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Abstract 
Evaluating the susceptibility of regional climates to climate change provides a framework for realistically 

analyzing potential future climate changes. This paper investigates the impact of human activities on 

variations in extreme precipitation in Iran by evaluating data provided from 286 rain-gauge stations during 

1967-2010 and general circulation simulation results of the CanESM2 model. This investigation was based 

on six forcing factors, including natural external factors (volcanic aerosols, solar radiation), anthropogenic 

and a combination of them, Green House Gases (GHGs), changes in land use, and anthropogenic aerosols. 

Seven precipitation indices, namely Rx1day (annual maximum 1-day precipitation), Rx5day (annual 

maximum 5-day precipitation), R10mm (annual count of days with daily precipitation exceeding 10 mm), 

R20mm (annual count of days with daily precipitation exceeding 20 mm), CDD (consecutive dry days), 

CWD (consecutive wet days), and PRCPTOT (annual total wet day precipitation), have been analyzed via the 

optimal fingerprint method. The results revealed that Rx1day, Rx5day and CWD increased, while R10mm, 

R20mm, CDD, and PRCPTOT decreased among which CDD and Rx1day indices showed significant 

variations, with values of 18.4% and 10.9%, respectively. Furthermore, the obtained results implied that only 

the impact of anthropogenic forcing, with a value of 1.4, was detected and attributed to variations in CDD. 

Additionally, anthropogenic forcing caused an increase in the return period of a 20-year event by 1.9 years 

for CDD. Although human-induced forcing factors presented marked trends in some cases, their effects were 

not generally detected and attributed to the change in the observations, apart from one exception. 

 

Keywords: Climate change, Detection and attribution, Precipitation Extremes, Iran. 

 

1. Introduction 

Many scientific reports and evidences  

have shown that the climate has been 

changing globally and regionally since the 

middle of the 20th century (Hegerl et al., 

1997; Barnett et al., 1999; Stott et al., 2000; 

Hegerl and Zwiers, 2011). Many researchers 

believe that anthropogenic factors have 

significantly affected regional climates 

(Hegerl et al., 2010). To investigate this 

issue, the first step is to identify changes in 

climate variables, followed by identifying the 

influencing factors on the observed changes. 

Detection studies demonstrate that the 

climate (or a system affected by climate) is 

changed in a way that cannot be explained by 

evidence of internal variability alone. 

Attribution studies not only identify the 

factors affecting a detected climate change 

but also evaluate the contributions of each 

factor (Hegerl et al., 2010). In the past two 

decades, changes in various hydro-climate 

variables, namely air temperature, sea surface 

temperature, sea level, water cycle, sea  

ice, and ocean latent heat, have been detected 

and mostly attributed to anthropogenic 

factors (Barnett et al., 2001; Hegerl et al., 

2004; Barnett et al., 2005; Bindoff et al., 

2013). 

Even though climate change has increased 

the vulnerability of human settlements to 

extreme precipitation, a review of the 

literature shows that researchers have 

focused more on the thermal effects of 

climate change than on its impacts on 

precipitation (Lambert et al., 2004, 2005; 

Zhang et al., 2007). Previous studies have 

shown that human-induced climate change is 

expected to change the frequency of floods 

and droughts (Sarojini et al., 2016).  

Sarojini et al. (2016) conducted a 

comprehensive study on global precipitation 

and concluded that the extent of both 

increases and decreases in precipitation 

varies across different latitudes. Lambert et 
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al. (2005) detected the precipitation 

variations in different latitudes and attributed 

the main portion of them to anthropogenic 

impacts. Zhang et al. (2007) suggested that 

anthropogenic forcing factors have led  

to a small increase in the global mean 

precipitation pattern, with an increase at  

high latitudes (between 40°𝑁 and 70°𝑁) and 

a decrease in the northern subtropics (Zhang 

et al., 2007; Stott et al., 2010). Although  

the effectiveness of anthropogenic forcing 

factors is evident on a regional  

scale, according to the latest IPCC’s report, 

not every new weather pattern can be 

attributed to climate change (Bindoff et al., 

2013).  

Reviewing previous studies indicates that 

global warming has generally led to an 

increase in extreme precipitation (Bindoff et 

al., 2013). Extreme precipitation can be 

investigated from various perspectives using 

different indices (Klein Tank and Können, 

2003; Hegerl et al., 2004; Wang et al., 2013; 

Mondal and Mujumdar, 2015). Different 

extreme precipitation indices, including 

R10mm (annual count of days with daily 

precipitation exceeding 10 mm) as a measure 

of days with heavy precipitation, R75% 

(number of days with precipitation amount 

above the 75th percentile of the distribution 

of daily precipitation amounts) as a measure 

of moderate wet days, Rx1day (the annual 

maximum 1-day precipitation), R95%tot (the 

precipitation fraction due to very wet days 

defined based on the 95th percentile of the 

distribution of daily precipitation amount) 

(Klein Tank and Können, 2003) as well as 

other indices such as CWD (consecutive wet 

days), CDD (consecutive dry days) and 

PRCPTOT (annual total wet day 

precipitation) have been used to study 

temporal trends of precipitation extremes 

(Wang et al., 2013). Hegerl et al. (2004) used 

1, 5, 10 and 30 wettest days of the year for 

assessing extreme precipitation variations. 

More extreme indices were frequently used 

to study precipitation extremes (Peterson et 

al., 2001; Frich et al., 2002; Klein Tank and 

Können, 2003; Hegerl et al., 2004; Zhang et 

al., 2005; Rahimzadeh et al., 2009) and even 

flood events (Ávila et al., 2016; Darand and 

Sohrabi, 2018). Zou et al. (2021) showed that 

human influence has increased the 

probability of occurrence of the two indices 

and caused heavy precipitation in Central 

Asia by examining the changes in two 

extreme indices, PRCPTOT and Rx5day in 

the period of 1961 up to 2005. 

