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1. Introduction
Dissimilar welding of metals has turned into a 

critical technology in numerous areas where both 
strength and corrosion resistance are required [1, 
2]. The Joining of dissimilar metal combinations 
are utilized in various applications requiring 
specific combinations of weldment properties and 
saving cost [3,4]. The dissimilar metal welding 
gives possibilities to the item's versatile plan by 
using each material effectively and efficiently, i.e., 
benefitting from each material's specific properties 

[5]. 
Dissimilar welds of stainless steel and low alloy 

steel are required when changes in mechanical 
properties and service performance are required 
[6]. For welds of carbon and austenitic steel, it is 
feasible to notice harm in the austenitic steel, which 
is basically the material with better corrosion 
resistance. This self-contradictory peculiarity is 
attempted to be brought about by the segregation 
of impurities i.e. S, P, and C from carbon steel on 
austenitic grain boundaries. Unfortunately, it might 

In the current study, 316 stainless steel and 4140 steel sheets were successfully joined using friction stir butt welding 
(FSBW). The tool's rotational speed and the linear welding speed were assumed to be 1400-1700 rpm and 30-50 
mm/min, respectively. The weld microstructures were examined by X-ray diffraction (XRD), optical microscopy, and 
scanning electron microscopy (SEM). In this welding, three zones with different structures relative to the base metals, 
including thermomechanical zones for each base metal and stir zone, were formed. Observations indicated that in 
the microstructure of 4140 steel containing martensite, the martensite blades vanished, and the grains extended 
in the thermomechanical zone. Furthermore, in the 316 stainless steel containing austenite, the austenite grain 
size was shrunk due to the dynamic recrystallization in the thermomechanical zone. Also, the microhardness test 
results showed that the stir zones have higher hardness than base metals in all specimens because of the dynamic 
recrystallization and fine-grained structure. Moreover, the 1550 rpm - 40 mm/min welded specimen in the stir zone 
has the highest yield strength of 350 MPa in the tensile test, which was higher than the yield strength of 316 stainless 
steel. 
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likewise be a source of functional issues because of 
joining at least two metals with various corrosion 
resistance [7]. Power generation equipment such as 
fossil fuel boilers and steam generators, water walls 
surrounding furnaces, economizer assemblies, and 
superheater and reheater front and rear sections 
are equipment where dissimilar welds of stainless 
steel to low alloy steel are an example of widely 
applications. [8].

The process of welding different steel alloys is 
very complicated since the alloy gradient. Hence, 
the migration of carbon from the low-alloy side 
can result in variation of microstructure, residual 
stress and brittle intermetallic compounds (IMCs) 
in various districts of the weld metal [1, 2]. When 
welding stainless steel to low-alloy steel, there 
is a risk of cold cracking due to the formation of 
martensite in the weld zone after dilution with the 
base metal and residual ferrite. Also, hot cracking 
may happen by the low melting point impurities, 
e.g., phosphor and sulfur [1, 6, 9, 10]. In addition, 
due to the significant difference in chemical 
compositions, there is a high risk of affecting the 
mechanical properties when melting both stainless 
and low alloy steels using fusion welding processes, 
e.g., gas metal arc welding and gas tungsten arc 
welding [11]. Unfortunately, welding these metals 
together by other methods is very complicated and 
difficult. 

Dissimilar metals are typically less weldable than 
similar metals due to poor joint design, formation 
of other intermetallic compounds, differences in 
metal composition, and differences in mechanical 
and thermal properties [12]. Low alloy filler metals 
in austenitic stainless steels can lead to brittle 
and hard weld deposits. Carbon diffusion and 
subsequent formation of detrimental carbides in 
the weld metal is important when joining low-
alloy and carbon steels to stainless steel. Therefore, 
decarburization and grain growth occur in the 
heat-affected zone (HAZ) of carbon steel, affecting 
mechanical properties [7].

Consequently, many researches are conducted 
on the possibility of joining dissimilar materials 
utilizing friction stir welding (FSW) [13,24]. 
Friction stir welding is a generally new method that 
utilizes non-consumable tools to generate frictional 
heat and plastic deformation so that the formation 
of the joint in its solid state is affected and joins two 
metals in the solid-state [25,28] and as a result of 
actively controlling the welding temperature and/
or cooling rate, FSW can produce steel joints with 

great toughness and strength [29]. This method is a 
solid state hot shear joining method using rotating 
tools [30-31], and was first used by TWI (The 
Welding Institute) in Cambridge, England (1991) 
and used for welding the aluminum alloys [25-27, 
32]. 

