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Abstract 
Subsurface channels are stratigraphic features in seismic data that can act as reservoirs or conduits for 

hydrocarbons. However, detecting and characterizing these channels is challenging due to the limitations of 

seismic resolution and the complexity of the subsurface geology. Seismic inversion is a technique that can 

enhance the seismic data by transforming the seismic traces into quantitative estimates such as acoustic 

impedance (AI), which is a key reservoir rock property. AI inversion can help to identify and delineate the 

subsurface channels by providing more contrast and detail of the channel geometry, fill, and surrounding 

sediments. Seismic inversion is often challenged by the non-uniqueness, ambiguity and uncertainty of the 

inversion results due to noise and band-limited data. This paper uses a fuzzy model-based seismic inversion 

method that integrates prior information and fuzzy clustering constraints to produce more realistic and 

reliable AI models. This method assigns data points to multiple clusters with varying degrees of membership, 

which can capture the overlapping of AI values of different geological formations. The method is applied to 

the 3D Poseidon seismic data from the Browse Basin, offshore Western Australia, and the results are 

compared with those of conventional model-based inversion. Since there is no well-data in an interest 

channel zone, a qualitative evaluation with seismic attributes is performed. The subsurface structures are 

further interpreted by various seismic attributes. The comparison shows that the fuzzy model-based inversion 

method can improve the resolution, contrast and stability of the AI models and reveal more detail of the 

subsurface geology. 

 

Keywords: Fuzzy seismic inversion, Acoustic impedance, Fuzzy clustering, Seismic attributes, RGB 

blending. 
 

1. Introduction 

Seismic data are the primary source of 

information for subsurface exploration and 

characterization. However, seismic data are 

band-limited and the traces can miss low and 

high frequency variations and features of the 

subsurface. Seismic inversion is a technique 

that aims to convert seismic traces into 

quantitative estimates of the reservoir rock 

properties, such as acoustic impedance, P and 

S-wave velocities, density, porosity, and fluid 

content (Bosch et al., 2010). Seismic 

inversion enhances the resolution and 

reliability of the seismic data and improves 

reservoir characterization and management 

(Rosa et al., 2020). 

There are numerous pre-stack and post-stack 

seismic inversion methods. Pre-stack 

inversion utilizes the amplitude variation 

with offset (AVO) information to infer  

the elastic properties of the rocks, while  

post-stack inversion uses only the amplitude 

information to infer the acoustic impedance 

(Das & Mukerji, 2020). Recently,  

deep learning methods have been proposed  

to perform the seismic inversion directly 

from imaged seismic data, bypassing  

the conventional inversion steps  

and providing a fast and accurate alternative 

for litho-type classification (Pintea et al., 

2021). 

Seismic inversion models are non-unique and 

ambiguous. Having prior information about 

subsurface geology, such as well logs, rock 

physics models, or geostatistical models, can 

constrain seismic inversion results and 

increase the uniqueness of the results 

(Russell & Hampson, 1991). These methods 

iteratively update the initial model from the 
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prior information until it matches the 

observed seismic data within a certain error 

tolerance (Das & Mukerji, 2020).  

This creates a higher resolution, better 

stability, and more realistic results (Pintea et 

al. 2021). 

Constraining the inversion results into a 

predefined number of groups or clusters 

based on prior petrophysical or other 

geological data, is another way to improve 

these results (Rapstine, 2015; Sun & Li, 

2016a, 2016b). Nowadays, the application  

of Fuzzy clustering can be seen in all  

fields of science and technology, especially 

for complex structured data and in cases  

of ambiguous or overlapping class 

boundaries. Considering these properties,  

the large, complex and ambiguous data of 

geophysics can benefit from fuzzy clustering 

in geophysics. Detecting geophysical 

anomalies such as mineral deposits, 

hydrocarbon reservoirs, faults and fractures 

(Miller et al., 2009), incorporating 

petrophysical information and different  

types of geophysical data in the geophysical 

interpretation (Bennington et al., 2015; Liao 

et al., 2022), and geological mapping of  

rock types (Wang et al., 2021) are a few 

examples of using fuzzy clustering  

in geophysics. This fuzziness concept is  

also used in seismic inversion (Kieu & 

Kepic, 2020). Fuzzy clustering is a form  

of clustering that allows the data to belong  

to more than one cluster with different 

degrees of membership (Bezdek et al., 1984). 