In an event attribution process, one  

can evaluate how anthropogenic forcing 

factors change the amount or probability  

of the observed weather extreme (Sarojini  

et al., 2016). Based on the attribution 

literature, the internal variability of 

precipitation increases as the spatial scale 

decreases (Sarojini et al., 2016). As a result, 

assessing the attribution of regional-scale 

precipitation to anthropogenic influence is 

more challenging than at the global or 

continental scales. Furthermore, unlike the 

assessment of extreme temperature values, 

studies have focused on the anthropogenic 

influence on the probability of extreme 

precipitation events have yielded conflicting 

outcomes that are difficult to interpret (Stott 

et al., 2016). 

Focusing on the input data of the 

detection/attribution methods, Hegerl and 

Zwiers (2011) classified these methods into 

two categories based on observed (only) and 

observed/model-simulated information. The 

fingerprint method, as one of the most 

implemented methods in this field, was first 

introduced by Hasselmann (1993) and has 

since been widely used by researchers to 

analyze a broad range of climate variables 

(Hegerl et al., 1996; Hegerl et al., 1997; 

Hegerl et al., 2004; Li et al., 2017; Chen and 

Sun, 2017; Wang et al., 2021). This method 

is based on linear regression theory, which 

assumes that all observations are a linear 

superposition of signals and noise (Lambert 

et al., 2004). In this method, it is assumed 

that signals accurately assess the response-to-

forcing pattern (Hegerl et al., 2004). One of 

the advantages of regression-based methods 

is their ability to reduce the impact of 

uncertainty on forcing simulations (Braganza 

et al., 2004). 

A limited number of studies have focused on 

detecting anthropogenic influence on 

precipitation in Iran. The decrease in 

precipitation in northwest Iran from 1968 to 

2008 has been attributed to the augmentation 

of greenhouse gases (GHGs) (Zohrabi et al., 

2014). A study on the Karkheh River Basin 

in western Iran reported that precipitation 

changes in this region are mostly related to 

the internal variability of the climate 

(Zohrabi et al., 2017). Rahimzadeh et al. 



Detection and Attribution of Precipitation Extremes to Human …/ Shirazi et al.                    195 

 

(2009) conducted a study on precipitation 

extremes in 27 rain-gauge stations and 

showed that Rx1day and Rx5day (annual 

maximum 5-day precipitation) indices had 

negative trends. Moreover, Zhang et al. 

(2005) reported the lack of a marked trend in 

the regional average of extreme precipitation 

index within the Middle East region from 

1950 to 2003. Saadi et al. (2020) attributed 

Rx5day to increase GHGs in the period of 

1951 to 2005 by examining four stations in 

southwestern Iran. 

Based on the literature, previous studies on 

detection and attribution carried out in Iran 

were mainly focused on specific small 

regions in the country, using observations 

from a limited number of rain gauges. Most 

of the studies were also focused on detection, 

with little attention paid to the contribution of 

external forcing factors (both natural and 

anthropogenic).  

In this paper, as the first step, the results of 

detecting and attributing the effects of 

external forcing factors on precipitation 

extremes in Iran are presented using the 

optimal fingerprint method. For this purpose, 

daily precipitation data of suitable quality 

was used in conjunction with the results of 

the CanESM2 AOGCM (Atmosphere-Ocean 

General Circulation Model) by incorporating 

the effects of the uncertainty associated with 

the methodology. Furthermore, the effects of 

six different external forcing factors were 

investigated to study the role of different 

components among which anthropogenic 

aerosols and changes in land use forcing 

factors have not been previously examined in 

other studies conducted in Iran. Investigating 

the effects of these forcing factors on the 

return period of such events can provide a 

comprehensive understanding of Iran's 

climate vulnerability. In section 2, the details 

of the utilized data as well as the applied 

processing approaches and methods of 

detection/attribution are described. In section  

 

3, the results are comprehensively explained,  

and finally the discussion and concluding 

remarks are presented in section 4. 

 

2. Methods and materials 

In the following sections, data and 

information utilized in this study, the data 

processing techniques employed, and the 

procedures for detection/attribution are 

presented. 

 

2-1. Data 

Iran is located between 25°𝑁 − 40°𝑁 latitudes 

and 44°𝐸 − 64°𝐸 longitudes in western Asia 

with a population exceeding 81 million and 

an area of more than 1.6 million 𝑘𝑚2 . 

Although, Iran is dominated by arid and 

semi-arid climates, other climatic conditions 

such as moderate and humid, cold and 

mountainous, hot and humid can be detected 

in certain parts of Iran (Saboohi et al., 2012). 

According to the average annual mean 

precipitation of 250 mm in Iran, this country 

is categorized as part of the Earth dry areas. 

Among the recorded data of historical 

precipitation in the Iran Water Resources 

Management Company (2015), the daily 

precipitation data of 286 rain-gauge stations 

with record length from 1967 to 2010 were 

used with a relatively proper distribution 

across the entire country, as shown in Figure 

1. The density of the rain gauge network in 

Iran has a very close relation to the climatic 

condition (from wet to dry), population and 

the level of economic activities in the 

regions. Therefore, the network is denser in 

the mountainous areas (in the western, 

northwestern, and southwestern) with higher 

annual precipitation than some of its central 

and eastern regions with low annual 

precipitation (Dasht-e Lut and Dasht-e Kavir 

deserts). The dataset has been previously 

used before by Pahlavan et al. (2018), and 

they have provided statistical evaluations and 

preprocessing methods in their research.
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Figure 1. Location of the rain gauge stations utilized in this study. Markers represent rain gage station (circles) and 

center of model grid cell (plus). Black lines represent border of main river basins in Iran. 