The invention of friction stir welding (FSW) is an 
innovative and newly defined solid material joining 
process for lightweight structures [33]. The study 
of welding dissimilar materials is of great interest 
to scientists and engineers. The demand to develop 
lightweight, strong, improved electrical properties 
and cost-effective mechanical parts or structures 
is continuously increasing in various industries 
[34]. The advantages of FSW for dissimilar joining 
of various alloys are demonstrated in several 
publications [35,40].

 FSW of stainless steels [36, 41,43] and carbon 
steels [44,46] has yielded very encouraging 
outcomes and has shown that this welding 
technique has several advantages. However, 
dissimilar FSW of stainless steels to carbon or alloy 
steels is not investigated adequately. An instance 
of stainless steel-carbon steel FSW illustrated the 
presence of four various microstructures within the 
weld area, i.e., heat-affected zone (HAZ) of St37, 
thermomechanically affected zone (TMAZ) of 
AISI 304 SS, and stir zones (SZ) of both materials. 
In contrast, the weld center contained alternating 
bands of the microstructures of both steels. It is also 
reported that due to hot deformation associated 
with the FSW process, hence, recrystallization 
of austenite in the SZ region, the austenite was 
transformed to ferrite-pearlite and Widmanstatten 
ferrite. In addition, the increase of hardness 
in the weld SZ is attributed to the dynamic 
recrystallization of austenite in these regions [13].

It is well known that the weld microstructure 
is firmly impacted by the welding variables. 
However, the effects of FSW parameters on the 
microstructure and properties of various welds of 
stainless steels and carbon and low-alloy steels are 
not well understood.

The purpose of this study was to investigate the 
effects of welding parameters on the microstructure 
and mechanical properties of FSW from 316 
stainless steel to 4140 steel. Using microscopy 
and analytical techniques, it has investigated the 
microstructure of different zones of the weld. 
Mechanical properties were also investigated by 
tensile and hardness tests.
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2. Experimental procedure  
In the current study, 316 austenitic stainless steel 

and 4140 quench-tempered steel with the chemical 
composition obtained by emission spectroscopy in 
Table 1 were used as base metals. 

A sheet of 100 mm x 100 mm with a 2 mm 
thickness was prepared for friction stir butt 
welding. A cylindrical tungsten carbide pin was 
used as the welding tool. The shoulder diameter, 
pin length, and pin diameter were considered 20 
mm, 1.8 mm, and 3 mm, respectively. In addition, 
FSW was performed at rotational speeds of 1400, 
1550, and 1700 rpm and linear speeds of 30, 40, and 
50 mm/min. A schematic of the FSW technique is 
shown in Figure 1.

Research studies on FSW have demonstrated 
that the advancing side sheet experiences higher 
temperatures [47,49]; therefore, stronger metal is 
placed in the advancing side to achieve the desired 
flow at the joint. Hence, 4140 steel is stronger 
than 316 stainless steel, so it was put 4140 steel in 
the advancing side and 316 stainless steel in the 
retreating side. 

The metallographic specimens were prepared 
from the horizontal top surface of the weld, which 
included the two base metals and their joints. 
After polishing the specimens, according to the 
ASTM E3 standard [50], nital 2 % solution was 
first used for etching the 4140 steel; then, the 316 
stainless steel was etched with the nitric acid 60 
% solution via electrolytic etching. This method 
is characterized by the feature that the electrolytic 
etching of 316 stainless steel does not affect 4140 
steel. Microstructures were observed and analyzed 
by optical microscope (OM) and Vega Tescan 
scanning electron microscope (SEM) outfitted with 
energy-dispersive spectroscopy (EDS). Moreover, 
the grain size was calculated using the MLI (Mean 
Linear Intercept) method. Also, Phase identification 
was performed by the X-ray diffraction (XRD) 
technique using a PHILIPS diffractometer with the 
Cu-kα radiation. 

The tensile specimens were prepared 
perpendicular to the welding direction (transverse 
tensile test) based on the ASTM E8 standard [51]. 
Tensile tests were performed on an Instron 5500R 

Table 1. The chemical composition of 316 stainless steel and 4140 steel 

Alloy Wt.% 

Nb S P Mo Ni Cr Mn Si C Fe 

316 stainless steel 0.02 0.01 0.04 1.64 10.42 17.22 1.37 0.43 0.04 Bal. 