This creates more flexible and robust results 

than traditional clustering methods, such  

as k-means, which assign each data point to  

a single cluster (Bora & Gupta, 2014).  

Fuzzy clustering can account for the 

overlapping of acoustic impedance  

of different layers and features, which  

causes ambiguity in the interpretation of the 

models. 

Fuzzy seismic inversion is a technique that 

uses fuzzy logic and fuzzy sets to estimate 

the uncertainty of seismic inversion results. 

Fuzzy logic is a form of multivalued logic 

that deals with reasoning that is approximate 

rather than fixed and exact. Fuzzy sets are 

sets whose elements have degrees of 

membership, rather than belonging or not 

belonging to the set. Fuzzy seismic inversion 

can provide more realistic and reliable 

information for seismic interpretation and 

reservoir characterization (Jahanjooy et al., 

2023). 

Structural, stratigraphic and petrophysical 

features of the subsurface can be revealed 

through measurements derived from seismic 

data known as seismic attributes (Bhatt & 

Helle, 2002). Different methods of 

calculation, extraction and interpretation of 

amplitude, frequency, phase and waveform 

attributes, create various types of seismic 

attributes (Chopra & Marfurt, 2005). These 

attributes can help to identify and 

characterize potential reservoirs, such as 

fluvial channel sands, carbonate reefs, or 

fractured zones (Oumarou et al., 2021). 

Channels can be challenging to image and 

delineate using conventional seismic 

amplitude data, due to their complex 

geometry, heterogeneity and lateral 

variability (Chopra & Marfurt, 2005). 

Therefore, seismic attribute analysis can be 

applied to enhance the visualization and 

understanding of fluvial channel features and 

processes. 

In this paper, we present a case study of 

fuzzy seismic inversion applied to channel 

features in Johnson Formation of Browse 

Basin, Australia. The Browse Basin is a 

sedimentary basin located offshore of 

Western Australia, which contains several 

hydrocarbon discoveries. The Johnson 

Formation is a Late Jurassic to Early 

Cretaceous unit that consists of fluvial and 

marine sandstones, siltstones, and shales 

(Geoscience, 2023). We use the Poseidon 

seismic data, which covers an area of about 

3000 km
2
 in the Browse Basin, and well log 

data from the Poseidon-1 well. We use a 

seismic inversion objective function that uses 

multi-constraint terms including fuzzy 

clustering on different properties of the 

inversion results to create an acoustic 

impedance model of the Johnson Formation. 

The results reveal detailed subsurface 

channels. We compare this model to model-

based seismic inversion results, seismic time 

slice and seismic attributes to show the 

efficiency of the multi-constrained fuzzy 

seismic inversion in creating geophysical 

models.  

The structure and organization of this paper 

are as follows: Section 2 describes the study 

area and 3D seismic data of the Poseidon gas 

field. Section 3 reviews the theory and 

methodology of the model-based seismic 
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inversion, fuzzy seismic inversion, and the 

seismic attributes that were applied to the 

seismic data. Section 4 qualitatively 

describes a channeled zone in the area of 

interest using the methods of section 2 and 

RGB blending of their results. Section 5 

summarizes the main conclusions and 

implications of this paper. 

 

2. Study Area and Data 

The Browse Basin is a large sedimentary 

basin located offshore of Western Australia 

(Figure 1). The basin has a complex tectonic 

and stratigraphic evolution, involving six 

phases of deformation from the late 

Carboniferous to the late Miocene,  

with intermediate periods of Permian and 

Triassic thermal subsidence (Radlinski et al., 

2004). The basin is a proven hydrocarbon 

province (Farfour et al., 2021), with  

major undeveloped gas and condensate  

fields in the outer and central basin and 

minor oil discoveries on the basin's eastern 

margin. 