 
To accurately infer the internal variability  

of the climate and its response to different 

forcing factors, the results of the CanESM2 

model provided by the Canadian Centre  

for Climate Modeling and Analysis (2014) 

(CanESM2 model output prepared  

for CMIP5), served by ESGF. World  

Data Center for Climate (WDCC) at DKRZ 

at http://cera-www. dkrz.de/ WDCC/CMIP5/ 

Compact.jsp?acronym=CCE2) were used. 

This model was selected because IPCC Fifth 

Assessment Report indicates that it offers a 

negligible error in simulating global land 

precipitation and precipitation extremes 

compared to the mean of models in the 

Coupled Model Inter-comparison Project 

(CMIP5) (Flato et al., 2013). In this paper, 

CMIP5-related simulations of this model 

were utilized including historical simulations 

for five ensembles for the period from 1850 

to 2012. The ensembles represent GHGs, 

natural external forcing factors (NAT; 

including volcanic aerosols and solar 

radiation), a combination of natural and 

anthropogenic external forcing factors  

 

(ALL), changes in land use (LU) and finally 

anthropogenic aerosols (AA) as an external 

forcing factor. Each ensemble consists of five 

members. To process signals, in addition to 

the five ensembles, a new ensemble (ANT) 

was defined and calculated under 

anthropogenic external forcing factors as a 

subtraction of NAT from ALL with the 

assumption of linearly additive responses to 

the external factors (Zhang et al., 2013). 

Furthermore, aerosols as a major effective 

factor in the precipitation phenomenon and 

considered as an interactive component in 

simulation models. Their spatial resolution is 

2.8125° × 2.7906° (Flato et al., 2013). To 

estimate the internal variability of the 

climate, the pre-industrial control experiment 

(without any external forcing) was utilized 

for a period of 1096 years. 

 
2-2. Modelling Procedure 

To describe the utilized computational 

procedure in this study, the steps taken are 

presented in Figure 2 and explained in the 

following sections. 

 
 

http://cera-www/
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Figure 2. Step-by-step procedure utilized in this study for data processing and climate change detection and attribution. 

 
2-2-1. Initial data processing 

The gauge selection, accuracy and 

homogeneity tests of the used dataset has 

been discussed in Pahlavan et al. (2018). As 

the first step in the current research, the 

stations with more than 20% missing data 

were removed from the dataset. Then, seven 

extreme precipitation indices (Table 1) were 

derived from the observed and simulated 

daily precipitation (steps 1 to 3 in Figure 2). 

These statistics have been identified as 

suitable indices for extreme precipitation in 

the IPCC’s report. 

Areal average of the introduced indices 

presented in Table 1 was estimated using  

the Inverse Distance Weighted (IDW) 

method (Zhang et al., 2013). The spatial 

resolution was kept consistent with  

the spatial resolution of the CanESM2 model 

outputs (step 1 in Figure 2) (Lambert et al., 

2005; Zhang et al., 2007; Wen et al., 2013). 

Some of the grid cells are located on  

the country’s border (i.e. part of the grid  

cell area is inside the country while the rest  

is located outside). The CanESM2 outputs 

are related to the whole area of the respective 

grid cell, whereas observed data  

are associated with the part inside the 

country. Therefore, to make the two datasets 

comparable in these grid cells, CanESM2 

outputs were transferred by interpolating 

adjacent grids’ data (Figure 1) from the  

grid cell center to the center of the mass  

of the portion of the grid cell inside  

the country. The same procedures were 

applied to the observed precipitation as well 

(Zhang et al., 2013). Moreover, grid cells 

without sufficient data (i.e. at least five 

stations) were removed from the study area. 

In the utilized detection and attribution 

methodology, internal variability of the 

climate was estimated based on the noise 

matrix. In step 3, assembling the noise matrix 

was done. Taking into account 44 years of 

historical observed data (1967-2010), the 

noise matrix was formed using the following 

time series: 

- 24 non-overlapping samples (noise vectors) 

extracted from the 1096-year control 

experiment 

- Six 156-year ensemble series, namely 

GHG, NAT, ALL, LU, AA and ANT, each 

having five members (three non-overlapping 

44-year series can be extracted from each 

ensemble member, which create a set of 90-

time series). 
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Table 1. List of selected indices for precipitation extremes. 

Index Definition Unit 

Rx1day Annual maximum 1-day precipitation mm 

Rx5day Annual maximum 5-day precipitation mm 

R10mm Annual number of days with precipitation ≥ 10 mm days 

R20mm Annual number of days with precipitation ≥ 20 mm days 

CDD Maximum number of consecutive days with precipitation < 1 mm days 

CWD Maximum number of consecutive days with precipitation ≥ 1 mm days 

PRCPTOT Annual total precipitation in days with precipitation ≥ 1 mm mm 

 

Therefore, overall 90 + 24 = 114 noise 

vectors were extracted (step 3 in Figure 2). 

Noise vectors (samples) were independently 

divided into calibration and validation sets 

(step 4 in Figure 2) (Zhang et al., 2007, 2013; 

Wen et al., 2013). Since the estimated values 

for extreme precipitation indices varied 

significantly in different grid cells due to 

climate diversity in various parts of the 

country, values of all extreme indices were 

converted to the probability-based index (PI) 

to reduce the heterogeneity and improve 

comparability of the results (steps 1 to 3 in 

Figure 2) (Zhang et al., 2013; Li et al., 2017; 

Dong et al., 2022). To estimate PI, the 

Generalized Extreme Value (GEV) 

distribution was fitted over the data of each 

grid and the corresponding probability of the 

values of extreme indices was calculated 

using the fitted cumulative distribution 

function. Therefore, the values of each grid 

cell were converted to a range between 0 and 

1 (Min et al., 2011). Equation (1) shows the 

cumulative GEV distribution function and its 

parameters, namely location (𝜇), scale (𝜎) 

and shape (𝑘). 
𝑃𝐼(𝑥) =

{
𝑒𝑥𝑝 {− [1 + 𝑘 (

𝑥−𝜇

𝜎
)]

