a) and 8(b) show a three-dimensional representation of the inversion 
results of the apparent resistivity and IP data associated with 10 profiles. 
Note that for representation purposes, only 10 profiles are presented. In 
areas with a high concentration of metallic or sulfide minerals, the IP 
response will naturally be the basis for exploration. However, in these 
areas, electrical resistivity values may not necessarily be low. For 
example, the presence of copper-bearing minerals in siliceous zones 

leads to both a high IP response and high electrical resistivity anomalies. 
The geological alterations in this region are of two types: siliceous and 
argillic. In the resulting sections obtained through inversion, the 
presence of sulfide minerals leads to a high IP response, and siliceous 
alterations increase the resistivity response. Additionally, the presence 
of clay minerals enhances the membrane-IP response, while argillic 
alterations result in low electrical resistivity responses. Based on the 
models obtained from inversion, it is generally observed that silica zones 
with high resistivity at depths of approximately 10-35 meters tend to 
exhibit a reduction in resistivity and a relative increase in induced-
polarization response. Consequently, it can be stated that with 
increasing depth of the silica zone, the sulfide mineralization within it 
has increased. It can be also seen from the resistivity and IP tomograms 
that the regions with high chargeability areas correspond to those of 
medium to high electrical resistivity areas. 

We also provide a comparison of the resistivity and chargeability 
tomograms inverted by the commercial software (Geotomo Res2DInv 
ver. 4.9.18, [19]), for profile 10 of field data, in Figure 9. Visually 
comparing the resulting tomograms, it is evident that there is a trivial 
difference between the resistivity and chargeability models obtained 
from our algorithm and the commercial software. 

 

 
Figure 5. a) The observed apparent resistivity pseudo-section, b) The calculated 
apparent resistivity pseudo-section, and c) The inverted section of resistivity for 
the second synthetic model shown in Figure 4(a). 

 

 
Figure 6. The observed apparent chargeability pseudo-section, b) The calculated 
apparent chargeability pseudo-section, and c) The inverted section of resistivity 
for the second synthetic model shown in Figure 4(b). 
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Figure 7. The geology map of the study area, 1:100000. The study area is displayed 
by a black rectangular. 

 

 

 
 

Figure 8. A 3D representation of a) resistivity and b) chargeability sections. Note 
that for the purpose of representation, only 10 inverted sections are displayed. 

 

6. Conclusion 

Given the significance of the inversion process in ensuring a reliable 
imaging of subsurface features in chargeability models, this paper 
concentrates on the inversion of time-domain IP data. We introduce a 
two-step approach for the inversion of IP data. In the first step, the 
resistivity data undergo inversion, and in the second step, a non-linear 
chargeability inversion is employed to retrieve the polarizability model. 
In this non-linear inversion, the inherent non-linearity of the problem is 
addressed through linearization using a sensitivity matrix consisting of 
partial derivatives of measurements concerning model parameters. 

 
Figure 9. The resistivity and chargeability sections obtained using the proposed 
algorithm, (a),(b) and the commercial software, (c),(d) (Geotomo Res2DInv ver. 
4.9.18), profile 10. 

 
To evaluate the efficiency and precision of our developed IP inversion 

code package, which encompasses the forward modelling algorithm, 
sensitivity matrix computation, and inversion algorithm, we conducted 
tests using synthetic data examples and real field data. The numerical 
outcomes revealed that the presented inversion algorithm consistently 
delivers reliable inversion results, faithfully capturing the essential 
characteristics and structures of the models while avoiding the 
generation of spurious effects. In essence, beyond the theoretical aspects 
outlined in this paper, the primary contribution of this study lies in its 
ability to enhance the resolution of subsurface structures in terms of the 
resistivity and chargeability distribution via a smoothness-constrained 
inversion approach, all the while preventing the introduction of 
extraneous features (artifacts) into the inverted models. 
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