Several structural elements are detected in 

the Browse Basin, including the Leveque 

Shelf, Yampi Shelf, Barcoo Sub-basin, 

Caswell Sub-basin, Scott Plateau and 

Seringapatam Sub-basin. The main 

depocentres are the Caswell and Barcoo Sub-

basins, which contain up to 15 km of 

sedimentary section and lie in a 100 to 1500 

m water depth. The outer Browse Basin 

underlies the deep-water Scott Plateau 

(Rollet et al., 2016). 

The stratigraphy of the Browse Basin is 

characterized by a major progradational 

clastic-to-carbonate cycle from the 

Carboniferous to the Tertiary (Figure 2).  

The Carboniferous section is predominantly 

fluvio-deltaic and the Permian-Early Triassic 

section is marine. Middle-Late Triassic  

rocks include fluvial and shallow marine 

clastics and minor carbonates. Early-Middle 

Jurassic syn-rift sediments comprise deltaic 

and coastal-plain clastics and coal. 

Widespread erosion occurred in the 

Callovian and Upper Jurassic sandstones and 

shales onlap, drape, and provide a thin 

regional seal across most pre-Callovian 

structures (Geoscience, 2023). Widespread 

transgression commenced in the Valanginian 

and peaked in the Turonian and resulted in 

the deposition of thick open marine 

claystone. The Turonian-Tertiary section 

records a major progradational clastic-to-

carbonate cycle. 

The Browse basin is classified into  

several formations (Figure 1). Some 

interpretations of Johnson and Wollaston 

formations indicate that they are deposited in 

a shallow marine environment. The 

paleotopography reconstruction revealed that 

the depositional environment was controlled 

by the structural highs and lows of the basin. 

Based on the seismic attributes, there are 

potential reservoir zones within the Johnson 

and Wollaston formations (Maulana, 2021).

 

 
 

Figure 1. Location of the Browse Basin and the 3D Poseidon seismic data. 
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Figure 2. Litho-stratigraphic framework of Browse basin (Geoscience, 2023). 
 

The Poseidon seismic data covers an area of 

about 3000 km
2
 in the central part of  

the Browse Basin, overlying the Caswell 

Sub-basin and part of the Scott Plateau 

(Figure 4). The data was acquired in 2009  

by Geoscience Australia and reprocessed  

in 2017 by ConocoPhillips using the  

pre-stack depth migration (PSDM) technique. 

The data has a bin size of 12.5 × 18.75 m  

and a sample interval of 4 ms (TerraNubis, 

2023). A cropped version of this data is  

used in the inversion process. Both of the 

selected inline and crossline ranges are 1000–

3000 in which the traces are selected in 5-

trace intervals. The selected bin sizes are  

95 m × 50 m (inline × crossline), while  

the sampling interval is 4 ms.  The online 

density and sonic logs for the available  

wells are limited to a narrow depth. These 

logs are used to create an initial impedance 

model. 
 

3. Theory 

3-1. Model-Based Seismic inversion 

In the post-stack seismic inversion, the goal 

is to create an acoustic impedance model 

whose synthetic seismic traces have a 

minimum misfit to the original seismic data: 

𝜱𝑑 = ‖𝒅 − 𝐖𝒓‖2
2.                                        (1) 

where d is the seismic traces, 𝐖 is the 

convolution matrix of the wavelet, 𝐫 is the 

reflectivity of the created model. For a 

continuous earth model, the reflectivity is 

related to the acoustic impedance of the j
th
 

layer as 𝒓𝑗 = (𝒙𝑗+1 − 𝒙𝑗)/2 (Berteussen & 

Ursin, 1983). 𝒙𝑗 is the natural logarithm of 

acoustic impedance of the j
th
 layer. In a 

recursive form, the above is rewritten as the 

following form: 
 

𝒙𝑗+1 − 𝒙𝑗 = 2∑ 𝒓𝑖
𝑗
𝑖=1 .    𝒓 = [𝑟1. 𝑟2. … . 𝑟𝑁]𝑇 .     (a) 

𝒙 = 𝑯𝒓,                                                         (b) 

𝑯 =

[
 
 
 
 
0 0 ⋯ 0
2 0 ⋯ 0
2
⋮
2

2
⋮
2

⋯ 0
⋱ ⋮
⋯ 2]

 
 
 
 

,                                       (c) 