−
1

𝑘
}    ;   𝑖𝑓 𝑘 ≠ 0    ,   1 + 𝑘 (

𝑥−𝜇

𝜎
) > 0

𝑒𝑥𝑝 {−𝑒𝑥𝑝 [−
𝑥−𝜇

𝜎
]}     ;    𝑖𝑓  𝑘 = 0

                               

                                                                    (1) 
 

2-2-2. Detection and attribution methods 

Based on the criteria mentioned in section 2.2 

and according to the methodology utilized by 

Zhang et al. (2005) and Wen et al. (2013), 

nine grid cells were found appropriate for 

detection and attribution. Then, the areal 

average values of all processed data for these 

grid cells were calculated. Simulated 

responses of the model to each ensemble 

were obtained from the mean of its members, 

and the 0.5 subtraction was calculated from 

the PI of all data for anomaly extraction of 

data (Zhang et al., 2013). Finally, to detect 

and attribute the influence of the forcing 

factors, the observed climate change (𝑦) was 

considered as the aggregate of external 

signals (𝑋) and internal variability of climate 
(𝜀), as shown in Equation (2) (Hegerl and 

Zwiers, 2011). 

𝑦 = 𝑋𝛽 + 𝜀                                                 (2) 

where y represents the observed data vector 

and each column of matrix 𝑋 stands for a 

signal. The length of the observed and signal 

vectors is equal to the number of years 

studied. The parameters 𝛽 and 𝜀 denote the 

vector of scaling factors (to adjust the 

amplitudes of signals) and internal variability 

of climate, respectively (Barnett et al., 2005; 

Hegerl and Zwiers, 2011).  

To conduct regression (step 4 in Figure 2), 

generalized least square method was 

employed (Allen and Tett, 1999; Lambert et 

al., 2004). In Equation (3), the matrix-based 

formulation of generalized regression is 

presented, which was used to achieve scaling 

factors (Hegerl and Zwiers, 2011). 

β = (𝑋𝑇𝐶−1𝑋)−1𝑋𝑇𝐶−1𝑦                          (3) 

To calculate scaling factors, an accurate 

estimation of the internal variability of 

climate (noise covariance matrix 𝐶) is 

needed. Due to the lack of information on 

sample data (Barnett et al., 2005; Wen et al., 

2013) and the inaccurate simulation of the 

internal climate variability by the models, 

especially at small spatial scales (Barnett et 

al., 2005), the analysis of detection and 

attribution is problematic. To address this 

issue, detection and attribution must be 

conducted in a subspace spanned by the 

leading Empirical Orthogonal Functions 

(EOFs) of the calibration noise covariance 

matrix (Allen and Tett, 1999; Spagnoli et al., 
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2002; Barnett et al., 2005; Zhang et al., 2007; 

Ribes et al., 2009; Wen et al., 2013). 

Furthermore, the uncertainty of the scaling 

factors’ vector is examined using the 

validation noise matrix (Allen and Tett, 

1999; Barnett et al., 2005; Wen et al., 2013). 

For the single-signal optimal analysis, let 

matrix 𝑋 be used as a single signal, if the 

estimated scaling factor is positive and its 

Confidence Interval (CI) is inconsistent with 

zero, then the effect of the applied signal is 

detected in the variations of observations. 

However, if the estimated scaling factor is 

consistent with unity and its CI is small, it 

shows a great consistency between the model 

and observations (Lambert et al., 2005; 

Christidis et al., 2005; Stott et al., 2010). 

Moreover, if the variations in observations 

are not merely consistent with the internal 

variability of climate, and the influence of 

anthropogenic forcing is detected in the 

multi-variable regression, then the variations 

in observations can be attributed to the 

anthropogenic influence (Stott et al., 2010).  

In this study, to analyze the collective 

participation in the variations of 

observations, the two-signal optimal analysis 

was used based on the multi-variable 

regression. Based on the folding of the noise 

matrix into two calibration and validation 

subsets involving different states, this 

division was independently resampled 2000 

calibration and validation noise matrices. In 

each of the 2000 matrices, single-signal and 

two-signal optimal analyses of the produced 

matrices were performed (step 4 in Figure 2). 

Finally, the average of results was estimated 

and analyzed (Zhang et al., 2007). This 

analysis reveals the possibility of uncertain 

and comprehensive evaluation of the effects 

of the noise matrix on the detection and 

attribution process. 

After calculating the scaling factors, one can 

estimate the extent of attributable PI changes 

of each extreme index to be attributed to each 

forcing factor. Here, the attributable changes 

of all indices to the six used forcing factors 

were separately specified. Given this 

objective, changes in signal PI were 

calculated using a linear trend over the 44-

year period. The value was multiplied by the 

single- and two-signal scaling factors and 

their CIs, and the average of former values 
(𝛿𝑃𝐼) was obtained. Since the climate 

conditions were non-stationary, it was 

assumed that the scale (𝜎) and shape 
(𝑘) parameters were constant, and only the 

location parameter (𝜇) was variable in the 

fitted GEV distributions (for each forcing) in 

grid cells. Accordingly, the extreme index 

associated with 𝑃𝐼 = 0.5 (𝑋0.5) was 

calculated and 𝜇1, 𝜇2 were selected so that 

the extreme index corresponding to 

probabilities of 50 − 𝛿𝑃𝐼/2 and 50 + 𝛿𝑃𝐼/2 

became equal to 𝑋0.5 in the new distributions. 

Then, the ratio (𝜇1 − 𝜇2) 𝜇1⁄  was converted 

to a percentage and its average was 

calculated within the grid cells (step 5 in 

Figure 2). This value shows the percentage of 

attributable changes in the extreme 

precipitation index to the investigated 

forcing.  
To determine the effectiveness of each 

forcing factor on the return period of the 

extreme index, return values were utilized. 