4140 steel - 0.01 0.01 0.19 0.03 0.90 0.78 0.28 0.39 Bal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Schematic drawing of FSW technique for welding 316 stainless steel to 4140 steel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1- The chemical composition of 316 stainless steel and 4140 steel

Fig. 1- Schematic drawing of FSW technique for welding 316 stainless steel to 4140 steel.
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machine at ambient temperature with a strain rate 
of 5 x 10-4 s-1. Three tensile specimens were tested 
at each condition to achieve reasonable reliability. 
In addition, the fracture surface of the tensile 
specimen was observed with SEM to investigate 
the fracture mode. The hardness of the samples was 
measured along the middle line of the cross section 
perpendicular to the weld path with a load of 100 g 
for 15 seconds and a point spacing of 2 mm.

3. Results and discussion 
3.1. Microstructural characterization 

Fig. 2 shows the microstructures of different 
zones of 316 stainless steel-4140 steel FSW at 
1400 rpm and 40 mm/min. As should be visible, 
the 316 stainless steel as one of the base metals 
has an austenitic structure, in which the flow lines 
resulting from cold rolling operation during the 
production process can be observed. Coaxial grains 

containing ferrite residues can also be observed in 
the 316 SS base metal [52]. The grain size on this 
side decreases from 13 µm in the substrate to 8 µm 
in the thermomechanically affected zone (TMAZ) 
and 3 µm in the stir zone (SZ) (Table 2). Such grain 
size reduction is caused by dynamic recrystallization 
due to heat input and force and is different for each 
specimen under different conditions. 

The other side is 4140 steel, which has a 
martensitic microstructure in the base metal zone 
(Fig. 2) so that the martensitic blades are visible. 
Still, in the zones close to the line joining the two 
metals (SZ and TMAZ), this structure is converted 
into a tempered martensitic structure. When the 
martensitic structure is affected by the pin's stirring, 
the development of martensitic occurs along with 
the growth and arrangement of the grains as a 
result of suitable thermal distribution [53]. 

As can be observed, increasing the rotational 

 

 

Fig. 2. Optical microstructures of the different zones of 316 stainless steel-4140 steel FSW at a speed of 

1400 rpm and 40 mm/min. 

 

 

 

 

 

 

Table 2. Average grain size (µm) in SZ and TMAZ 

 1400 rpm 

40 mm/min 

1550 rpm 

40 mm/min 

1700 rpm 

40 mm/min 

1550 rpm 

30 mm/min 

1550 rpm 

50 mm/min 

SZ  3 6 7 5 6 

TMAZ 8 9 10 8 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2- Average grain size (µm) in SZ and TMAZ

Fig. 2- Optical microstructures of the different zones of 316 stainless steel-4140 steel FSW at a speed of 1400 rpm and 40 mm/min.
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speed of the tool from 1400 to 1700 rpm at a 
constant linear speed of 40 mm/min increases 
the particle size from 3 µm to 7 µm due to the 
temperature increase during stirring. This increase 
in the grain size exhibits lower variations in the 
TMAZ. Grain size reduction in the stirred zone is 
the consequence of the dynamic recrystallization 
phenomenon. Moreover, at a constant rotational 
speed of 1550 rpm, the grain size does not show 
much change with changing the linear velocity of 
the FSW. 

Fig. 3 shows the SEM micrograph of an FS-
welded specimen in the stirred zone along with 
EDS linear analysis. As can be seen, 316 stainless 
steel is observed on the light side and 4140 steel is 
observed on the dark side.

Besides, the red line specifies the EDS analysis 
path. The EDS linear analysis shows the penetration 
path of nickel and chromium from 316 stainless 

steel toward 4140 steel and the penetration path 
of iron and carbon from 4140 steel toward 316 
stainless steel, which is indicative of a proper joint. 

Fig. 4 shows the XRD analysis in the stirred zone 
of the FS-welded specimens. The peaks shown in 
the patterns are related to the austenite phase. In 
this study, no new phases formed in the stir zone 
and the phases present are related to 316 stainless 
steel.

3.2. Mechanical properties 
Fig. 5 shows the micro-hardness profile of the 

FS-welded specimens. The results in Fig. 5a indicate 
that microhardness values in the SZ and TMAZ 
zones increase rather than base metals due to the 
reduced grain size resulting from fragmentation 
of grains and dynamic recrystallization. Besides, 
Vickers microhardness values in the base metals 
are about 222 for the 4140 steel and 210 for the 
316 stainless steel. The Vickers microhardness 
values in the SZ and TMAZ zones are in the range 
of 250-350. As the tool speed increases, the heat 
input to the workpiece increases, so the hardness 
values in the SZ and TMAZ zones decrease and 
the grains grow. The microhardness values at a 
constant tool rotational speed of 1550 rpm in 
Fig. 5b indicate the maximum hardness for the 
1550rpm-30mm/min, 1550rpm-40mm/min, and 
1550rpm-50mm/min specimens are 332, 320, and 
304 Vickers, respectively. Moreover, increasing the 
linear speed at the constant tool rotational speed 
indeed decreases the heat input, which would lead 
to reduced hardness in the SZ zone. 