(2) 

Additional constraints to the final model 

could prevent overfitting, reduce the effects 

of noise, add low-frequency information, and 

increase the uniqueness of this ill-posed 

inversion problem. For example, if the low-

frequency trend of the model (𝒙(0)) is 

obtainable from the well-logs and seismic 

horizons, adding a model term to the data 

misfit term ensures that the calculated model 

follows the general trend of the model: 

𝜱𝒙 = ‖𝒙(0) − 𝐇𝐫‖
2

2
.                                      (3) 

To ensure other properties in the result 

model, other terms such as smoothness (𝜱𝑠) 

of the model (Jahanjooy et al., 2022), and 
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sparsity (𝜱𝑟) of the reflectivity are 

commonly used (Zhang & Castagna, 2011): 
 

𝜱𝑠 = ‖𝑫𝒙‖2
2 = ‖𝑫𝑯𝒓‖2

2,                              (a) 

𝜱𝑟 = |𝒓|,                                                     (b) 

(4) 

The D in the smoothness term referred to the 

vertical or horizontal difference matrix or a 

combination of them. 

 

3-2. Fuzzy Seismic Inversion 

The petrophysical data can be grouped into a 

few clusters that correspond to different 

geological settings in the subsurface. 

However, most of the seismic inversion 

methods do not account for the petrophysical 

data from well-logs and geological surveys. 

Adding a clustering term such as fuzzy 

clustering can introduce the initial 

petrophysical data to the inversion process 

and limit the inversion model to some known 

or unknown clusters. Well-logs, seismic 

interpretation, and/or geological settings are 

the sources for the known clusters: 

𝜱𝑐 (𝐹𝐶𝑀) = ∑ ∑ 𝒖𝑗𝑘
𝑞

‖𝒙𝑗 − 𝒐𝑘‖2

2
.𝐶

𝑘=1
𝑀
𝑗=1             (5) 

where 𝒐𝑘 are the centroids of the clusters, 

while 𝒖𝑗𝑘 determines the membership of the 

j
th
 data sample to the k

th
 centroids (Bezdek et 

al., 1984). 

The data misfit term (𝜱𝑑) in Equation (1) has 

non-unique answers. Adding the model 

perturbation term (𝜱𝑥) and a regularization 

term ensures a solution close to the initial 

low-frequency model. However, to consider 

various properties of the resulting model, 

Jahanjooy et al. (2023) have added a sparsity  
 

constraint on the reflectivity (𝜱𝑟 = |𝒓|) as 

well as a smoothness constraint (𝜱𝑠) on the 

resulting model. Based on the spatial-

temporal properties of the resulting model, 

smoothness could have several definitions. 

The clustering term added to the other 

mentioned constraints creates a multi-term 

objective function: 
 

𝑟 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑟{𝜱} = 𝑎𝑟𝑔𝑚𝑖𝑛𝑟{𝛼𝑑𝜱𝑑 + 𝛼𝑥𝜱𝑥 +
𝛼𝑠𝜱𝑠 + 𝛼𝑐𝜱𝑐 + 𝜱𝑟}.                                     (6) 
 

The regularization parameters (𝛼.) control  

the contribution of each term in the inversion 

process. Through a recursive process, the  

AI model of the j
th
 layer (𝒛𝑗) can be 

calculated (𝒛𝑗 = 𝒛1𝑒
2∑ 𝒓𝑗

𝐽
𝑖=1 ). Figure 3 presents  

a flowchart for fuzzy seismic inversion using 

Equation (6). Well-tied post-stack seismic 

data and its interpreted horizons along  

with impedance logs can create an initial 

low-frequency model of the subsurface.  

If available, all the well-data and geological 

information can be clustered to an optimum 

number of clusters using a clustering method 

such as Fuzzy C-Means, FCM. The cluster 

number and centroids (if available)  

along with the seismic traces are used in  

the seismic inversion process. Considering 

the clustering term in the inversion process, 

this method also creates membership sections 

(or cubes) and cluster centers. The 

membership sections are sections that  

show the involvement of each point in  

each cluster center. The final cluster centers 

could differ from the initial cluster centers. 

This is due to the spatial variation of the 

model. 