Kharin et al. (2007) defined the value of T-

year return period as a threshold, which the 

annual extreme index with a probability of 

𝑝 = 1/𝑇 exceeds in any given year. Kharin 

et al. (2013) selected a 20-year return period 
(𝑝 = 5%) as the underlying basis of their 

study since it proportionally considers the 

event rareness and the uncertainty of return 

values. In this paper, the value of extreme 

index with a 20-year return period was 

obtained using the survivor function (𝑆). 

Later, return values 𝑇𝜇1
,  𝑇𝜇2

 associated with 

the obtained value of the extreme index (𝑥) 

were calculated from the fitting function with 
location parameters 𝜇1, 𝜇2 according to 

Equation (4). 

𝑇(𝑥) =
1

𝑆(𝑥)
                                                 (4) 

Then, the average of each return values  

was obtained within grid cells that indicate 

the changes of 20-year return period under 

the investigated forcing. The subtraction of 

the mean of these two return values from the 

20-year return period shows the changes of 

the attributable return period to forcing (step 

5 in Figure 2) (Li et al., 2017; Zhang et al., 

2013). 

 
3. Modeling results 

Using the proposed methodology from the 

previous section, the results of detection and 

attribution for the precipitation indices, 

namely Rx1day, Rx5day, R10mm, R20mm, 

CDD, CWD, and PRCPTOT, are discussed 

in the following sections of the paper. 
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3-1. The variation of Extreme 

precipitation indices 

Figure 3 depicts the estimated linear trend of 

observations in the 0.33° × 0.33° gridding 

for Rx1day. The grid cells with insufficient 

observations are colored in gray. Based on 

the figure and the period of assessment, a 

negative trend was observed in the Urmia 

Lake watershed (northwest). Moreover, in 

the Zagros Mountain ranges (southwest) and 

northern regions, both negative and positive 

trends were observed. 
The estimated linear trend of observations for 

other extreme indices is shown in Figure S1 

in the supporting information (the supporting 

file is available at 10.5281/zenodo.8332860). 

The Rx5day and Rx1day indices had a 

similar behavior. The trends of R10mm and 

R20mm in most parts of the country, 

especially the Zagros Mountain ranges, were 

slightly negative. The value of CDD index in 

the Zagros Mountain ranges and southern 

regions has significantly increased; however, 

it decreased in other parts of the country. The 

value of the CWD has increased slightly in 

most areas with sufficient information. The 

changes of PRCPTOT on the south coast of 

the Caspian Sea and Zagros Mountain slopes 

were decreasing, but in the rest of the areas, 

no dominant trend was observed. 

Figure 4 shows the time series of a 5-year 

moving average of PI estimated for Rx1day 

values. Using linear regression, the observed 

series and forcing factors, namely ALL, 

ANT, NAT, GHG, LU, and AA all showed 

increasing trends with 10.9%, 5.9%, 2.5%, 

1.6%, 8.2%, 1.4%, and 4.8% slopes, 

respectively. The positive PI trend suggests 

an increase in the intensity of Rx1day. 

Among the forcing factors, the slope of the 

PI trend line estimated for GHG forcing was 

the highest and closer to the trend of 

observations. The slope of the PI trend line 

for other indices is shown in Table 2. In this 

table, for each indicator, the column entitled 

“Corresponding forcing factor” presents the 

forcing(s) that have the same sign trend slope 

and similar trend slope value with 

observation (if any). In addition, the time 

series of the 5-year moving average of PI 

estimated for these indices are shown in 

supporting information Figure S2. The 

occurrence rates of Rx1day, Rx5day, and 

CDD indices increased, while the metrics of 

the other indicators declined. The highest 

increase occurred in Rx1day, while the 

greatest decrease was observed in CDD. The 

severity of all indicators (except CDD) has 

significantly increased under the three 

forcing factors (ALL, GHG and AA). The 

note revealed the influence of the forcing 

factors on the precipitation based on the 

simulation results. In addition, CDD had a 

negative trend under the three 

aforementioned forcing factors, which also 

indicates an increase in precipitation. The 

ANT also prompted roughly the same trends 

under the aforementioned forcing factors. 

Indicators for ANT often had low slope 

trends, indicating the small effect of natural 

external forcing factors on the intensity of the 

simulated extreme precipitation. 
 

 
Figure 3. Spatial distribution of observed PI Trend (% 𝑚𝑚⁄ ) from 1967 to 2010 for Rx1day. The gray grid cells have 

insufficient observed data. 
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Table 2. Directions and slopes of trends for the 5-year mean areal average of seven indices PI over 9 grid cells during 

1967-2010 for observation, ALL, ANT, NAT, GHG, LU and AA. The signs(↑), (↓) and (→) indicate positive, 

negative and without trend (slope less than 25% of observation trend slope), respectively. Corresponding 

forcing factor is the forcing that has same sign slope with Obs. and value of its slope is in interval of 25% of 

observation variation. 

Obs. and forcing 

factors 

Index 
Obs. All ANT NAT GHG LU AA 

Corresponding 

forcing factor 

Rx1day 
↑ 

10.9 

↑ 

5.9 

→ 

2.5 

→ 

1.6 

↑ 

8.2 

→ 

1.4 

↑ 

4.8 
GHG 

Rx5day 
↑ 

3.7 

↑ 

5.5 

↑ 

3.2 

→ 

0.6 

↑ 

7.9 

↑ 

3.8 

↑ 

3.7 
AA & LU & ANT 

R10mm 
↓ 

8.0 
↑ 

5.2 
→ 
1.6 

↑ 
2.7 

↑ 
9.5 

↑ 
2.3 

↑ 
5.9 

GHG 

R20mm 
↓ 

2.5 
↑ 

7.3 
↑ 

4.4 
→ 
0.5 

↑ 
7.0 

↓ 
3.3 

↑ 
8.4 

- 

CDD 
↓ 

18.4 

↓ 

9.0 

↓ 

6.7 

→ 

1.1 

→ 

4.1 

→ 

4.3 

↓ 

10.3 
- 

CWD 
↑ 

3.9 

↑ 

2.6 

↑ 

3.7 

↓ 

1.6 

↑ 

3.7 

↑ 

3.8 

↑ 

9.0 
LU & ANT & GHG 

PRCPTOT 
↓ 

2 

↑ 

7.3 

↑ 

4.8 

→ 

0.4 

↑ 

8.0 

↑ 

4.4 

↑ 

8.4 
- 

 