FSW causes considerable changes in the 
strength of welding specimens. These changes can 

 

 

 

Fig. 3. SEM micrograph and linear EDS analysis of FS welded sample at 1550 rpm - 40 mm/min. 

 

 

 

 

 

 

 

Fig. 3- SEM micrograph and linear EDS analysis of FS welded 
sample at 1550 rpm - 40 mm/min.

 

 

 

 

Fig. 4. XRD analysis of stirred zone of FS-welded specimens. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4- XRD analysis of stirred zone of FS-welded specimens.
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be seen in the tensile test results. Fig. 6 shows the 
stress-strain curves derived from the tensile test 
of the FS-welded specimens. As can be seen, the 
1550rpm-40mm/min specimen has the best tensile 
properties with the yield strength (YS) and ultimate 
tensile strength (UTS) of 350 MPa and 440 MPa, 
respectively. The yield strength of the 1550rpm-
40mm/min specimen is higher than that of 316 
stainless steel base metals and lower than that of 
the 4140 steel, but the UTS is less than both base 
metals. Figure 7 shows the tensile test results of the 
FS welded samples.

As shown in Fig. 7, Elongation (El) is directly 
proportionate to the heat input; in fact, the 
elongation of the tensile specimens reduces by 
decreasing the grain size. The highest El of 25% is 
related to the 1700 rpm - 40 mm/min specimen, 
while the 1400rpm-40mm/min specimen has the 
lowest El of 11%. 

Fig. 8 shows the tensile fracture surface of 
the FS-welded specimens. The transverse tensile 

specimens are consisted of base metals, HAZ, 
TMAZ and stir zone, which their fracture occurred 
from stir zone. Fig. 8a represents that the tensile 
fracture of the 1400 rpm - 40 mm/min specimen 
is a brittle type because of some features such as 
cleavage facets, steps, and microcracks. As shown 
in Fig. 8d, the reason for the disjoint at the weld 
site is the presence of tunnel defects. The low heat 
input compared to other specimens could cause 
such defects and inappropriate joints. 

According to Fig. 8b, the fracture mode with 
increasing the rotational tool speed to 1550 rpm is 
almost similar to that of the 1400 rpm – 40 mm/
min specimen. Moreover, the surface has fewer 
superficial defects and microcracks. In Fig. 8c, 
by increasing the rotational tool speed to 1700 
rpm and increasing the heat input, the specimen 
underwent a ductile fracture. Besides, in this 
specimen, the El% was the highest among other 
specimens. Ductile fracture is formed through the 
connection and conjoining of small dimples that 
germinated in the strain discontinuous regions such 
as inclusions, grain boundaries, and accumulation 

 

Fig. 6. Tensile stress-strain curves for FS-welded specimens (a) at a constant linear speed of 40 mm/min 

and (b) at a constant tool rotational speed of 1550 rpm. 

 

 

 

 

 

 

 

 

 

 

Fig. 5- Microhardness profile of the FS-welded specimens (a) 
at a constant linear speed of 40 mm/min; (b) at a constant tool 

rotational speed of 1550 rpm.

Fig. 6- Microhardness profile of the FS-welded specimens (a) 
at a constant linear speed of 40 mm/min; (b) at a constant tool 

rotational speed of 1550 rpm.

 

Fig. 5. Microhardness profile of the FS-welded specimens (a) at a constant linear speed of 40 mm/min; 

(b) at a constant tool rotational speed of 1550 rpm. 
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of dislocations. The distribution and size of these 
small dimples affected the fracture's surface [45]. 
The dimples are of edged conical type.

4. Conclusion
In this study, the effects of welding parameters 

on the microstructure and mechanical properties 
 

 

Fig. 7. Comparison of tensile properties of FS-welded specimens. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. SEM micrographs of fracture surface of FS-welded specimens in conditions of (a,d) 1400 rpm – 

40 mm/min, (b) 1550 rpm – 40 mm/min, (c) 1700 rpm – 40 mm/min.  

 

 

(d) 

Fig. 8- SEM micrographs of fracture surface of FS-welded specimens in conditions of (a,d) 1400 rpm – 40 mm/min, (b) 1550 rpm – 40 
mm/min, (c) 1700 rpm – 40 mm/min.

Fig. 7- Comparison of tensile properties of FS-welded 
specimens.
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