 

Figure 3. Flowchart of the fuzzy seismic inversion method. 
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3-3. Seismic Attributes 

Numerous seismic attributes reveal and 

improve information in the seismic data 

based on time, amplitude, frequency, 

attenuation or other characteristics of seismic 

waves (Chopra & Marfurt, 2005). Among the 

various types of seismic attributes, geometric 

attributes are those that describe the shape 

and orientation of seismic features, such as 

faults, fractures, channels and salt bodies.  

3D edge enhancement is a seismic geometric 

attribute that aims to improve the edge 

detection of seismic features by emphasizing 

larger and planar features in three 

dimensions. It is based on rotating a plane in 

all angles and directions and measuring the 

amplitude contrast along the plane. 3D edge 

enhancement can be used to detect structural 

or stratigraphic discontinuities, such as faults, 

fractures, channels or karst features (Mousavi 

et al., 2022). It can also be used as a fracture 

indicator or a noise reduction tool (Olaleye et 

al., 2021). Similarly, the convolve attributes 

are filters to smooth data and enhance the 

edges and contrasts (Liner, 2016). The event 

attribute measures the local peak or trough 

amplitude within a window and can highlight 

dominant reflections or diffractions. The 

RMS amplitude attribute measures the root 

mean square of the seismic amplitude values 

within a window and can reveal changes in 

lithology, porosity or fluid content. The 

semblance attribute measures the ratio of 

stacked energy to total energy within a 

window and can emphasize continuous or 

parallel reflections. The similarity attribute 

measures the degree of correlation between 

adjacent seismic traces and can enhance fault 

or channel boundaries. The texture attribute 

measures the spatial distribution of the 

seismic amplitude values within a window 

and can reveal subtle changes in lithology or 

porosity. The variance attribute is a seismic 

attribute that measures the standard deviation 

of the seismic amplitude values within a 

window. It can enhance fault or channel 

boundaries by showing high variance values 

along the discontinuities of the seismic 

waveforms (Chopra & Marfurt, 2007). 

Acoustic impedance and seismic attributes 

both mirror the physical properties that 

influence the propagation and reflection of 

seismic waves. The correlation between these 

two sets of data makes them valuable in 

integrated applications for seismic inversion 

(Alabi & Enikanselu, 2019; Mardani & 

Thrust). Cumulative results of the inversion 

models and seismic attributes unveil vital 

details in hydrocarbon reservoirs 

characterization (Farfour et al., 2021; 

Zahmatkesh et al., 2018). 

 

4. Results and Discussion 

A cropped volume of the processed  

and stacked 3D Poseidon seismic data is  

used in the inversion process. The fuzzy 

seismic inversion is a time-consuming 

process that requires a high processing  

unit. To run the inversion on a personal 

computer with 12 gigabytes of ram and a  

2.3 gigahertz processor, 80 percent of the 

traces are regularly omitted. Knowing that 

the fuzzy seismic inversion is a 

multidimensional process, the loss of input 

data affects the spatial resolution of the 

resulting model. Figure 4 shows the selected 

portion of the used 3D seismic data. Both of 

the used inlines and crosslines numbers 1000 

to 3000 in which inline intervals are 75 m 

and crossline intervals are 50 m. The 

displayed time interval is from 2500 ms to 

3000 ms. 
 

 
 

Figure 4. The selected cube of the used Poseidon 3D seismic data. Both the inlines and crosslines are from 1000 to 3000. 
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As an example, in the Johnson formation in 

the Poseidon field, Figure 5a shows a 2752 

ms time slice of the seismic data. The arrows 

indicate a high amplitude curve. This event 

has been interpreted as the slopes of a 

submarine canyon on top of the Wollaston 

Formation (Liu, 2018). The width of the 

canyon can extend to several kilometers 

(Figure 5b). The upper part of the canyon is 

filled with channel-like features. These 

features are visible on the seismic 2752 ms 

time slice of Figure 5. The ellipse shape in 

Figure 5a encloses the area of interest. Due to 

the small dimension of such channel-like 

features, which are a few time samples along 

a few seismic traces, direct interpretation of 

them is challenging. 