3-2. Single-signal optimal detection 

analysis 

Figure 5 illustrates the results of single-signal 

optimal detection analysis for Rx1day  

with six forcing factors. The value of the  

best estimate of the scaling factor is 

designated with a square sign (□) and top  

and bottom limits of each forcing factor  

in the 90% confidence level are represented 

as upper and lower bounds. According to  

the calculated limits in Figure 5, a zero  

value was found in the amplitude of all 

calculated values for all forcing factors, 

indicating the lack of detection of forcing 

influence in the variations of observations. 

The scaling factor of GHG was the highest 

value among all other forcing factors, which 

agrees well with what Figure 4 presents 

about the larger agreement of variations of 

this forcing factor with observations. The 

scaling factor of AA was around zero 

implying its ignorable effect on the variations 

of Rx1day compared to the other forcing 

factors. 
 

 
Figure 4. Rx1day time series of the 5-year mean areal average of PI over 9 grid cells for observed and ALL, ANT, NAT, 

GHG, LU and AA during 1967-2010. 
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Figure 5. Results from the single-signal optimal detection analysis of Rx1day. Scaling factors and their 90% CIs are 

displayed for ALL, ANT, NAT, GHG, LU and AA. 
 

Table 3 shows the results of single-signal 

detection for all indicators. In the last 

column, the detected/effective forcing factors 

for the indicators (if any) are presented. The 

effective forcing factor is an item that is not 

to be detected, but its scaling factor is greater 

than 0.8 and its CI does not include zero. In 

addition, the coefficients of the scaling 

factors for these indices are reported in the 

supporting information of Figure S3.
 

Table 3. Results from the single-signal optimal detection analysis of seven indices. Scaling factors and their 90% CIs are 

displayed for ALL, ANT, NAT, GHG, LU and AA. For each index, the first, second and third rows indicate the 

upper limit of CI, scaling factor and lower limit of the CI. Patterned shading cell shows detected forcing 

factors. 

Forcing factors 

 

Index 

All ANT NAT GHG LU AA 

Detected/ 

Effective 

forcing 

Rx1day 

0.4 0.2 0.9 1.0 1.0 0.6 

- -0.1 -0.5 0.4 0.4 0.3 0.0 

-0.6 -1.2 -0.2 -0.2 -0.5 -0.7 

Rx5day 

0.5 0.4 0.8 0.6 1.0 0.2 

- 0.0 -0.2 0.2 0.0 0.3 -0.5 

-0.5 -0.9 -0.3 -0.6 -0.4 -1.2 

R10mm 

0.4 0.3 0.6 0.8 0.4 -0.2 

AA -0.3 -0.5 0.1 0.1 -0.3 -0.8 

-0.9 -1.3 -0.5 -0.6 -1.0 -1.4 

R20mm 

0.2 0.3 0.2 0.3 0.3 0.2 

- -0.1 -0.6 0.0 0.0 0.1 -0.1 

-0.3 -1.5 -0.2 -0.2 -0.2 -0.3 

CDD 

1.5 2.2 -0.6 1.0 1.5 1.2 

ANT & NAT 0.7 1.4 -1.4 0.2 0.6 0.3 

-0.1 0.7 -2.2 -0.5 -0.4 -0.6 

CWD 

0.2 0.0 1.0 0.7 0.6 0.4 

- -0.3 -0.5 0.4 0.1 -0.1 -0.3 

-0.8 -1.0 -0.1 -0.5 -0.7 -1.0 

PRCPTOT 

0.3 0.4 0.8 0.7 0.5 -0.2 

AA -0.2 -0.3 0.2 0.0 -0.1 -0.8 

-0.8 -1.1 -0.4 -0.6 -0.8 -1.4 
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The CIs of all forcing factors for Rx1day, 

R20mm and CWD included zero, so  

the effects of any forcing factors on  

the observation changes of these indicators 

cannot be detected. The CIs of the  

AA forcing factor for R10mm and 

PRCPTOT were less than zero, and  

their scaling factors were -0.8. Although  

the effect of the forcing factors on the 

changes in these indicators was not 

detectable, they revealed the opposite impact 

of AA on their changes. The scaling factor of 

ANT for the CDD was greater than one, and 

its CI did not include zero, so it was detected. 

In addition, the scaling factor greater than 

one depicted the underestimation of the 

forcing factor by the model. Due to the linear 

negative trend of the CDD, the induction of 

ANT has reduced its severity. Moreover, the 

opposite effect of NAT on the negative trend 

of CDD was roughly inferable but not 

detectable. 

Two forcing factors, ANT and GHG, had 

consistent effects on the observation changes, 

among which the ANT was more effective 

due to its larger scaling factor. On the other 

hand, ANT forcing factor encompassed the 

components of the GHG forcing factor; thus, 

the interaction of the factors, namely ozone, 

anthropogenic sulfate aerosol, land use, black 

carbon, and organic carbon, with GHG was 

effective in reducing the intensity of CDD. 

Since the ANT was computed from the 

difference between ALL and NAT, its 

agreeable effect on the observation changes 

is expected due to the agreeable effect of 

ALL and the opposing effect of NAT. It is 

worth mentioning that this paper only reports  
 

thescaling factors of the detected/effective 

forcing factors on the indicators.  