Two acoustic impedance models are created 

using model-based inversion and fuzzy 

model-based inversion (Figure 6a and b). The 

result of the model-based inversion is 

smoother, while the fuzzy model-based 

inversion has more contrast within layers and 

shows more detailed layering. Figure 7 

displays the histogram of the time slice 2752 

ms AI results. The model-based inversion 

result has created a normally distributed 

model, which could be nonrealistic in 

complex structures. The fuzzy seismic 

inversion result does not have a normal 

distribution. Although the fuzzy seismic 

inversion result has a skewness toward 

smaller AI, it covers a wider range and 

creates larger AI samples. 
 

 
(a) 

 
(b) 

Figure 5. (a) Seismic time slice at 2752ms. (b) Crossline 2750 of the seismic cube and two interpreted horizons. The blue 

line in a is the location of b in the study area. 
 

 
(a) 

 
(b) 

 

Figure 6. The inversion result of the seismic cube of Figure 4 using model-based inversion (a) and fuzzy model-based 

inversion (b). 

 
(a) 

 
(b) 

 

Figure 7. Histogram of the AI model at time slice 2752 ms for model-based inversion (a) and fuzzy inversion (b). 
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The channeled zone is visible in the acoustic 

impedance time slices (Figure 8a and b). In 

the AI result of the model-based inversion, 

the geometry of the channeled zone follows 

the amplitudes in the seismic data (Figure 

8a). However, the direction of the higher 

acoustic impedance zone of these features is 

slightly different in the fuzzy inversion 

method. An additional output of the fuzzy 

inversion is the high-resolution reflectivity 

data. The interest features have created a 

reflectivity anomaly in the study zone (Figure 

8c). 

Some wells in the Poseidon field are used to 

create the initial model. However, there is not 

any well-data in the area of interest. 

Therefore, to check the AI results for the 

channeled zone, this study performs a 

qualitative examination of the morphology 

and direction of the channeled zone using 

seismic attributes. Among numerous seismic 

attributes that can be helpful to define the 

geometry of subsurface channels, those 

which have created anomalies in the study 

data are 3DEE, convolution, event, RMS 

amplitude, semblance, similarity, texture and 

variance.  

Seismic attributes at the 2752 ms time slice 

are displayed in Figure 9. In addition to the 

canyon's edge, the subtle channel features are 

appearing in the time slice of the 3DEE. 

Compared to the seismic time slice, there is 

an enhanced convolve values along the 

channel, indicating the amplification of the 

seismic signal. In the event attribute, there 

are relatively strong event values along the 

channel, indicating the presence of 

significant seismic events. Although the 

slopes of the submarine canyon create a high 

RMS amplitude attribute, there are some 

high-energy seismic reflections in the area  

of interest. The coherence of the seismic 

events along the channeled zone is evident  

in the semblance attribute. Values with  

low similarity along the channel edges 

indicate the discontinuities of the seismic 

waveforms. In the texture attribute, there are 

variations of the local seismic texture along 

the channel axis and across the channel 

width. The channeled zone is also manifested 

as small meandering features in the variance 

attribute.

 

 
(a) 

 
(b) 

 
(c) 

Figure 8. The result time slices at 2752 ms. (a) AI model obtained using model-based inversion. (c) AI model obtained 

using fuzzy seismic inversion (c) reflectivity time slice. 

 

 
 

Figure 9. Seismic attribute result on time-slice 2750 ms. All of these attributes are consistent with the AI result and show 

anomalies in the area of interest. 
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Aside from the AI model and the reflectivity 

cube genuine outputs of the fuzzy model-

based inversion of the 3D seismic data  

are the 3D membership cubes. Each element 

of the cube defines the membership of a  

time sample to one of the classes, from  

zero to one. The optimum number of classes 

is usually selected by using the elbow 

method (Krzanowski & Lai, 1988) on well-

log data or geological information. In our 

case, there was not enough well-data in the 

inversion zone. Using geological 

information, this number is selected as 4, 

which is consistent with the information on 

the inversion zone in Figure 2. Membership 

data for the time-slice 2752 ms is displayed 

in Figure 10. The order and naming of the 

classes are arbitrary. Knowing that this data 

is created by the classification of the 

impedances, their values follow the 

impedance changes rather than geological 

features and seismic facies. However, some 

general pattern appears in the membership 

section, which can be helpful along with 

other data. 