 
3-3. Two-signal optimal detection analysis 

To separate responses from the combined 

effect of forcing factors, the results of the 

optimal detection analysis of the two-signals 

are shown in Figure 6 for Rx1day. The center 

of each ellipse demonstrates scaling factors, 

where ellipse itself stands for the 90% joint 

confidence region. 

Even though, the CI of the scaling factor of 

GHG contained a zero value in the single-

signal analysis and the detection was not 

conducted, its joint confidence region in the 

two-signal analysis excluded a zero value for 

the GHG-ANT paired forcing, where the 

effect of GHG can be separated from the 

ANT to some acceptable extent. Since GHG 

failed to detect the PI trend of observations, 

the attribution was not conducted. In 

addition, to investigate other indices of 

extreme precipitation even in the absence of 

detecting other forcing factors, the two-signal 

optimal analysis was conducted to more 

accurately examine the relative influence of 
forcing factors. 

Table 4 shows the results of the two-signal 

detection of all indices. The values reported 

in the table indicate the scale coefficients of 

each corresponding pair of forcing factors. It 

also specifies the attributed or effective 

forcing factors for each indicator (if any). 

Effective forcing factor is a factor not to be 

attributed, but its joint confidence region 

excludes zero. The joint confidence regions 

of these indicators are also reported in 

supporting information of Figure S4. 

 
Figure 6. Results from the two-signal optimal detection analysis for Rx1day. Scaling factors and their 90% joint 

confidence regions are represented by ellipse for (a) GHG-NAT, (b) ANT-NAT, (c) ANT-GHG. 
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Table 4. Results from the two-signal detection analysis of seven indices for GHG-NAT, ANT-NAT and ANT-GHG. The 

values indicate scaling factors. Patterned shading cell shows attributed forcing. 

Forcing factors 

 

Index 

GHG-NAT ANT-NAT ANT-GHG 

Rx1day (0.37, 0.33) (-0.34, 0.21) 
GHG 

(-0.51, 0.43) 

Rx5day (-0.03, 0.23) (-0.09, 0.19) (-0.23, -0.03) 

R10mm (0.03, 0.04) (-0.52, -0.12) (-0.45, 0.07) 

R20mm (0.07, -0.06) (-0.57, 0.02) (-0.67, 0.09) 

CDD 
NAT 

(0.05, -1.40) 

(0.86, -0.79) ANT 

(1.42, 0.07) 

CWD 
NAT 

(0.13, 0.42) 
(-0.40, 0.15) 

ANT 

(-0.51, 0.15) 

PRCPTOT (0.03, 0.18) (-0.27, 0.07) (-0.32, 0.08) 

 
The joint confidence region of the ANT for 

CDD, excluded zero values in the ANT-GHG 

paired forcing and can be completely 

attributable. The joint confidence region  

of NAT to the paired forcing GHG-NAT  

and ANT to the paired forcing ANT-GHG, 

for CWD excluded zero; therefore, their 

effects were partially separable but  

not attributable. It is worthwhile to mention 

that only attributable forcing factors are 

reported in this section. Therefore, only ANT 

to the paired forcing ANT-GHG was 

attributable. 

 
3-4. Attributable PI changes 

Given that the scaling factor shows the 

forcing effectiveness in the PI trend, to 

determine the effectiveness of a forcing 

factor in the variations of extreme index 

value, attributable PI changes to a forcing 
(𝛿𝑃𝐼) was calculated. The attributable PI 

changes to GHG were calculated as 2.4% for 

Rx1day (Figure 7). This value for the GHG 

was higher than that for other forcing factors, 

showing the greater effectiveness of this 

forcing on Rx1day variations. The obtained 

attributable PI changes to ANT were 

negative, which shows an opposing effect on 

the ascending trend of this index due to their 

scaling factors. This value was equal to 0.4% 

for the NAT and AA, indicating its negligible 

effect on the variations of Rx1day. 

Figure 7 displays the attributable PI changes 

to each of the forcing factors in all extreme 

indices (the calculated value for the ANT 

was -10.3% in the CDD index and was not 

shown in Figure 7). The largest changes were 

associated with AA and ANT that had 

negative values. Negative values indicate an 

opposing effect on the observational 

variations. Furthermore, even though GHG 

and LU had lower values (on average, less 

than 1%), they showed more positive 

changes. The most dominant forcing factors 

with respect to attributable PI changes were 

GHG for Rx1day and LU for Rx5day and 

CDD, which were consistent with the trend 

of observation changes. 

The results of R20mm index were not 

reliable since a considerable number of 

stations did not even have a single 

precipitation event over 20 mm in a year that 

caused both the time series of observations 

and signals to have many zero values. Here, 

in the fitting of GEV function, the maximum 

likelihood estimation was not converged 

where the PI values obtained from the GEV 

function might be inaccurate. 
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Figure 7. Attributable PI change of seven extreme precipitation indices for six forcing factors. Markers represent Rx1day 

(circle), Rx5day (square), R10mm (plus), R20mm (cross), CDD (upward-pointing triangle), CWD (asterisk) 

and PRCPTOT (downward-pointing triangle). 

 

3-5. Attributable return period 

Figure 8 shows the mean attributable changes 

of the 20-year event return period to  

each forcing factor for the six extreme 

indices. For R20mm, the attributable changes 

of the event return period were not calculated 

due to the absence of an appropriate GEV 

distribution. 
The attributable changes in the return period 

of a 20-year event to GHG for Rx1day lied 

between 19.4 and 21.5 years. Since the 

median of this range was equal to 20.4 years; 

therefore, it can be concluded that despite the 

insignificant effect of the GHG on the event 

probability, it shows a significant effect on 

the intensity of this index. The attributable 

changes to ANT lied between 19.9 and 21.3 

years. The median of this range was equal to 

20.6 years, which is the highest compared to 

the same value estimated for other forcing 

factors for Rx1day. In summary, it can be 

concluded that the ANT has caused a 

reduction in the occurrence probability of 

Rx1day events in recent decades.