In the seismic interpretation, the RGB 

blending technique that combines two or 

more seismic attributes into a single color 

image using the red-green-blue (RGB) color 

model enables the interpreter to visualize 

multiple aspects of the seismic data 

simultaneously and to highlight subtle 

features that may not be evident in a single 

attribute display. In Figure 10, memberships 

to cluster 1 is approximately zero in the area 

of interest and one elsewhere. This 

membership time slice along with the seismic 

data and the impedance result of the fuzzy 

model-based inversion is used in an RGB 

blending. The result in Figure 11a shows the 

highlighting of the channels in the RGB 

image. The RGB blending is repeated using 

the 3DEE attribute instead of the impedance 

time slice. The result in Figure 11b is 

relatively similar to the previous case. 

However, as can be expected, the 3DEE 

attribute enabled a finer detection of larger 

structures such as the canyon. Although it is 

not displayed here, the results of using the 

other attributes instead of the 3DEE in this 

RGB are similar. 

The values of cluster 2 in the area of interest 

are nearly one. Some subtle variations in this 

cluster are visible in the area of interest. 'The 

process in Figure 11a was repeated using 

cluster 2 and the results are displayed in 

Figure 11c. Although the channel zone is not 

clear in this RGB image, using cluster 2 

creates a more detailed image in other zones 

of the time slice. 

The memberships (Figure 10) can be 

considered as attributes that determine the 

degree of belonging of the data samples to 

each impedance cluster. Figure 11d shows 

the RGB blending result of clusters 1, 2 and 

3. The channels cannot be identified directly 

in this image. However, due to the intrinsic 

purpose and content of the membership 

clusters and given that the general slope of 

the Johnson formation is S-N, the main 

depositional environments in the formation 

are distinguishable. 
 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 10. Membership time slice of 2620ms. (a) Cluster 1. (b) Cluster 2. (c) Cluster 3. (d) Cluster 4. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 11. RGB blending results of 2752 ms time slice. (a) RGB of cluster 1, seismic data, and the acoustic impedance of 

fuzzy model-based inversion. (b) RGB of cluster 1, seismic data, and 3DEE attribute. (c) RGB of cluster 2, 

seismic data, and the acoustic impedance of fuzzy model-based inversion. (d) RGB of cluster 1, cluster 2, 

cluster 3. 

 

5. Conclusions 

This paper uses a multi-constrain multi-

dimension fuzzy model-based seismic 

inversion method based on prior information 

and fuzzy clustering constraints to create 

more realistic and robust acoustic impedance 

models. The method can handle the non-

uniqueness, ambiguity, and noise of the 

seismic inversion problem by incorporating 

multiple terms in the objective function, such 

as data misfit, model perturbation, sparsity, 

smoothness and clustering. This inversion 

method is applied to a cropped cube of the 

3D Poseidon seismic data from the Browse 

Basin, offshore Western Australia, 

comparing the results with conventional 

model-based inversion. The fuzzy model-

based inversion method has produced higher 

resolution, contrast, and stability in the 

acoustic impedance models and revealed 

more details of the subsurface structures. 

Qualitative comparison and cooperation of 

the inversion result and seismic attributes are 

performed. The result of fuzzy seismic 

inversion is consistent with the seismic 

attributes. Membership cubes are the 

additional outputs of the fuzzy inversion 

process. To enhance the interpretation of the 

seismic features, such as submarine channels, 

canyons, and depositional environments, 

memberships are used along with the seismic 

data and seismic attributes in the RGB 

blending. The result has shown good 

agreement with the acoustic impedance 

models and highlighted subtle features that 

may not be evident in a single attribute 

display. The proposed method and attributes 

can be useful tools for seismic data 

interpretation and reservoir characterization 

in complex geological settings. There are 

several researches and reports on the 

Poseidon gas field. By prestack interpretation 

and drilling exploration wells in the area of 

interest, we could improve our understanding 

of the reservoir potential of the studied 

channeled zone. 
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