 

 
 
Figure 8. Attributable return period average (based on a 20-year return period) of seven extreme precipitation indices for 

six forcing factors. Markers represent Rx1day (circle), Rx5day (square), R10mm (plus), CDD (upward-

pointing triangle), CWD (asterisk) and PRCPTOT (downward-pointing triangle). 
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All values are positive for the six indices 

shown, indicating an increase in return 

periods in recent decades. Therefore, all the 

studied forcing factors (on average) led to a 

reduction in the frequency of the considered 

extreme events occurrence (based on the 20-

year event). The highest value of the mean of 

the attributable changes was related to ANT 

for all indices. Among which, ANT caused 

an increase in the return period of a 20-year 

event by 1.9 years for CDD. The results 

indicated that, on average, the maximum 

value belonged to ANT (0.8 year), whereas 

other forcing factors had a value of 

approximately 0.4 year. 

 

4. Discussion and concluding remarks 

We investigated the effects of six different 

forcing factors on the variations of seven 

extreme precipitation indices during 1967-

2010 using the simulations carried out by the 

CanESM2 model. The ground information 

has been spatially distributed using IDW over 

the computational grids. The results revealed 

that, based on the linear trends of the 5-year 

moving average of PI indicators, Rx1day, 

Rx5day and CWD increased while R10mm, 

R20mm, CDD and PRCPTOT decreased, and 

CDD and Rx1day experienced significant 

changes. These results showed that the 

number of days with precipitation more than 

10 mm and 20 mm also decreased. On the 

other hand, the number of consecutive dry 

days of the year decreased while the number 

of consecutive wet days of the year 

increased. Therefore, it can be inferred that 

precipitations were further scattered to 

separate wet days with precipitation amounts 

between 1 mm and 10 mm. There has also 

been a decrease in the sum of precipitations 

over 1 mm in any given year. 

The effect of ANT (the only detected forcing 

factor) was fully detected and attributed to 

the variation of CDD. Herring et al. (2020), 

by examining the CDD index in the winter of 

2017/18 in China, showed that anthropogenic 

influence has significantly increased the 

event probability of the CDD index. 

Furthermore, the opposing effects of AA and 

NAT on the changes of R10mm, PRCPTOT 

and CDD were noticeable. The lack of 

detection for Rx1day and Rx5day was 

associated with anthropogenic activities that 

were not completely emerged in the 

precipitation extremes (Rx1day and Rx5day), 

as shown by King et al. (2015). Based on 

their predictions, the anthropogenic emerge 

will occur after 2060 for these two indices in 

Iran. 

Based on the Clausius–Clapeyron relation, it 

is expected that precipitation extremes 

increase by augmenting the moisture content 

in the atmosphere at constant circulations 

(Bindoff et al., 2013). To investigate the 

relationship between changes of precipitation 

extreme and temperature changes, the 

observation changes of Rx1day were 

investigated. Saboohi et al. (2012) and 

Ghasemi (2015) obtained the changes of 

mean annual temperature in Iran within the 

statistical periods of 1951-2007 and 1961-

2010 equal to 0.3 ℃ 10 𝑦𝑒𝑎𝑟−1 and 

0.24 ℃ 10 𝑦𝑒𝑎𝑟−1, respectively. Therefore, 

given the mean of these two values as the 

changes of mean annual temperature as well 

as the increase in Rx1day by 7.7% (44-year 

period), one can conclude that the Rx1day 

increased by a rate of 6.5% ∕ K. Since the 

Clausius–Clapeyron relation predicts 

6 − 7% ∕ K changes for the precipitation 

extreme (Zhang et al., 2013; Sarojini et al., 

2016), observation changes of Rx1day 

showed a proper agreement with the 

prediction of Clausius–Clapeyron relation. 

The examination of simulation changes of 

Rx1day revealed that only the GHG, among 

all of the six investigated forcing factors in 

this study, with a rate of 5.2% ∕ K concurred 

suitably with the observations and prediction 

provided by the Clausius–Clapeyron relation. 

Moreover, in section 3.2, the scaling factor of 

the GHG showed that this forcing factor 

agreed with the observations more than other 

ones.  

In this paper, the attributable PI changes and 

mean of attributable changes of the 20-year 

event return period to each forcing were 

investigated in all extreme indices. The 

obtained results indicated that the attributable 

PI changes offered the highest values for the 

ANT in comparison to other forcing factors. 

Moreover, the ANT increased the 20-year 

event return period to 21.9 for the CDD, 

demonstrating the frequency reduction in 

consecutive dry days of the year. All the 

investigated forcing factors yielded a 

reduction in the frequency of the occurrence 

of extreme events (on the basis of the 20-year 

event). 

Generally, the detection of anthropogenic 
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influence on precipitation extremes on the 

regional scale is difficult due to the increase 

in uncertainties and disregarding the effects 

of some factors, namely uncertainty of 

internal variability of the climate and 

nonlinear superposition of forcing factors, 

which might be effective in the results. 

Furthermore, models still encounter some 

problems to simulate precipitation extremes, 

and observation data covers lower spatial and 

temporal amplitudes compared to a variable 

like temperature (Hegerl et al., 2010; Bindoff 

et al., 2013; Zhai et al., 2018). Some models 

have been identified as suitable for 

simulating the precipitation variable by the 

IPCC’s Report, among which CanESM2 

model was used in this research. To tackle 

these probable errors of the simulation 

model, applying different simulation models 

is recommended for further future studies. 

Another uncertainty in the current detection 

and attribution research is related to the 

selected spatial distribution method. In the 

literature, different spatial estimation 

methods have been developed to 

precipitation estimation in complex 

topographic area (Zandi et al., 2022; 

Goovaerts, 2003, Daly et al., 1994), it is 

recommended to evaluate the impact of the 

selected spatial estimation methods on 

detection and attribution results. 
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